[200] | 1 | package agents.anac.y2019.harddealer;
|
---|
| 2 | import java.util.ArrayList;
|
---|
| 3 | import java.util.HashMap;
|
---|
| 4 | import java.util.HashSet;
|
---|
| 5 | import java.util.List;
|
---|
| 6 | import java.util.Map;
|
---|
| 7 | import java.util.Set;
|
---|
| 8 | import java.util.Map.Entry;
|
---|
| 9 |
|
---|
| 10 | import genius.core.Bid;
|
---|
| 11 | import genius.core.bidding.BidDetails;
|
---|
| 12 | import genius.core.boaframework.BOAparameter;
|
---|
| 13 | import genius.core.boaframework.NegotiationSession;
|
---|
| 14 | import genius.core.boaframework.OpponentModel;
|
---|
| 15 | import genius.core.issue.Issue;
|
---|
| 16 | import genius.core.issue.IssueDiscrete;
|
---|
| 17 | import genius.core.issue.Objective;
|
---|
| 18 | import genius.core.issue.Value;
|
---|
| 19 | import genius.core.issue.ValueDiscrete;
|
---|
| 20 | import genius.core.timeline.TimeLineInfo;
|
---|
| 21 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
| 22 | import genius.core.utility.Evaluator;
|
---|
| 23 | import genius.core.utility.EvaluatorDiscrete;
|
---|
| 24 |
|
---|
| 25 | public class HardDealer_OM extends OpponentModel {
|
---|
| 26 |
|
---|
| 27 | private double learnCoeff;
|
---|
| 28 |
|
---|
| 29 | private double issueUpdate;
|
---|
| 30 |
|
---|
| 31 | private int valueUpdate;
|
---|
| 32 |
|
---|
| 33 | private double minOppUtil = 0; // Minimum utility value for opponent when Negotiation Time ends
|
---|
| 34 | private double maxOppUtil = 1; // Maximum utility value for opponent when Negotiation Time starts
|
---|
| 35 | private double nOfHypothesis;
|
---|
| 36 | private double nOfIssues;
|
---|
| 37 | HashMap<List<Issue>, Double> probHyp = new HashMap<List<Issue>, Double>(); // the probabilities for each hypothesis
|
---|
| 38 | List<List<Issue>> spaceOfHypothesis = new ArrayList<List<Issue>>(); // All the possible hypothesis
|
---|
| 39 | HashMap<List<Issue>, Double> oppUF = new HashMap<List<Issue>, Double>(); // List of utility evaluations for each hypothesis
|
---|
| 40 | HashMap<List<Issue>, Double> probHypGivenBid = new HashMap<List<Issue>, Double>(); // List of probabilities for each hypothesis given as bid
|
---|
| 41 | List<Double> oppTargetUtility = new ArrayList<Double>(); // List of target utilities for the opponent for each time interval
|
---|
| 42 | HashMap<List<Issue>,HashMap<Integer, Double>> ListWeight = new HashMap<List<Issue>, HashMap<Integer, Double>>();
|
---|
| 43 |
|
---|
| 44 | HashMap<Objective, Double> simpleWeights = new HashMap<Objective, Double>(); // List of weights for the SimpleLearning model
|
---|
| 45 |
|
---|
| 46 | TimeLineInfo negTime;
|
---|
| 47 |
|
---|
| 48 | public void init(NegotiationSession negotiationSession,
|
---|
| 49 | Map<String, Double> parameters) {
|
---|
| 50 | this.negotiationSession = negotiationSession;
|
---|
| 51 | if (parameters != null && parameters.get("l") != null) {
|
---|
| 52 | learnCoeff = parameters.get("l");
|
---|
| 53 | } else {
|
---|
| 54 | learnCoeff = 0.13;
|
---|
| 55 | }
|
---|
| 56 | negTime = negotiationSession.getTimeline();
|
---|
| 57 | valueUpdate = 1;
|
---|
| 58 | opponentUtilitySpace = (AdditiveUtilitySpace) negotiationSession
|
---|
| 59 | .getUtilitySpace().copy();
|
---|
| 60 | nOfIssues = opponentUtilitySpace.getDomain().getIssues().size();
|
---|
| 61 | /*
|
---|
| 62 | * This is the value to be added to weights of unchanged issues before
|
---|
| 63 | * normalization. Also the value that is taken as the minimum possible
|
---|
| 64 | * weight, (therefore defining the maximum possible also).
|
---|
| 65 | */
|
---|
| 66 | issueUpdate = learnCoeff / nOfIssues;
|
---|
| 67 |
|
---|
| 68 | initializeModel();
|
---|
| 69 |
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | /**
|
---|
| 73 | * Update both the bayesian learning model as the simple learning model
|
---|
| 74 | */
|
---|
| 75 |
|
---|
| 76 | @Override
|
---|
| 77 | public void updateModel(Bid bid, double time) {
|
---|
| 78 | double alpha = 1;
|
---|
| 79 | // Calculate target utility for the opponent given the concession formula
|
---|
| 80 | double targetUtility = maxOppUtil - (maxOppUtil - minOppUtil) *
|
---|
| 81 | Math.pow((negTime.getCurrentTime() / negTime.getTotalTime()), alpha);
|
---|
| 82 |
|
---|
| 83 | oppTargetUtility.add(targetUtility);
|
---|
| 84 |
|
---|
| 85 | /**
|
---|
| 86 | * For each hypothesis, calculate the utility of the current bid given the weights of that hypothesis
|
---|
| 87 | * Calculation of utility of bid inspired by getUtility() function in the AdditiveUtilitySpace of genius
|
---|
| 88 | */
|
---|
| 89 | for (List<Issue> Hypothesis : spaceOfHypothesis) {
|
---|
| 90 | HashMap<Integer, Double> Weights = ListWeight.get(Hypothesis);
|
---|
| 91 | HashMap<Integer, Value> Values = bid.getValues();
|
---|
| 92 | double CompleteUF = 0;
|
---|
| 93 | for (Issue issues : Hypothesis) {
|
---|
| 94 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace.getEvaluators()) {
|
---|
| 95 | EvaluatorDiscrete evaluator = (EvaluatorDiscrete) e.getValue();
|
---|
| 96 | double value = 0;
|
---|
| 97 | try {
|
---|
| 98 | value = evaluator.getEvaluation((ValueDiscrete)Values.get(issues.getNumber()));
|
---|
| 99 | double OppUtilityFun = value * Weights.get(issues.getNumber());
|
---|
| 100 | CompleteUF = CompleteUF + OppUtilityFun;
|
---|
| 101 | } catch (Exception e1) {
|
---|
| 102 |
|
---|
| 103 | }
|
---|
| 104 | }
|
---|
| 105 | }
|
---|
| 106 | if(CompleteUF > 1) {
|
---|
| 107 | CompleteUF = 1;
|
---|
| 108 | }
|
---|
| 109 | oppUF.put(Hypothesis, CompleteUF);
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | /**
|
---|
| 113 | * Calculate the probability of the hypothesis given this bid as the 1 - the distance between the calculated utility and the target utility
|
---|
| 114 | */
|
---|
| 115 | for (List<Issue> Hypothesis : spaceOfHypothesis) {
|
---|
| 116 | probHypGivenBid.put(Hypothesis, 1 - Math.abs(oppUF.get(Hypothesis) - oppTargetUtility.get(oppTargetUtility.size()-1)));
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | double sumProbHypGivenBid = 0;
|
---|
| 120 | for (List<Issue> hypothesis : spaceOfHypothesis) {
|
---|
| 121 | sumProbHypGivenBid += probHypGivenBid.get(hypothesis) * probHyp.get(hypothesis);
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | double maxProb = 0;
|
---|
| 125 | List<Issue> maxHyp = new ArrayList<>();
|
---|
| 126 | // Bayesian Rule to calculate the new probability of each hypothesis
|
---|
| 127 | for (List<Issue> hypothesis : spaceOfHypothesis) {
|
---|
| 128 | double prob = probHypGivenBid.get(hypothesis) * probHyp.get(hypothesis) / sumProbHypGivenBid;
|
---|
| 129 | if(Double.isNaN(prob))
|
---|
| 130 | prob = 0;
|
---|
| 131 | probHyp.put(hypothesis, prob);
|
---|
| 132 | // Record which hypothesis has the highest probability to use in the actual weights for the model
|
---|
| 133 | if(prob > maxProb) {
|
---|
| 134 | maxProb = prob;
|
---|
| 135 | maxHyp = hypothesis;
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | // Only start updating the simple learning and updating weights and values after at least 2 opponent bids
|
---|
| 140 | if (negotiationSession.getOpponentBidHistory().size() < 2) {
|
---|
| 141 | return;
|
---|
| 142 | }
|
---|
| 143 | /**
|
---|
| 144 | * Gets the last 5 bids, or if there are less than 5 bids, return all the last bids.
|
---|
| 145 | */
|
---|
| 146 | ArrayList<BidDetails> multipleBids = new ArrayList<BidDetails>();
|
---|
| 147 | BidDetails oppBid = negotiationSession.getOpponentBidHistory().getHistory()
|
---|
| 148 | .get(negotiationSession.getOpponentBidHistory().size() - 1);
|
---|
| 149 | multipleBids.add(oppBid);
|
---|
| 150 | BidDetails prevOppBid1 = negotiationSession.getOpponentBidHistory().getHistory()
|
---|
| 151 | .get(negotiationSession.getOpponentBidHistory().size() - 2);
|
---|
| 152 | multipleBids.add(prevOppBid1);
|
---|
| 153 | if (negotiationSession.getOpponentBidHistory().size() > 2) {
|
---|
| 154 | BidDetails prevOppBid2 = negotiationSession.getOpponentBidHistory()
|
---|
| 155 | .getHistory()
|
---|
| 156 | .get(negotiationSession.getOpponentBidHistory().size() - 3);
|
---|
| 157 | multipleBids.add(prevOppBid2);
|
---|
| 158 | }
|
---|
| 159 | if (negotiationSession.getOpponentBidHistory().size() > 3) {
|
---|
| 160 | BidDetails prevOppBid3 = negotiationSession.getOpponentBidHistory()
|
---|
| 161 | .getHistory()
|
---|
| 162 | .get(negotiationSession.getOpponentBidHistory().size() - 4);
|
---|
| 163 | multipleBids.add(prevOppBid3);
|
---|
| 164 | }
|
---|
| 165 | if (negotiationSession.getOpponentBidHistory().size() > 4) {
|
---|
| 166 | BidDetails prevOppBid4 = negotiationSession.getOpponentBidHistory()
|
---|
| 167 | .getHistory()
|
---|
| 168 | .get(negotiationSession.getOpponentBidHistory().size() - 5);
|
---|
| 169 | multipleBids.add(prevOppBid4);
|
---|
| 170 | }
|
---|
| 171 | /**
|
---|
| 172 | * Get for each of the issues how many bids the value has not changed
|
---|
| 173 | */
|
---|
| 174 | HashMap<Integer, Integer> lastDiffSet = last5oppBid(multipleBids);
|
---|
| 175 |
|
---|
| 176 | /**
|
---|
| 177 | * Calculate the new total weight
|
---|
| 178 | * Each weight will have the issue Update value * the number of bids the value in this issue has not changed added to it
|
---|
| 179 | */
|
---|
| 180 | double totalweight = 0;
|
---|
| 181 | for (Integer i : lastDiffSet.keySet()) {
|
---|
| 182 | double weight = opponentUtilitySpace.getWeight(i);
|
---|
| 183 | if (lastDiffSet.get(i) == 4) {
|
---|
| 184 | totalweight += (weight + 4 * issueUpdate);
|
---|
| 185 | }
|
---|
| 186 | else if (lastDiffSet.get(i) == 3) {
|
---|
| 187 | totalweight += (weight + 3 * issueUpdate);
|
---|
| 188 | }
|
---|
| 189 | else if (lastDiffSet.get(i) == 2) {
|
---|
| 190 | totalweight += (weight + 2 * issueUpdate);
|
---|
| 191 | }
|
---|
| 192 | else if (lastDiffSet.get(i) == 1) {
|
---|
| 193 | totalweight += (weight + 1 * issueUpdate);
|
---|
| 194 | }
|
---|
| 195 | else {
|
---|
| 196 | totalweight += weight;
|
---|
| 197 | }
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | /**
|
---|
| 201 | * Update the weights to the new weights as explained above, but now normalized corresponding to the total weight
|
---|
| 202 | */
|
---|
| 203 | for (Integer i : lastDiffSet.keySet()) {
|
---|
| 204 | Objective issue = opponentUtilitySpace.getDomain()
|
---|
| 205 | .getObjectivesRoot().getObjective(i);
|
---|
| 206 | double weight = opponentUtilitySpace.getWeight(i);
|
---|
| 207 | double newWeight;
|
---|
| 208 | if (lastDiffSet.get(i) == 4) {
|
---|
| 209 | newWeight = (weight + 4 * issueUpdate) / totalweight;
|
---|
| 210 | }
|
---|
| 211 | else if (lastDiffSet.get(i) == 3) {
|
---|
| 212 | newWeight = (weight + 3 * issueUpdate) / totalweight;
|
---|
| 213 | }
|
---|
| 214 | else if (lastDiffSet.get(i) == 2) {
|
---|
| 215 | newWeight = (weight + 2 * issueUpdate) / totalweight;
|
---|
| 216 | }
|
---|
| 217 | else if (lastDiffSet.get(i) == 1) {
|
---|
| 218 | newWeight = (weight + 1 * issueUpdate) / totalweight;
|
---|
| 219 | }
|
---|
| 220 | else {
|
---|
| 221 | newWeight = weight / totalweight;
|
---|
| 222 | }
|
---|
| 223 | simpleWeights.put(issue, newWeight);
|
---|
| 224 | }
|
---|
| 225 |
|
---|
| 226 | /*
|
---|
| 227 | * The weights for the opponent model are updated to a combination of the bayesian model and the simple learning model
|
---|
| 228 | * The weights are calculated as the probability of the highest hypothesis * the weight corresponding to this hypothesis
|
---|
| 229 | * Combined with 1 - that probability * the weights as calculated by the simple learning model
|
---|
| 230 | */
|
---|
| 231 | HashMap<Integer, Double> maxWeights = ListWeight.get(maxHyp);
|
---|
| 232 | for(Issue issue: maxHyp) {
|
---|
| 233 | opponentUtilitySpace.setWeight(issue, (maxProb * maxWeights.get(issue.getNumber())) + ((1- maxProb) * simpleWeights.get( (Objective) issue) ) );
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 |
|
---|
| 237 | try {
|
---|
| 238 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace
|
---|
| 239 | .getEvaluators()) {
|
---|
| 240 | EvaluatorDiscrete value = (EvaluatorDiscrete) e.getValue();
|
---|
| 241 | IssueDiscrete issue = ((IssueDiscrete) e.getKey());
|
---|
| 242 | /*
|
---|
| 243 | * add constant learnValueAddition to the current preference of
|
---|
| 244 | * the value to make it more important
|
---|
| 245 | */
|
---|
| 246 | ValueDiscrete issuevalue = (ValueDiscrete) multipleBids.get(0).getBid()
|
---|
| 247 | .getValue(issue.getNumber());
|
---|
| 248 | Integer eval = value.getEvaluationNotNormalized(issuevalue);
|
---|
| 249 | value.setEvaluation(issuevalue, (valueUpdate + eval));
|
---|
| 250 | }
|
---|
| 251 | } catch (Exception ex) {
|
---|
| 252 | ex.printStackTrace();
|
---|
| 253 | }
|
---|
| 254 | }
|
---|
| 255 |
|
---|
| 256 | public double getBidEvaluation(Bid bid) {
|
---|
| 257 | double result = 0;
|
---|
| 258 | try {
|
---|
| 259 | result = opponentUtilitySpace.getUtility(bid);
|
---|
| 260 | } catch (Exception e) {
|
---|
| 261 | e.printStackTrace();
|
---|
| 262 | }
|
---|
| 263 | return result;
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 | public String getName() {
|
---|
| 267 | return "HardDealer_OM";
|
---|
| 268 | }
|
---|
| 269 |
|
---|
| 270 | @Override
|
---|
| 271 | public Set<BOAparameter> getParameterSpec() {
|
---|
| 272 | Set<BOAparameter> set = new HashSet<BOAparameter>();
|
---|
| 273 | set.add(new BOAparameter("l", 0.13,
|
---|
| 274 | "The learning coefficient determines how quickly the issue weights are learned"));
|
---|
| 275 | return set;
|
---|
| 276 | }
|
---|
| 277 |
|
---|
| 278 | /**
|
---|
| 279 | * Initialize both the simple learning and bayesian learning model
|
---|
| 280 | */
|
---|
| 281 | private void initializeModel() {
|
---|
| 282 | double commonWeight = 1D / nOfIssues;
|
---|
| 283 |
|
---|
| 284 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace
|
---|
| 285 | .getEvaluators()) {
|
---|
| 286 |
|
---|
| 287 | opponentUtilitySpace.unlock(e.getKey());
|
---|
| 288 | // Set the weights to 1 / number of issues
|
---|
| 289 | e.getValue().setWeight(commonWeight);
|
---|
| 290 | try {
|
---|
| 291 | // set all value weights to one (they are normalized when
|
---|
| 292 | // calculating the utility)
|
---|
| 293 | for (ValueDiscrete vd : ((IssueDiscrete) e.getKey())
|
---|
| 294 | .getValues())
|
---|
| 295 | ((EvaluatorDiscrete) e.getValue()).setEvaluation(vd, 1);
|
---|
| 296 | } catch (Exception ex) {
|
---|
| 297 | ex.printStackTrace();
|
---|
| 298 | }
|
---|
| 299 | }
|
---|
| 300 |
|
---|
| 301 | List<Issue> issues = negotiationSession.getIssues();
|
---|
| 302 | // Initialise the space of hypothesis
|
---|
| 303 | generateHypSpace(issues);
|
---|
| 304 |
|
---|
| 305 | nOfHypothesis = spaceOfHypothesis.size();
|
---|
| 306 |
|
---|
| 307 | // Initialise the probabilities of each hypothesis to 1 / number of hypothesis
|
---|
| 308 | for (List<Issue> hypothesis : spaceOfHypothesis) {
|
---|
| 309 | probHyp.put(hypothesis, 1D / nOfHypothesis);
|
---|
| 310 | }
|
---|
| 311 |
|
---|
| 312 |
|
---|
| 313 | for (List<Issue> Hypothesis : spaceOfHypothesis) {
|
---|
| 314 | HashMap<Integer, Double> hypWeights = new HashMap<Integer, Double>();
|
---|
| 315 | for (Issue issue : Hypothesis) {
|
---|
| 316 | // The weights for each issue in a hypothesis is defined as 2 * rank / number of issues * number of issues - 1
|
---|
| 317 | double OppNewWeight = 2 * (Hypothesis.indexOf(issue) + 1) / (nOfIssues * (nOfIssues + 1));
|
---|
| 318 | hypWeights.put(issue.getNumber(), OppNewWeight);
|
---|
| 319 | }
|
---|
| 320 | ListWeight.put(Hypothesis, hypWeights);
|
---|
| 321 | oppUF.put(Hypothesis, 0D);
|
---|
| 322 | }
|
---|
| 323 | }
|
---|
| 324 |
|
---|
| 325 | /*
|
---|
| 326 | * Returns for each issue how many bids in a row the value for that issue has not changed
|
---|
| 327 | */
|
---|
| 328 | private HashMap<Integer, Integer> last5oppBid(ArrayList<BidDetails> multipleBids) {
|
---|
| 329 |
|
---|
| 330 | HashMap<Integer, Integer> oppBiddiff = new HashMap<Integer, Integer>();
|
---|
| 331 | try {
|
---|
| 332 | for (Issue i : opponentUtilitySpace.getDomain().getIssues()) {
|
---|
| 333 | Value value1 = null;
|
---|
| 334 | Value value2 = null;
|
---|
| 335 | Value value3 = null;
|
---|
| 336 | Value value4 = null;
|
---|
| 337 | Value value5 = null;
|
---|
| 338 | value1 = multipleBids.get(0).getBid().getValue(i.getNumber());
|
---|
| 339 | value2 = multipleBids.get(1).getBid().getValue(i.getNumber());
|
---|
| 340 | if (multipleBids.size() > 2) {
|
---|
| 341 | value3 = multipleBids.get(2).getBid().getValue(i.getNumber());
|
---|
| 342 | }
|
---|
| 343 | if (multipleBids.size() > 3) {
|
---|
| 344 | value4 = multipleBids.get(3).getBid().getValue(i.getNumber());
|
---|
| 345 | }
|
---|
| 346 | if (multipleBids.size() > 4) {
|
---|
| 347 | value5 = multipleBids.get(4).getBid().getValue(i.getNumber());
|
---|
| 348 | }
|
---|
| 349 | /**
|
---|
| 350 | * Checks first if the last 4 values equals the current value
|
---|
| 351 | * If not, it checks for 3, 2 and 1 last values.
|
---|
| 352 | */
|
---|
| 353 | if (value1.equals(value2) && value2.equals(value3) && value3.equals(value4) && value4.equals(value5)) {
|
---|
| 354 | oppBiddiff.put(i.getNumber(), 4);
|
---|
| 355 | }
|
---|
| 356 | else if (value1.equals(value2) && value2.equals(value3) && value3.equals(value4) && !(value4.equals(value5))) {
|
---|
| 357 | oppBiddiff.put(i.getNumber(), 3);
|
---|
| 358 | }
|
---|
| 359 | else if (value1.equals(value2) && value2.equals(value3) && !(value3.equals(value4))) {
|
---|
| 360 | oppBiddiff.put(i.getNumber(), 2);
|
---|
| 361 | }
|
---|
| 362 | else if (value1.equals(value2) && !(value2.equals(value3))) {
|
---|
| 363 | oppBiddiff.put(i.getNumber(), 1);
|
---|
| 364 | }
|
---|
| 365 | else if (!(value1.equals(value2))) {
|
---|
| 366 | oppBiddiff.put(i.getNumber(), 0);
|
---|
| 367 | }
|
---|
| 368 | }
|
---|
| 369 | } catch (Exception ex) {
|
---|
| 370 | ex.printStackTrace();
|
---|
| 371 | }
|
---|
| 372 | return oppBiddiff;
|
---|
| 373 | }
|
---|
| 374 |
|
---|
| 375 |
|
---|
| 376 | /*
|
---|
| 377 | * Creates the list of possible hypothesis by creating all permutations of the list of issues
|
---|
| 378 | * All the following code for creating permutations was inspired by https://stackoverflow.com/questions/36373719/java-permutations-of-an-array
|
---|
| 379 | */
|
---|
| 380 | private ArrayList<List<Issue>> generateHypSpace(List<Issue> issues) {
|
---|
| 381 | return permutations(issues);
|
---|
| 382 | }
|
---|
| 383 |
|
---|
| 384 |
|
---|
| 385 | /*
|
---|
| 386 | * Swaps two issues in a hypothesis
|
---|
| 387 | */
|
---|
| 388 | private List<Issue> swap(List<Issue> spaceOfHypothesis2, int i, int j) {
|
---|
| 389 | Issue tmp = spaceOfHypothesis2.get(i);
|
---|
| 390 | spaceOfHypothesis2.set(i, spaceOfHypothesis2.get(j));
|
---|
| 391 | spaceOfHypothesis2.set(j, tmp);
|
---|
| 392 | return spaceOfHypothesis2;
|
---|
| 393 | }
|
---|
| 394 |
|
---|
| 395 | /*
|
---|
| 396 | * Creates a list of all permutations of a list of issues
|
---|
| 397 | */
|
---|
| 398 | private void permutations(List<Issue> spaceOfHypothesis2, int loc, int len) {
|
---|
| 399 | // If you reach the end of the list, this permutation is done
|
---|
| 400 | // Make a hard copy of this permutation to prevent referencing issues and add it to the result
|
---|
| 401 | if (loc == len){
|
---|
| 402 | ArrayList<Issue> copy = new ArrayList<Issue>();
|
---|
| 403 | for(Issue i : spaceOfHypothesis2) {
|
---|
| 404 | copy.add(i);
|
---|
| 405 | }
|
---|
| 406 | spaceOfHypothesis.add(copy);
|
---|
| 407 | return;
|
---|
| 408 | }
|
---|
| 409 |
|
---|
| 410 | // Make all permutations from the next issue
|
---|
| 411 | permutations(spaceOfHypothesis2, loc + 1, len);
|
---|
| 412 | for (int i = loc + 1; i < len; i++) {
|
---|
| 413 | // Swap the current issue with the issue at index i
|
---|
| 414 | spaceOfHypothesis2 = swap(spaceOfHypothesis2, loc, i);
|
---|
| 415 | // Create all permutations with these two issues swapped
|
---|
| 416 | permutations(spaceOfHypothesis2, loc + 1, len);
|
---|
| 417 | // Restore the permutation
|
---|
| 418 | spaceOfHypothesis2 = swap(spaceOfHypothesis2, loc, i);
|
---|
| 419 | }
|
---|
| 420 | }
|
---|
| 421 |
|
---|
| 422 | /*
|
---|
| 423 | * Create the permutations by intialising the result, and starting at index 0
|
---|
| 424 | */
|
---|
| 425 | public ArrayList<List<Issue>> permutations(List<Issue> spaceOfHypothesis2) {
|
---|
| 426 | ArrayList<List<Issue>> result = new ArrayList<List<Issue>>();
|
---|
| 427 | permutations(spaceOfHypothesis2, 0, spaceOfHypothesis2.size());
|
---|
| 428 | return result;
|
---|
| 429 | }
|
---|
| 430 | }
|
---|