1 | package agents.anac.y2019.harddealer;
|
---|
2 | import java.util.ArrayList;
|
---|
3 | import java.util.HashMap;
|
---|
4 | import java.util.HashSet;
|
---|
5 | import java.util.List;
|
---|
6 | import java.util.Map;
|
---|
7 | import java.util.Set;
|
---|
8 | import java.util.Map.Entry;
|
---|
9 |
|
---|
10 | import genius.core.Bid;
|
---|
11 | import genius.core.bidding.BidDetails;
|
---|
12 | import genius.core.boaframework.BOAparameter;
|
---|
13 | import genius.core.boaframework.NegotiationSession;
|
---|
14 | import genius.core.boaframework.OpponentModel;
|
---|
15 | import genius.core.issue.Issue;
|
---|
16 | import genius.core.issue.IssueDiscrete;
|
---|
17 | import genius.core.issue.Objective;
|
---|
18 | import genius.core.issue.Value;
|
---|
19 | import genius.core.issue.ValueDiscrete;
|
---|
20 | import genius.core.timeline.TimeLineInfo;
|
---|
21 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
22 | import genius.core.utility.Evaluator;
|
---|
23 | import genius.core.utility.EvaluatorDiscrete;
|
---|
24 |
|
---|
25 | public class HardDealer_OM extends OpponentModel {
|
---|
26 |
|
---|
27 | private double learnCoeff;
|
---|
28 |
|
---|
29 | private double issueUpdate;
|
---|
30 |
|
---|
31 | private int valueUpdate;
|
---|
32 |
|
---|
33 | private double minOppUtil = 0; // Minimum utility value for opponent when Negotiation Time ends
|
---|
34 | private double maxOppUtil = 1; // Maximum utility value for opponent when Negotiation Time starts
|
---|
35 | private double nOfHypothesis;
|
---|
36 | private double nOfIssues;
|
---|
37 | HashMap<List<Issue>, Double> probHyp = new HashMap<List<Issue>, Double>(); // the probabilities for each hypothesis
|
---|
38 | List<List<Issue>> spaceOfHypothesis = new ArrayList<List<Issue>>(); // All the possible hypothesis
|
---|
39 | HashMap<List<Issue>, Double> oppUF = new HashMap<List<Issue>, Double>(); // List of utility evaluations for each hypothesis
|
---|
40 | HashMap<List<Issue>, Double> probHypGivenBid = new HashMap<List<Issue>, Double>(); // List of probabilities for each hypothesis given as bid
|
---|
41 | List<Double> oppTargetUtility = new ArrayList<Double>(); // List of target utilities for the opponent for each time interval
|
---|
42 | HashMap<List<Issue>,HashMap<Integer, Double>> ListWeight = new HashMap<List<Issue>, HashMap<Integer, Double>>();
|
---|
43 |
|
---|
44 | HashMap<Objective, Double> simpleWeights = new HashMap<Objective, Double>(); // List of weights for the SimpleLearning model
|
---|
45 |
|
---|
46 | TimeLineInfo negTime;
|
---|
47 |
|
---|
48 | public void init(NegotiationSession negotiationSession,
|
---|
49 | Map<String, Double> parameters) {
|
---|
50 | this.negotiationSession = negotiationSession;
|
---|
51 | if (parameters != null && parameters.get("l") != null) {
|
---|
52 | learnCoeff = parameters.get("l");
|
---|
53 | } else {
|
---|
54 | learnCoeff = 0.13;
|
---|
55 | }
|
---|
56 | negTime = negotiationSession.getTimeline();
|
---|
57 | valueUpdate = 1;
|
---|
58 | opponentUtilitySpace = (AdditiveUtilitySpace) negotiationSession
|
---|
59 | .getUtilitySpace().copy();
|
---|
60 | nOfIssues = opponentUtilitySpace.getDomain().getIssues().size();
|
---|
61 | /*
|
---|
62 | * This is the value to be added to weights of unchanged issues before
|
---|
63 | * normalization. Also the value that is taken as the minimum possible
|
---|
64 | * weight, (therefore defining the maximum possible also).
|
---|
65 | */
|
---|
66 | issueUpdate = learnCoeff / nOfIssues;
|
---|
67 |
|
---|
68 | initializeModel();
|
---|
69 |
|
---|
70 | }
|
---|
71 |
|
---|
72 | /**
|
---|
73 | * Update both the bayesian learning model as the simple learning model
|
---|
74 | */
|
---|
75 |
|
---|
76 | @Override
|
---|
77 | public void updateModel(Bid bid, double time) {
|
---|
78 | double alpha = 1;
|
---|
79 | // Calculate target utility for the opponent given the concession formula
|
---|
80 | double targetUtility = maxOppUtil - (maxOppUtil - minOppUtil) *
|
---|
81 | Math.pow((negTime.getCurrentTime() / negTime.getTotalTime()), alpha);
|
---|
82 |
|
---|
83 | oppTargetUtility.add(targetUtility);
|
---|
84 |
|
---|
85 | /**
|
---|
86 | * For each hypothesis, calculate the utility of the current bid given the weights of that hypothesis
|
---|
87 | * Calculation of utility of bid inspired by getUtility() function in the AdditiveUtilitySpace of genius
|
---|
88 | */
|
---|
89 | for (List<Issue> Hypothesis : spaceOfHypothesis) {
|
---|
90 | HashMap<Integer, Double> Weights = ListWeight.get(Hypothesis);
|
---|
91 | HashMap<Integer, Value> Values = bid.getValues();
|
---|
92 | double CompleteUF = 0;
|
---|
93 | for (Issue issues : Hypothesis) {
|
---|
94 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace.getEvaluators()) {
|
---|
95 | EvaluatorDiscrete evaluator = (EvaluatorDiscrete) e.getValue();
|
---|
96 | double value = 0;
|
---|
97 | try {
|
---|
98 | value = evaluator.getEvaluation((ValueDiscrete)Values.get(issues.getNumber()));
|
---|
99 | double OppUtilityFun = value * Weights.get(issues.getNumber());
|
---|
100 | CompleteUF = CompleteUF + OppUtilityFun;
|
---|
101 | } catch (Exception e1) {
|
---|
102 |
|
---|
103 | }
|
---|
104 | }
|
---|
105 | }
|
---|
106 | if(CompleteUF > 1) {
|
---|
107 | CompleteUF = 1;
|
---|
108 | }
|
---|
109 | oppUF.put(Hypothesis, CompleteUF);
|
---|
110 | }
|
---|
111 |
|
---|
112 | /**
|
---|
113 | * Calculate the probability of the hypothesis given this bid as the 1 - the distance between the calculated utility and the target utility
|
---|
114 | */
|
---|
115 | for (List<Issue> Hypothesis : spaceOfHypothesis) {
|
---|
116 | probHypGivenBid.put(Hypothesis, 1 - Math.abs(oppUF.get(Hypothesis) - oppTargetUtility.get(oppTargetUtility.size()-1)));
|
---|
117 | }
|
---|
118 |
|
---|
119 | double sumProbHypGivenBid = 0;
|
---|
120 | for (List<Issue> hypothesis : spaceOfHypothesis) {
|
---|
121 | sumProbHypGivenBid += probHypGivenBid.get(hypothesis) * probHyp.get(hypothesis);
|
---|
122 | }
|
---|
123 |
|
---|
124 | double maxProb = 0;
|
---|
125 | List<Issue> maxHyp = new ArrayList<>();
|
---|
126 | // Bayesian Rule to calculate the new probability of each hypothesis
|
---|
127 | for (List<Issue> hypothesis : spaceOfHypothesis) {
|
---|
128 | double prob = probHypGivenBid.get(hypothesis) * probHyp.get(hypothesis) / sumProbHypGivenBid;
|
---|
129 | if(Double.isNaN(prob))
|
---|
130 | prob = 0;
|
---|
131 | probHyp.put(hypothesis, prob);
|
---|
132 | // Record which hypothesis has the highest probability to use in the actual weights for the model
|
---|
133 | if(prob > maxProb) {
|
---|
134 | maxProb = prob;
|
---|
135 | maxHyp = hypothesis;
|
---|
136 | }
|
---|
137 | }
|
---|
138 |
|
---|
139 | // Only start updating the simple learning and updating weights and values after at least 2 opponent bids
|
---|
140 | if (negotiationSession.getOpponentBidHistory().size() < 2) {
|
---|
141 | return;
|
---|
142 | }
|
---|
143 | /**
|
---|
144 | * Gets the last 5 bids, or if there are less than 5 bids, return all the last bids.
|
---|
145 | */
|
---|
146 | ArrayList<BidDetails> multipleBids = new ArrayList<BidDetails>();
|
---|
147 | BidDetails oppBid = negotiationSession.getOpponentBidHistory().getHistory()
|
---|
148 | .get(negotiationSession.getOpponentBidHistory().size() - 1);
|
---|
149 | multipleBids.add(oppBid);
|
---|
150 | BidDetails prevOppBid1 = negotiationSession.getOpponentBidHistory().getHistory()
|
---|
151 | .get(negotiationSession.getOpponentBidHistory().size() - 2);
|
---|
152 | multipleBids.add(prevOppBid1);
|
---|
153 | if (negotiationSession.getOpponentBidHistory().size() > 2) {
|
---|
154 | BidDetails prevOppBid2 = negotiationSession.getOpponentBidHistory()
|
---|
155 | .getHistory()
|
---|
156 | .get(negotiationSession.getOpponentBidHistory().size() - 3);
|
---|
157 | multipleBids.add(prevOppBid2);
|
---|
158 | }
|
---|
159 | if (negotiationSession.getOpponentBidHistory().size() > 3) {
|
---|
160 | BidDetails prevOppBid3 = negotiationSession.getOpponentBidHistory()
|
---|
161 | .getHistory()
|
---|
162 | .get(negotiationSession.getOpponentBidHistory().size() - 4);
|
---|
163 | multipleBids.add(prevOppBid3);
|
---|
164 | }
|
---|
165 | if (negotiationSession.getOpponentBidHistory().size() > 4) {
|
---|
166 | BidDetails prevOppBid4 = negotiationSession.getOpponentBidHistory()
|
---|
167 | .getHistory()
|
---|
168 | .get(negotiationSession.getOpponentBidHistory().size() - 5);
|
---|
169 | multipleBids.add(prevOppBid4);
|
---|
170 | }
|
---|
171 | /**
|
---|
172 | * Get for each of the issues how many bids the value has not changed
|
---|
173 | */
|
---|
174 | HashMap<Integer, Integer> lastDiffSet = last5oppBid(multipleBids);
|
---|
175 |
|
---|
176 | /**
|
---|
177 | * Calculate the new total weight
|
---|
178 | * Each weight will have the issue Update value * the number of bids the value in this issue has not changed added to it
|
---|
179 | */
|
---|
180 | double totalweight = 0;
|
---|
181 | for (Integer i : lastDiffSet.keySet()) {
|
---|
182 | double weight = opponentUtilitySpace.getWeight(i);
|
---|
183 | if (lastDiffSet.get(i) == 4) {
|
---|
184 | totalweight += (weight + 4 * issueUpdate);
|
---|
185 | }
|
---|
186 | else if (lastDiffSet.get(i) == 3) {
|
---|
187 | totalweight += (weight + 3 * issueUpdate);
|
---|
188 | }
|
---|
189 | else if (lastDiffSet.get(i) == 2) {
|
---|
190 | totalweight += (weight + 2 * issueUpdate);
|
---|
191 | }
|
---|
192 | else if (lastDiffSet.get(i) == 1) {
|
---|
193 | totalweight += (weight + 1 * issueUpdate);
|
---|
194 | }
|
---|
195 | else {
|
---|
196 | totalweight += weight;
|
---|
197 | }
|
---|
198 | }
|
---|
199 |
|
---|
200 | /**
|
---|
201 | * Update the weights to the new weights as explained above, but now normalized corresponding to the total weight
|
---|
202 | */
|
---|
203 | for (Integer i : lastDiffSet.keySet()) {
|
---|
204 | Objective issue = opponentUtilitySpace.getDomain()
|
---|
205 | .getObjectivesRoot().getObjective(i);
|
---|
206 | double weight = opponentUtilitySpace.getWeight(i);
|
---|
207 | double newWeight;
|
---|
208 | if (lastDiffSet.get(i) == 4) {
|
---|
209 | newWeight = (weight + 4 * issueUpdate) / totalweight;
|
---|
210 | }
|
---|
211 | else if (lastDiffSet.get(i) == 3) {
|
---|
212 | newWeight = (weight + 3 * issueUpdate) / totalweight;
|
---|
213 | }
|
---|
214 | else if (lastDiffSet.get(i) == 2) {
|
---|
215 | newWeight = (weight + 2 * issueUpdate) / totalweight;
|
---|
216 | }
|
---|
217 | else if (lastDiffSet.get(i) == 1) {
|
---|
218 | newWeight = (weight + 1 * issueUpdate) / totalweight;
|
---|
219 | }
|
---|
220 | else {
|
---|
221 | newWeight = weight / totalweight;
|
---|
222 | }
|
---|
223 | simpleWeights.put(issue, newWeight);
|
---|
224 | }
|
---|
225 |
|
---|
226 | /*
|
---|
227 | * The weights for the opponent model are updated to a combination of the bayesian model and the simple learning model
|
---|
228 | * The weights are calculated as the probability of the highest hypothesis * the weight corresponding to this hypothesis
|
---|
229 | * Combined with 1 - that probability * the weights as calculated by the simple learning model
|
---|
230 | */
|
---|
231 | HashMap<Integer, Double> maxWeights = ListWeight.get(maxHyp);
|
---|
232 | for(Issue issue: maxHyp) {
|
---|
233 | opponentUtilitySpace.setWeight(issue, (maxProb * maxWeights.get(issue.getNumber())) + ((1- maxProb) * simpleWeights.get( (Objective) issue) ) );
|
---|
234 | }
|
---|
235 |
|
---|
236 |
|
---|
237 | try {
|
---|
238 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace
|
---|
239 | .getEvaluators()) {
|
---|
240 | EvaluatorDiscrete value = (EvaluatorDiscrete) e.getValue();
|
---|
241 | IssueDiscrete issue = ((IssueDiscrete) e.getKey());
|
---|
242 | /*
|
---|
243 | * add constant learnValueAddition to the current preference of
|
---|
244 | * the value to make it more important
|
---|
245 | */
|
---|
246 | ValueDiscrete issuevalue = (ValueDiscrete) multipleBids.get(0).getBid()
|
---|
247 | .getValue(issue.getNumber());
|
---|
248 | Integer eval = value.getEvaluationNotNormalized(issuevalue);
|
---|
249 | value.setEvaluation(issuevalue, (valueUpdate + eval));
|
---|
250 | }
|
---|
251 | } catch (Exception ex) {
|
---|
252 | ex.printStackTrace();
|
---|
253 | }
|
---|
254 | }
|
---|
255 |
|
---|
256 | public double getBidEvaluation(Bid bid) {
|
---|
257 | double result = 0;
|
---|
258 | try {
|
---|
259 | result = opponentUtilitySpace.getUtility(bid);
|
---|
260 | } catch (Exception e) {
|
---|
261 | e.printStackTrace();
|
---|
262 | }
|
---|
263 | return result;
|
---|
264 | }
|
---|
265 |
|
---|
266 | public String getName() {
|
---|
267 | return "HardDealer_OM";
|
---|
268 | }
|
---|
269 |
|
---|
270 | @Override
|
---|
271 | public Set<BOAparameter> getParameterSpec() {
|
---|
272 | Set<BOAparameter> set = new HashSet<BOAparameter>();
|
---|
273 | set.add(new BOAparameter("l", 0.13,
|
---|
274 | "The learning coefficient determines how quickly the issue weights are learned"));
|
---|
275 | return set;
|
---|
276 | }
|
---|
277 |
|
---|
278 | /**
|
---|
279 | * Initialize both the simple learning and bayesian learning model
|
---|
280 | */
|
---|
281 | private void initializeModel() {
|
---|
282 | double commonWeight = 1D / nOfIssues;
|
---|
283 |
|
---|
284 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace
|
---|
285 | .getEvaluators()) {
|
---|
286 |
|
---|
287 | opponentUtilitySpace.unlock(e.getKey());
|
---|
288 | // Set the weights to 1 / number of issues
|
---|
289 | e.getValue().setWeight(commonWeight);
|
---|
290 | try {
|
---|
291 | // set all value weights to one (they are normalized when
|
---|
292 | // calculating the utility)
|
---|
293 | for (ValueDiscrete vd : ((IssueDiscrete) e.getKey())
|
---|
294 | .getValues())
|
---|
295 | ((EvaluatorDiscrete) e.getValue()).setEvaluation(vd, 1);
|
---|
296 | } catch (Exception ex) {
|
---|
297 | ex.printStackTrace();
|
---|
298 | }
|
---|
299 | }
|
---|
300 |
|
---|
301 | List<Issue> issues = negotiationSession.getIssues();
|
---|
302 | // Initialise the space of hypothesis
|
---|
303 | generateHypSpace(issues);
|
---|
304 |
|
---|
305 | nOfHypothesis = spaceOfHypothesis.size();
|
---|
306 |
|
---|
307 | // Initialise the probabilities of each hypothesis to 1 / number of hypothesis
|
---|
308 | for (List<Issue> hypothesis : spaceOfHypothesis) {
|
---|
309 | probHyp.put(hypothesis, 1D / nOfHypothesis);
|
---|
310 | }
|
---|
311 |
|
---|
312 |
|
---|
313 | for (List<Issue> Hypothesis : spaceOfHypothesis) {
|
---|
314 | HashMap<Integer, Double> hypWeights = new HashMap<Integer, Double>();
|
---|
315 | for (Issue issue : Hypothesis) {
|
---|
316 | // The weights for each issue in a hypothesis is defined as 2 * rank / number of issues * number of issues - 1
|
---|
317 | double OppNewWeight = 2 * (Hypothesis.indexOf(issue) + 1) / (nOfIssues * (nOfIssues + 1));
|
---|
318 | hypWeights.put(issue.getNumber(), OppNewWeight);
|
---|
319 | }
|
---|
320 | ListWeight.put(Hypothesis, hypWeights);
|
---|
321 | oppUF.put(Hypothesis, 0D);
|
---|
322 | }
|
---|
323 | }
|
---|
324 |
|
---|
325 | /*
|
---|
326 | * Returns for each issue how many bids in a row the value for that issue has not changed
|
---|
327 | */
|
---|
328 | private HashMap<Integer, Integer> last5oppBid(ArrayList<BidDetails> multipleBids) {
|
---|
329 |
|
---|
330 | HashMap<Integer, Integer> oppBiddiff = new HashMap<Integer, Integer>();
|
---|
331 | try {
|
---|
332 | for (Issue i : opponentUtilitySpace.getDomain().getIssues()) {
|
---|
333 | Value value1 = null;
|
---|
334 | Value value2 = null;
|
---|
335 | Value value3 = null;
|
---|
336 | Value value4 = null;
|
---|
337 | Value value5 = null;
|
---|
338 | value1 = multipleBids.get(0).getBid().getValue(i.getNumber());
|
---|
339 | value2 = multipleBids.get(1).getBid().getValue(i.getNumber());
|
---|
340 | if (multipleBids.size() > 2) {
|
---|
341 | value3 = multipleBids.get(2).getBid().getValue(i.getNumber());
|
---|
342 | }
|
---|
343 | if (multipleBids.size() > 3) {
|
---|
344 | value4 = multipleBids.get(3).getBid().getValue(i.getNumber());
|
---|
345 | }
|
---|
346 | if (multipleBids.size() > 4) {
|
---|
347 | value5 = multipleBids.get(4).getBid().getValue(i.getNumber());
|
---|
348 | }
|
---|
349 | /**
|
---|
350 | * Checks first if the last 4 values equals the current value
|
---|
351 | * If not, it checks for 3, 2 and 1 last values.
|
---|
352 | */
|
---|
353 | if (value1.equals(value2) && value2.equals(value3) && value3.equals(value4) && value4.equals(value5)) {
|
---|
354 | oppBiddiff.put(i.getNumber(), 4);
|
---|
355 | }
|
---|
356 | else if (value1.equals(value2) && value2.equals(value3) && value3.equals(value4) && !(value4.equals(value5))) {
|
---|
357 | oppBiddiff.put(i.getNumber(), 3);
|
---|
358 | }
|
---|
359 | else if (value1.equals(value2) && value2.equals(value3) && !(value3.equals(value4))) {
|
---|
360 | oppBiddiff.put(i.getNumber(), 2);
|
---|
361 | }
|
---|
362 | else if (value1.equals(value2) && !(value2.equals(value3))) {
|
---|
363 | oppBiddiff.put(i.getNumber(), 1);
|
---|
364 | }
|
---|
365 | else if (!(value1.equals(value2))) {
|
---|
366 | oppBiddiff.put(i.getNumber(), 0);
|
---|
367 | }
|
---|
368 | }
|
---|
369 | } catch (Exception ex) {
|
---|
370 | ex.printStackTrace();
|
---|
371 | }
|
---|
372 | return oppBiddiff;
|
---|
373 | }
|
---|
374 |
|
---|
375 |
|
---|
376 | /*
|
---|
377 | * Creates the list of possible hypothesis by creating all permutations of the list of issues
|
---|
378 | * All the following code for creating permutations was inspired by https://stackoverflow.com/questions/36373719/java-permutations-of-an-array
|
---|
379 | */
|
---|
380 | private ArrayList<List<Issue>> generateHypSpace(List<Issue> issues) {
|
---|
381 | return permutations(issues);
|
---|
382 | }
|
---|
383 |
|
---|
384 |
|
---|
385 | /*
|
---|
386 | * Swaps two issues in a hypothesis
|
---|
387 | */
|
---|
388 | private List<Issue> swap(List<Issue> spaceOfHypothesis2, int i, int j) {
|
---|
389 | Issue tmp = spaceOfHypothesis2.get(i);
|
---|
390 | spaceOfHypothesis2.set(i, spaceOfHypothesis2.get(j));
|
---|
391 | spaceOfHypothesis2.set(j, tmp);
|
---|
392 | return spaceOfHypothesis2;
|
---|
393 | }
|
---|
394 |
|
---|
395 | /*
|
---|
396 | * Creates a list of all permutations of a list of issues
|
---|
397 | */
|
---|
398 | private void permutations(List<Issue> spaceOfHypothesis2, int loc, int len) {
|
---|
399 | // If you reach the end of the list, this permutation is done
|
---|
400 | // Make a hard copy of this permutation to prevent referencing issues and add it to the result
|
---|
401 | if (loc == len){
|
---|
402 | ArrayList<Issue> copy = new ArrayList<Issue>();
|
---|
403 | for(Issue i : spaceOfHypothesis2) {
|
---|
404 | copy.add(i);
|
---|
405 | }
|
---|
406 | spaceOfHypothesis.add(copy);
|
---|
407 | return;
|
---|
408 | }
|
---|
409 |
|
---|
410 | // Make all permutations from the next issue
|
---|
411 | permutations(spaceOfHypothesis2, loc + 1, len);
|
---|
412 | for (int i = loc + 1; i < len; i++) {
|
---|
413 | // Swap the current issue with the issue at index i
|
---|
414 | spaceOfHypothesis2 = swap(spaceOfHypothesis2, loc, i);
|
---|
415 | // Create all permutations with these two issues swapped
|
---|
416 | permutations(spaceOfHypothesis2, loc + 1, len);
|
---|
417 | // Restore the permutation
|
---|
418 | spaceOfHypothesis2 = swap(spaceOfHypothesis2, loc, i);
|
---|
419 | }
|
---|
420 | }
|
---|
421 |
|
---|
422 | /*
|
---|
423 | * Create the permutations by intialising the result, and starting at index 0
|
---|
424 | */
|
---|
425 | public ArrayList<List<Issue>> permutations(List<Issue> spaceOfHypothesis2) {
|
---|
426 | ArrayList<List<Issue>> result = new ArrayList<List<Issue>>();
|
---|
427 | permutations(spaceOfHypothesis2, 0, spaceOfHypothesis2.size());
|
---|
428 | return result;
|
---|
429 | }
|
---|
430 | }
|
---|