1 | /*
|
---|
2 | * jcobyla
|
---|
3 | *
|
---|
4 | * The MIT License
|
---|
5 | *
|
---|
6 | * Copyright (c) 2012 Anders Gustafsson, Cureos AB.
|
---|
7 | *
|
---|
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
|
---|
9 | * (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
|
---|
10 | * publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
|
---|
11 | * subject to the following conditions:
|
---|
12 | *
|
---|
13 | * The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
---|
14 | *
|
---|
15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
---|
16 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
|
---|
17 | * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
---|
18 | * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
---|
19 | *
|
---|
20 | * Remarks:
|
---|
21 | *
|
---|
22 | * The original Fortran 77 version of this code was by Michael Powell (M.J.D.Powell @ damtp.cam.ac.uk)
|
---|
23 | * The Fortran 90 version was by Alan Miller (Alan.Miller @ vic.cmis.csiro.au). Latest revision - 30 October 1998
|
---|
24 | */
|
---|
25 | package geniusweb.exampleparties.simpleshaop;
|
---|
26 |
|
---|
27 | /**
|
---|
28 | * Constrained Optimization BY Linear Approximation in Java.
|
---|
29 | *
|
---|
30 | * COBYLA2 is an implementation of Powell’s nonlinear derivative–free constrained optimization that uses
|
---|
31 | * a linear approximation approach. The algorithm is a sequential trust–region algorithm that employs linear
|
---|
32 | * approximations to the objective and constraint functions, where the approximations are formed by linear
|
---|
33 | * interpolation at n + 1 points in the space of the variables and tries to maintain a regular–shaped simplex
|
---|
34 | * over iterations.
|
---|
35 | *
|
---|
36 | * It solves nonsmooth NLP with a moderate number of variables (about 100). Inequality constraints only.
|
---|
37 | *
|
---|
38 | * The initial point X is taken as one vertex of the initial simplex with zero being another, so, X should
|
---|
39 | * not be entered as the zero vector.
|
---|
40 | *
|
---|
41 | * @author Anders Gustafsson, Cureos AB.
|
---|
42 | */
|
---|
43 | public class Cobyla
|
---|
44 | {
|
---|
45 | /**
|
---|
46 | * Minimizes the objective function F with respect to a set of inequality constraints CON,
|
---|
47 | * and returns the optimal variable array. F and CON may be non-linear, and should preferably be smooth.
|
---|
48 | *
|
---|
49 | * @param calcfc Interface implementation for calculating objective function and constraints.
|
---|
50 | * @param n Number of variables.
|
---|
51 | * @param m Number of constraints.
|
---|
52 | * @param x On input initial values of the variables (zero-based array). On output
|
---|
53 | * optimal values of the variables obtained in the COBYLA minimization.
|
---|
54 | * @param rhobeg Initial size of the simplex.
|
---|
55 | * @param rhoend Final value of the simplex.
|
---|
56 | * @param iprint Print level, 0 <= iprint <= 3, where 0 provides no output and
|
---|
57 | * 3 provides full output to the console.
|
---|
58 | * @param maxfun Maximum number of function evaluations before terminating.
|
---|
59 | * @return Exit status of the COBYLA2 optimization.
|
---|
60 | */
|
---|
61 | public static CobylaExitStatus FindMinimum(final Calcfc calcfc, int n, int m, double[] x, double rhobeg, double rhoend, int iprint, int maxfun)
|
---|
62 | {
|
---|
63 | // This subroutine minimizes an objective function F(X) subject to M
|
---|
64 | // inequality constraints on X, where X is a vector of variables that has
|
---|
65 | // N components. The algorithm employs linear approximations to the
|
---|
66 | // objective and constraint functions, the approximations being formed by
|
---|
67 | // linear interpolation at N+1 points in the space of the variables.
|
---|
68 | // We regard these interpolation points as vertices of a simplex. The
|
---|
69 | // parameter RHO controls the size of the simplex and it is reduced
|
---|
70 | // automatically from RHOBEG to RHOEND. For each RHO the subroutine tries
|
---|
71 | // to achieve a good vector of variables for the current size, and then
|
---|
72 | // RHO is reduced until the value RHOEND is reached. Therefore RHOBEG and
|
---|
73 | // RHOEND should be set to reasonable initial changes to and the required
|
---|
74 | // accuracy in the variables respectively, but this accuracy should be
|
---|
75 | // viewed as a subject for experimentation because it is not guaranteed.
|
---|
76 | // The subroutine has an advantage over many of its competitors, however,
|
---|
77 | // which is that it treats each constraint individually when calculating
|
---|
78 | // a change to the variables, instead of lumping the constraints together
|
---|
79 | // into a single penalty function. The name of the subroutine is derived
|
---|
80 | // from the phrase Constrained Optimization BY Linear Approximations.
|
---|
81 |
|
---|
82 | // The user must set the values of N, M, RHOBEG and RHOEND, and must
|
---|
83 | // provide an initial vector of variables in X. Further, the value of
|
---|
84 | // IPRINT should be set to 0, 1, 2 or 3, which controls the amount of
|
---|
85 | // printing during the calculation. Specifically, there is no output if
|
---|
86 | // IPRINT=0 and there is output only at the end of the calculation if
|
---|
87 | // IPRINT=1. Otherwise each new value of RHO and SIGMA is printed.
|
---|
88 | // Further, the vector of variables and some function information are
|
---|
89 | // given either when RHO is reduced or when each new value of F(X) is
|
---|
90 | // computed in the cases IPRINT=2 or IPRINT=3 respectively. Here SIGMA
|
---|
91 | // is a penalty parameter, it being assumed that a change to X is an
|
---|
92 | // improvement if it reduces the merit function
|
---|
93 | // F(X)+SIGMA*MAX(0.0, - C1(X), - C2(X),..., - CM(X)),
|
---|
94 | // where C1,C2,...,CM denote the constraint functions that should become
|
---|
95 | // nonnegative eventually, at least to the precision of RHOEND. In the
|
---|
96 | // printed output the displayed term that is multiplied by SIGMA is
|
---|
97 | // called MAXCV, which stands for 'MAXimum Constraint Violation'. The
|
---|
98 | // argument ITERS is an integer variable that must be set by the user to a
|
---|
99 | // limit on the number of calls of CALCFC, the purpose of this routine being
|
---|
100 | // given below. The value of ITERS will be altered to the number of calls
|
---|
101 | // of CALCFC that are made.
|
---|
102 |
|
---|
103 | // In order to define the objective and constraint functions, we require
|
---|
104 | // a subroutine that has the name and arguments
|
---|
105 | // SUBROUTINE CALCFC (N,M,X,F,CON)
|
---|
106 | // DIMENSION X(:),CON(:) .
|
---|
107 | // The values of N and M are fixed and have been defined already, while
|
---|
108 | // X is now the current vector of variables. The subroutine should return
|
---|
109 | // the objective and constraint functions at X in F and CON(1),CON(2),
|
---|
110 | // ...,CON(M). Note that we are trying to adjust X so that F(X) is as
|
---|
111 | // small as possible subject to the constraint functions being nonnegative.
|
---|
112 |
|
---|
113 | // Local variables
|
---|
114 | int mpp = m + 2;
|
---|
115 |
|
---|
116 | // Internal base-1 X array
|
---|
117 | double[] iox = new double[n + 1];
|
---|
118 | System.arraycopy(x, 0, iox, 1, n);
|
---|
119 |
|
---|
120 | // Internal representation of the objective and constraints calculation method,
|
---|
121 | // accounting for that X and CON arrays in the cobylb method are base-1 arrays.
|
---|
122 | Calcfc fcalcfc = new Calcfc()
|
---|
123 | {
|
---|
124 | /**
|
---|
125 | *
|
---|
126 | * @param n the value of n
|
---|
127 | * @param m the value of m
|
---|
128 | * @param x the value of x
|
---|
129 | * @param con the value of con
|
---|
130 | * @return the double
|
---|
131 | */
|
---|
132 | @Override
|
---|
133 | public double Compute(int n, int m, double[] x, double[] con)
|
---|
134 | {
|
---|
135 | double[] ix = new double[n];
|
---|
136 | System.arraycopy(x, 1, ix, 0, n);
|
---|
137 | double[] ocon = new double[m];
|
---|
138 | double f = calcfc.Compute(n, m, ix, ocon);
|
---|
139 | System.arraycopy(ocon, 0, con, 1, m);
|
---|
140 | return f;
|
---|
141 | }
|
---|
142 | };
|
---|
143 |
|
---|
144 | CobylaExitStatus status = cobylb(fcalcfc, n, m, mpp, iox, rhobeg, rhoend, iprint, maxfun);
|
---|
145 | System.arraycopy(iox, 1, x, 0, n);
|
---|
146 |
|
---|
147 | return status;
|
---|
148 | }
|
---|
149 |
|
---|
150 | private static CobylaExitStatus cobylb(Calcfc calcfc, int n, int m, int mpp, double[] x,
|
---|
151 | double rhobeg, double rhoend, int iprint, int maxfun)
|
---|
152 | {
|
---|
153 | // N.B. Arguments CON, SIM, SIMI, DATMAT, A, VSIG, VETA, SIGBAR, DX, W & IACT
|
---|
154 | // have been removed.
|
---|
155 |
|
---|
156 | // Set the initial values of some parameters. The last column of SIM holds
|
---|
157 | // the optimal vertex of the current simplex, and the preceding N columns
|
---|
158 | // hold the displacements from the optimal vertex to the other vertices.
|
---|
159 | // Further, SIMI holds the inverse of the matrix that is contained in the
|
---|
160 | // first N columns of SIM.
|
---|
161 |
|
---|
162 | // Local variables
|
---|
163 |
|
---|
164 | CobylaExitStatus status;
|
---|
165 |
|
---|
166 | double alpha = 0.25;
|
---|
167 | double beta = 2.1;
|
---|
168 | double gamma = 0.5;
|
---|
169 | double delta = 1.1;
|
---|
170 |
|
---|
171 | double f = 0.0;
|
---|
172 | double resmax = 0.0;
|
---|
173 | double total;
|
---|
174 |
|
---|
175 | int np = n + 1;
|
---|
176 | int mp = m + 1;
|
---|
177 | double rho = rhobeg;
|
---|
178 | double parmu = 0.0;
|
---|
179 |
|
---|
180 | boolean iflag = false;
|
---|
181 | boolean ifull = false;
|
---|
182 | double parsig = 0.0;
|
---|
183 | double prerec = 0.0;
|
---|
184 | double prerem = 0.0;
|
---|
185 |
|
---|
186 | double[] con = new double[1 + mpp];
|
---|
187 | double[][] sim = new double[1 + n][1 + np];
|
---|
188 | double[][] simi = new double[1 + n][1 + n];
|
---|
189 | double[][] datmat = new double[1 + mpp][1 + np];
|
---|
190 | double[][] a = new double[1 + n][1 + mp];
|
---|
191 | double[] vsig = new double[1 + n];
|
---|
192 | double[] veta = new double[1 + n];
|
---|
193 | double[] sigbar = new double[1 + n];
|
---|
194 | double[] dx = new double[1 + n];
|
---|
195 | double[] w = new double[1 + n];
|
---|
196 |
|
---|
197 | if (iprint >= 2) System.out.format("%nThe initial value of RHO is %13.6f and PARMU is set to zero.%n", rho);
|
---|
198 |
|
---|
199 | int nfvals = 0;
|
---|
200 | double temp = 1.0 / rho;
|
---|
201 |
|
---|
202 | for (int i = 1; i <= n; ++i)
|
---|
203 | {
|
---|
204 | sim[i][np] = x[i];
|
---|
205 | sim[i][i] = rho;
|
---|
206 | simi[i][i] = temp;
|
---|
207 | }
|
---|
208 |
|
---|
209 | int jdrop = np;
|
---|
210 | boolean ibrnch = false;
|
---|
211 |
|
---|
212 | // Make the next call of the user-supplied subroutine CALCFC. These
|
---|
213 | // instructions are also used for calling CALCFC during the iterations of
|
---|
214 | // the algorithm.
|
---|
215 |
|
---|
216 | L_40:
|
---|
217 | do
|
---|
218 | {
|
---|
219 | if (nfvals >= maxfun && nfvals > 0)
|
---|
220 | {
|
---|
221 | status = CobylaExitStatus.MaxIterationsReached;
|
---|
222 | break L_40;
|
---|
223 | }
|
---|
224 |
|
---|
225 | ++nfvals;
|
---|
226 |
|
---|
227 | f = calcfc.Compute(n, m, x, con);
|
---|
228 | resmax = 0.0; for (int k = 1; k <= m; ++k) resmax = Math.max(resmax, -con[k]);
|
---|
229 |
|
---|
230 | if (nfvals == iprint - 1 || iprint == 3)
|
---|
231 | {
|
---|
232 | PrintIterationResult(nfvals, f, resmax, x, n);
|
---|
233 | }
|
---|
234 |
|
---|
235 | con[mp] = f;
|
---|
236 | con[mpp] = resmax;
|
---|
237 |
|
---|
238 | // Set the recently calculated function values in a column of DATMAT. This
|
---|
239 | // array has a column for each vertex of the current simplex, the entries of
|
---|
240 | // each column being the values of the constraint functions (if any)
|
---|
241 | // followed by the objective function and the greatest constraint violation
|
---|
242 | // at the vertex.
|
---|
243 |
|
---|
244 | boolean skipVertexIdent = true;
|
---|
245 | if (!ibrnch)
|
---|
246 | {
|
---|
247 | skipVertexIdent = false;
|
---|
248 |
|
---|
249 | for (int i = 1; i <= mpp; ++i) datmat[i][jdrop] = con[i];
|
---|
250 |
|
---|
251 | if (nfvals <= np)
|
---|
252 | {
|
---|
253 | // Exchange the new vertex of the initial simplex with the optimal vertex if
|
---|
254 | // necessary. Then, if the initial simplex is not complete, pick its next
|
---|
255 | // vertex and calculate the function values there.
|
---|
256 |
|
---|
257 | if (jdrop <= n)
|
---|
258 | {
|
---|
259 | if (datmat[mp][np] <= f)
|
---|
260 | {
|
---|
261 | x[jdrop] = sim[jdrop][np];
|
---|
262 | }
|
---|
263 | else
|
---|
264 | {
|
---|
265 | sim[jdrop][np] = x[jdrop];
|
---|
266 | for (int k = 1; k <= mpp; ++k)
|
---|
267 | {
|
---|
268 | datmat[k][jdrop] = datmat[k][np];
|
---|
269 | datmat[k][np] = con[k];
|
---|
270 | }
|
---|
271 | for (int k = 1; k <= jdrop; ++k)
|
---|
272 | {
|
---|
273 | sim[jdrop][k] = -rho;
|
---|
274 | temp = 0.0; for (int i = k; i <= jdrop; ++i) temp -= simi[i][k];
|
---|
275 | simi[jdrop][k] = temp;
|
---|
276 | }
|
---|
277 | }
|
---|
278 | }
|
---|
279 | if (nfvals <= n)
|
---|
280 | {
|
---|
281 | jdrop = nfvals;
|
---|
282 | x[jdrop] += rho;
|
---|
283 | continue L_40;
|
---|
284 | }
|
---|
285 | }
|
---|
286 |
|
---|
287 | ibrnch = true;
|
---|
288 | }
|
---|
289 |
|
---|
290 | L_140:
|
---|
291 | do
|
---|
292 | {
|
---|
293 | L_550:
|
---|
294 | do
|
---|
295 | {
|
---|
296 | if (!skipVertexIdent)
|
---|
297 | {
|
---|
298 | // Identify the optimal vertex of the current simplex.
|
---|
299 |
|
---|
300 | double phimin = datmat[mp][np] + parmu * datmat[mpp][np];
|
---|
301 | int nbest = np;
|
---|
302 |
|
---|
303 | for (int j = 1; j <= n; ++j)
|
---|
304 | {
|
---|
305 | temp = datmat[mp][j] + parmu * datmat[mpp][j];
|
---|
306 | if (temp < phimin)
|
---|
307 | {
|
---|
308 | nbest = j;
|
---|
309 | phimin = temp;
|
---|
310 | }
|
---|
311 | else if (temp == phimin && parmu == 0.0 && datmat[mpp][j] < datmat[mpp][nbest])
|
---|
312 | {
|
---|
313 | nbest = j;
|
---|
314 | }
|
---|
315 | }
|
---|
316 |
|
---|
317 | // Switch the best vertex into pole position if it is not there already,
|
---|
318 | // and also update SIM, SIMI and DATMAT.
|
---|
319 |
|
---|
320 | if (nbest <= n)
|
---|
321 | {
|
---|
322 | for (int i = 1; i <= mpp; ++i)
|
---|
323 | {
|
---|
324 | temp = datmat[i][np];
|
---|
325 | datmat[i][np] = datmat[i][nbest];
|
---|
326 | datmat[i][nbest] = temp;
|
---|
327 | }
|
---|
328 | for (int i = 1; i <= n; ++i)
|
---|
329 | {
|
---|
330 | temp = sim[i][nbest];
|
---|
331 | sim[i][nbest] = 0.0;
|
---|
332 | sim[i][np] += temp;
|
---|
333 |
|
---|
334 | double tempa = 0.0;
|
---|
335 | for (int k = 1; k <= n; ++k)
|
---|
336 | {
|
---|
337 | sim[i][k] -= temp;
|
---|
338 | tempa -= simi[k][i];
|
---|
339 | }
|
---|
340 | simi[nbest][i] = tempa;
|
---|
341 | }
|
---|
342 | }
|
---|
343 |
|
---|
344 | // Make an error return if SIGI is a poor approximation to the inverse of
|
---|
345 | // the leading N by N submatrix of SIG.
|
---|
346 |
|
---|
347 | double error = 0.0;
|
---|
348 | for (int i = 1; i <= n; ++i)
|
---|
349 | {
|
---|
350 | for (int j = 1; j <= n; ++j)
|
---|
351 | {
|
---|
352 | temp = DOT_PRODUCT(PART(ROW(simi, i), 1, n), PART(COL(sim, j), 1, n)) - (i == j ? 1.0 : 0.0);
|
---|
353 | error = Math.max(error, Math.abs(temp));
|
---|
354 | }
|
---|
355 | }
|
---|
356 | if (error > 0.1)
|
---|
357 | {
|
---|
358 | status = CobylaExitStatus.DivergingRoundingErrors;
|
---|
359 | break L_40;
|
---|
360 | }
|
---|
361 |
|
---|
362 | // Calculate the coefficients of the linear approximations to the objective
|
---|
363 | // and constraint functions, placing minus the objective function gradient
|
---|
364 | // after the constraint gradients in the array A. The vector W is used for
|
---|
365 | // working space.
|
---|
366 |
|
---|
367 | for (int k = 1; k <= mp; ++k)
|
---|
368 | {
|
---|
369 | con[k] = -datmat[k][np];
|
---|
370 | for (int j = 1; j <= n; ++j) w[j] = datmat[k][j] + con[k];
|
---|
371 |
|
---|
372 | for (int i = 1; i <= n; ++i)
|
---|
373 | {
|
---|
374 | a[i][k] = (k == mp ? -1.0 : 1.0) * DOT_PRODUCT(PART(w, 1, n), PART(COL(simi, i), 1, n));
|
---|
375 | }
|
---|
376 | }
|
---|
377 |
|
---|
378 | // Calculate the values of sigma and eta, and set IFLAG = 0 if the current
|
---|
379 | // simplex is not acceptable.
|
---|
380 |
|
---|
381 | iflag = true;
|
---|
382 | parsig = alpha * rho;
|
---|
383 | double pareta = beta * rho;
|
---|
384 |
|
---|
385 | for (int j = 1; j <= n; ++j)
|
---|
386 | {
|
---|
387 | double wsig = 0.0; for (int k = 1; k <= n; ++k) wsig += simi[j][k] * simi[j][k];
|
---|
388 | double weta = 0.0; for (int k = 1; k <= n; ++k) weta += sim[k][j] * sim[k][j];
|
---|
389 | vsig[j] = 1.0 / Math.sqrt(wsig);
|
---|
390 | veta[j] = Math.sqrt(weta);
|
---|
391 | if (vsig[j] < parsig || veta[j] > pareta) iflag = false;
|
---|
392 | }
|
---|
393 |
|
---|
394 | // If a new vertex is needed to improve acceptability, then decide which
|
---|
395 | // vertex to drop from the simplex.
|
---|
396 |
|
---|
397 | if (!ibrnch && !iflag)
|
---|
398 | {
|
---|
399 | jdrop = 0;
|
---|
400 | temp = pareta;
|
---|
401 | for (int j = 1; j <= n; ++j)
|
---|
402 | {
|
---|
403 | if (veta[j] > temp)
|
---|
404 | {
|
---|
405 | jdrop = j;
|
---|
406 | temp = veta[j];
|
---|
407 | }
|
---|
408 | }
|
---|
409 | if (jdrop == 0)
|
---|
410 | {
|
---|
411 | for (int j = 1; j <= n; ++j)
|
---|
412 | {
|
---|
413 | if (vsig[j] < temp)
|
---|
414 | {
|
---|
415 | jdrop = j;
|
---|
416 | temp = vsig[j];
|
---|
417 | }
|
---|
418 | }
|
---|
419 | }
|
---|
420 |
|
---|
421 | // Calculate the step to the new vertex and its sign.
|
---|
422 |
|
---|
423 | temp = gamma * rho * vsig[jdrop];
|
---|
424 | for (int k = 1; k <= n; ++k) dx[k] = temp * simi[jdrop][k];
|
---|
425 | double cvmaxp = 0.0;
|
---|
426 | double cvmaxm = 0.0;
|
---|
427 |
|
---|
428 | total = 0.0;
|
---|
429 | for (int k = 1; k <= mp; ++k)
|
---|
430 | {
|
---|
431 | total = DOT_PRODUCT(PART(COL(a, k), 1, n), PART(dx, 1, n));
|
---|
432 | if (k < mp)
|
---|
433 | {
|
---|
434 | temp = datmat[k][np];
|
---|
435 | cvmaxp = Math.max(cvmaxp, -total - temp);
|
---|
436 | cvmaxm = Math.max(cvmaxm, total - temp);
|
---|
437 | }
|
---|
438 | }
|
---|
439 | double dxsign = parmu * (cvmaxp - cvmaxm) > 2.0 * total ? -1.0 : 1.0;
|
---|
440 |
|
---|
441 | // Update the elements of SIM and SIMI, and set the next X.
|
---|
442 |
|
---|
443 | temp = 0.0;
|
---|
444 | for (int i = 1; i <= n; ++i)
|
---|
445 | {
|
---|
446 | dx[i] = dxsign * dx[i];
|
---|
447 | sim[i][jdrop] = dx[i];
|
---|
448 | temp += simi[jdrop][i] * dx[i];
|
---|
449 | }
|
---|
450 | for (int k = 1; k <= n; ++k) simi[jdrop][k] /= temp;
|
---|
451 |
|
---|
452 | for (int j = 1; j <= n; ++j)
|
---|
453 | {
|
---|
454 | if (j != jdrop)
|
---|
455 | {
|
---|
456 | temp = DOT_PRODUCT(PART(ROW(simi, j), 1, n), PART(dx, 1, n));
|
---|
457 | for (int k = 1; k <= n; ++k) simi[j][k] -= temp * simi[jdrop][k];
|
---|
458 | }
|
---|
459 | x[j] = sim[j][np] + dx[j];
|
---|
460 | }
|
---|
461 | continue L_40;
|
---|
462 | }
|
---|
463 |
|
---|
464 | // Calculate DX = x(*)-x(0).
|
---|
465 | // Branch if the length of DX is less than 0.5*RHO.
|
---|
466 |
|
---|
467 | ifull = trstlp(n, m, a, con, rho, dx);
|
---|
468 | if (!ifull)
|
---|
469 | {
|
---|
470 | temp = 0.0; for (int k = 1; k <= n; ++k) temp += dx[k] * dx[k];
|
---|
471 | if (temp < 0.25 * rho * rho)
|
---|
472 | {
|
---|
473 | ibrnch = true;
|
---|
474 | break L_550;
|
---|
475 | }
|
---|
476 | }
|
---|
477 |
|
---|
478 | // Predict the change to F and the new maximum constraint violation if the
|
---|
479 | // variables are altered from x(0) to x(0) + DX.
|
---|
480 |
|
---|
481 | total = 0.0;
|
---|
482 | double resnew = 0.0;
|
---|
483 | con[mp] = 0.0;
|
---|
484 | for (int k = 1; k <= mp; ++k)
|
---|
485 | {
|
---|
486 | total = con[k] - DOT_PRODUCT(PART(COL(a, k), 1, n), PART(dx, 1, n));
|
---|
487 | if (k < mp) resnew = Math.max(resnew, total);
|
---|
488 | }
|
---|
489 |
|
---|
490 | // Increase PARMU if necessary and branch back if this change alters the
|
---|
491 | // optimal vertex. Otherwise PREREM and PREREC will be set to the predicted
|
---|
492 | // reductions in the merit function and the maximum constraint violation
|
---|
493 | // respectively.
|
---|
494 |
|
---|
495 | prerec = datmat[mpp][np] - resnew;
|
---|
496 | double barmu = prerec > 0.0 ? total / prerec : 0.0;
|
---|
497 | if (parmu < 1.5 * barmu)
|
---|
498 | {
|
---|
499 | parmu = 2.0 * barmu;
|
---|
500 | if (iprint >= 2) System.out.format("%nIncrease in PARMU to %13.6f%n", parmu);
|
---|
501 | double phi = datmat[mp][np] + parmu * datmat[mpp][np];
|
---|
502 | for (int j = 1; j <= n; ++j)
|
---|
503 | {
|
---|
504 | temp = datmat[mp][j] + parmu * datmat[mpp][j];
|
---|
505 | if (temp < phi || (temp == phi && parmu == 0.0 && datmat[mpp][j] < datmat[mpp][np])) continue L_140;
|
---|
506 | }
|
---|
507 | }
|
---|
508 | prerem = parmu * prerec - total;
|
---|
509 |
|
---|
510 | // Calculate the constraint and objective functions at x(*).
|
---|
511 | // Then find the actual reduction in the merit function.
|
---|
512 |
|
---|
513 | for (int k = 1; k <= n; ++k) x[k] = sim[k][np] + dx[k];
|
---|
514 | ibrnch = true;
|
---|
515 | continue L_40;
|
---|
516 | }
|
---|
517 |
|
---|
518 | skipVertexIdent = false;
|
---|
519 | double vmold = datmat[mp][np] + parmu * datmat[mpp][np];
|
---|
520 | double vmnew = f + parmu * resmax;
|
---|
521 | double trured = vmold - vmnew;
|
---|
522 | if (parmu == 0.0 && f == datmat[mp][np])
|
---|
523 | {
|
---|
524 | prerem = prerec;
|
---|
525 | trured = datmat[mpp][np] - resmax;
|
---|
526 | }
|
---|
527 |
|
---|
528 | // Begin the operations that decide whether x(*) should replace one of the
|
---|
529 | // vertices of the current simplex, the change being mandatory if TRURED is
|
---|
530 | // positive. Firstly, JDROP is set to the index of the vertex that is to be
|
---|
531 | // replaced.
|
---|
532 |
|
---|
533 | double ratio = trured <= 0.0 ? 1.0 : 0.0;
|
---|
534 | jdrop = 0;
|
---|
535 | for (int j = 1; j <= n; ++j)
|
---|
536 | {
|
---|
537 | temp = Math.abs(DOT_PRODUCT(PART(ROW(simi, j), 1, n), PART(dx, 1, n)));
|
---|
538 | if (temp > ratio)
|
---|
539 | {
|
---|
540 | jdrop = j;
|
---|
541 | ratio = temp;
|
---|
542 | }
|
---|
543 | sigbar[j] = temp * vsig[j];
|
---|
544 | }
|
---|
545 |
|
---|
546 | // Calculate the value of ell.
|
---|
547 |
|
---|
548 | double edgmax = delta * rho;
|
---|
549 | int l = 0;
|
---|
550 | for (int j = 1; j <= n; ++j)
|
---|
551 | {
|
---|
552 | if (sigbar[j] >= parsig || sigbar[j] >= vsig[j])
|
---|
553 | {
|
---|
554 | temp = veta[j];
|
---|
555 | if (trured > 0.0)
|
---|
556 | {
|
---|
557 | temp = 0.0; for (int k = 1; k <= n; ++k) temp += Math.pow(dx[k] - sim[k][j], 2.0);
|
---|
558 | temp = Math.sqrt(temp);
|
---|
559 | }
|
---|
560 | if (temp > edgmax)
|
---|
561 | {
|
---|
562 | l = j;
|
---|
563 | edgmax = temp;
|
---|
564 | }
|
---|
565 | }
|
---|
566 | }
|
---|
567 | if (l > 0) jdrop = l;
|
---|
568 |
|
---|
569 | if (jdrop != 0)
|
---|
570 | {
|
---|
571 | // Revise the simplex by updating the elements of SIM, SIMI and DATMAT.
|
---|
572 |
|
---|
573 | temp = 0.0;
|
---|
574 | for (int i = 1; i <= n; ++i)
|
---|
575 | {
|
---|
576 | sim[i][jdrop] = dx[i];
|
---|
577 | temp += simi[jdrop][i] * dx[i];
|
---|
578 | }
|
---|
579 | for (int k = 1; k <= n; ++k) simi[jdrop][k] /= temp;
|
---|
580 | for (int j = 1; j <= n; ++j)
|
---|
581 | {
|
---|
582 | if (j != jdrop)
|
---|
583 | {
|
---|
584 | temp = DOT_PRODUCT(PART(ROW(simi, j), 1, n), PART(dx, 1, n));
|
---|
585 | for (int k = 1; k <= n; ++k) simi[j][k] -= temp * simi[jdrop][k];
|
---|
586 | }
|
---|
587 | }
|
---|
588 | for (int k = 1; k <= mpp; ++k) datmat[k][jdrop] = con[k];
|
---|
589 |
|
---|
590 | // Branch back for further iterations with the current RHO.
|
---|
591 |
|
---|
592 | if (trured > 0.0 && trured >= 0.1 * prerem) continue L_140;
|
---|
593 | }
|
---|
594 | } while (false);
|
---|
595 |
|
---|
596 | if (!iflag)
|
---|
597 | {
|
---|
598 | ibrnch = false;
|
---|
599 | continue L_140;
|
---|
600 | }
|
---|
601 |
|
---|
602 | if (rho <= rhoend)
|
---|
603 | {
|
---|
604 | status = CobylaExitStatus.Normal;
|
---|
605 | break L_40;
|
---|
606 | }
|
---|
607 |
|
---|
608 | // Otherwise reduce RHO if it is not at its least value and reset PARMU.
|
---|
609 |
|
---|
610 | double cmin = 0.0, cmax = 0.0;
|
---|
611 |
|
---|
612 | rho *= 0.5;
|
---|
613 | if (rho <= 1.5 * rhoend) rho = rhoend;
|
---|
614 | if (parmu > 0.0)
|
---|
615 | {
|
---|
616 | double denom = 0.0;
|
---|
617 | for (int k = 1; k <= mp; ++k)
|
---|
618 | {
|
---|
619 | cmin = datmat[k][np];
|
---|
620 | cmax = cmin;
|
---|
621 | for (int i = 1; i <= n; ++i)
|
---|
622 | {
|
---|
623 | cmin = Math.min(cmin, datmat[k][i]);
|
---|
624 | cmax = Math.max(cmax, datmat[k][i]);
|
---|
625 | }
|
---|
626 | if (k <= m && cmin < 0.5 * cmax)
|
---|
627 | {
|
---|
628 | temp = Math.max(cmax, 0.0) - cmin;
|
---|
629 | denom = denom <= 0.0 ? temp : Math.min(denom, temp);
|
---|
630 | }
|
---|
631 | }
|
---|
632 | if (denom == 0.0)
|
---|
633 | {
|
---|
634 | parmu = 0.0;
|
---|
635 | }
|
---|
636 | else if (cmax - cmin < parmu * denom)
|
---|
637 | {
|
---|
638 | parmu = (cmax - cmin) / denom;
|
---|
639 | }
|
---|
640 | }
|
---|
641 | if (iprint >= 2)
|
---|
642 | System.out.format("%nReduction in RHO to %1$13.6f and PARMU = %2$13.6f%n", rho, parmu);
|
---|
643 | if (iprint == 2)
|
---|
644 | PrintIterationResult(nfvals, datmat[mp][np], datmat[mpp][np], COL(sim, np), n);
|
---|
645 |
|
---|
646 | } while (true);
|
---|
647 | } while (true);
|
---|
648 |
|
---|
649 | switch (status)
|
---|
650 | {
|
---|
651 | case Normal:
|
---|
652 | if (iprint >= 1) System.out.format("%nNormal return from subroutine COBYLA%n");
|
---|
653 | if (ifull)
|
---|
654 | {
|
---|
655 | if (iprint >= 1) PrintIterationResult(nfvals, f, resmax, x, n);
|
---|
656 | return status;
|
---|
657 | }
|
---|
658 | break;
|
---|
659 | case MaxIterationsReached:
|
---|
660 | if (iprint >= 1)
|
---|
661 | System.out.format("%nReturn from subroutine COBYLA because the MAXFUN limit has been reached.%n");
|
---|
662 | break;
|
---|
663 | case DivergingRoundingErrors:
|
---|
664 | if (iprint >= 1)
|
---|
665 | System.out.format("%nReturn from subroutine COBYLA because rounding errors are becoming damaging.%n");
|
---|
666 | break;
|
---|
667 | }
|
---|
668 |
|
---|
669 | for (int k = 1; k <= n; ++k) x[k] = sim[k][np];
|
---|
670 | f = datmat[mp][np];
|
---|
671 | resmax = datmat[mpp][np];
|
---|
672 | if (iprint >= 1) PrintIterationResult(nfvals, f, resmax, x, n);
|
---|
673 |
|
---|
674 | return status;
|
---|
675 | }
|
---|
676 |
|
---|
677 | private static boolean trstlp(int n, int m, double[][] a, double[] b, double rho, double[] dx)
|
---|
678 | {
|
---|
679 | // N.B. Arguments Z, ZDOTA, VMULTC, SDIRN, DXNEW, VMULTD & IACT have been removed.
|
---|
680 |
|
---|
681 | // This subroutine calculates an N-component vector DX by applying the
|
---|
682 | // following two stages. In the first stage, DX is set to the shortest
|
---|
683 | // vector that minimizes the greatest violation of the constraints
|
---|
684 | // A(1,K)*DX(1)+A(2,K)*DX(2)+...+A(N,K)*DX(N) .GE. B(K), K = 2,3,...,M,
|
---|
685 | // subject to the Euclidean length of DX being at most RHO. If its length is
|
---|
686 | // strictly less than RHO, then we use the resultant freedom in DX to
|
---|
687 | // minimize the objective function
|
---|
688 | // -A(1,M+1)*DX(1) - A(2,M+1)*DX(2) - ... - A(N,M+1)*DX(N)
|
---|
689 | // subject to no increase in any greatest constraint violation. This
|
---|
690 | // notation allows the gradient of the objective function to be regarded as
|
---|
691 | // the gradient of a constraint. Therefore the two stages are distinguished
|
---|
692 | // by MCON .EQ. M and MCON .GT. M respectively. It is possible that a
|
---|
693 | // degeneracy may prevent DX from attaining the target length RHO. Then the
|
---|
694 | // value IFULL = 0 would be set, but usually IFULL = 1 on return.
|
---|
695 |
|
---|
696 | // In general NACT is the number of constraints in the active set and
|
---|
697 | // IACT(1),...,IACT(NACT) are their indices, while the remainder of IACT
|
---|
698 | // contains a permutation of the remaining constraint indices. Further, Z
|
---|
699 | // is an orthogonal matrix whose first NACT columns can be regarded as the
|
---|
700 | // result of Gram-Schmidt applied to the active constraint gradients. For
|
---|
701 | // J = 1,2,...,NACT, the number ZDOTA(J) is the scalar product of the J-th
|
---|
702 | // column of Z with the gradient of the J-th active constraint. DX is the
|
---|
703 | // current vector of variables and here the residuals of the active
|
---|
704 | // constraints should be zero. Further, the active constraints have
|
---|
705 | // nonnegative Lagrange multipliers that are held at the beginning of
|
---|
706 | // VMULTC. The remainder of this vector holds the residuals of the inactive
|
---|
707 | // constraints at DX, the ordering of the components of VMULTC being in
|
---|
708 | // agreement with the permutation of the indices of the constraints that is
|
---|
709 | // in IACT. All these residuals are nonnegative, which is achieved by the
|
---|
710 | // shift RESMAX that makes the least residual zero.
|
---|
711 |
|
---|
712 | // Initialize Z and some other variables. The value of RESMAX will be
|
---|
713 | // appropriate to DX = 0, while ICON will be the index of a most violated
|
---|
714 | // constraint if RESMAX is positive. Usually during the first stage the
|
---|
715 | // vector SDIRN gives a search direction that reduces all the active
|
---|
716 | // constraint violations by one simultaneously.
|
---|
717 |
|
---|
718 | // Local variables
|
---|
719 |
|
---|
720 | double temp;
|
---|
721 |
|
---|
722 | int nactx = 0;
|
---|
723 | double resold = 0.0;
|
---|
724 |
|
---|
725 | double[][] z = new double[1 + n][1 + n];
|
---|
726 | double[] zdota = new double[2 + m];
|
---|
727 | double[] vmultc = new double[2 + m];
|
---|
728 | double[] sdirn = new double[1 + n];
|
---|
729 | double[] dxnew = new double[1 + n];
|
---|
730 | double[] vmultd = new double[2 + m];
|
---|
731 | int[] iact = new int[2 + m];
|
---|
732 |
|
---|
733 | int mcon = m;
|
---|
734 | int nact = 0;
|
---|
735 | for (int i = 1; i <= n; ++i)
|
---|
736 | {
|
---|
737 | z[i][i] = 1.0;
|
---|
738 | dx[i] = 0.0;
|
---|
739 | }
|
---|
740 |
|
---|
741 | int icon = 0;
|
---|
742 | double resmax = 0.0;
|
---|
743 | if (m >= 1)
|
---|
744 | {
|
---|
745 | for (int k = 1; k <= m; ++k)
|
---|
746 | {
|
---|
747 | if (b[k] > resmax)
|
---|
748 | {
|
---|
749 | resmax = b[k];
|
---|
750 | icon = k;
|
---|
751 | }
|
---|
752 | }
|
---|
753 | for (int k = 1; k <= m; ++k)
|
---|
754 | {
|
---|
755 | iact[k] = k;
|
---|
756 | vmultc[k] = resmax - b[k];
|
---|
757 | }
|
---|
758 | }
|
---|
759 |
|
---|
760 | // End the current stage of the calculation if 3 consecutive iterations
|
---|
761 | // have either failed to reduce the best calculated value of the objective
|
---|
762 | // function or to increase the number of active constraints since the best
|
---|
763 | // value was calculated. This strategy prevents cycling, but there is a
|
---|
764 | // remote possibility that it will cause premature termination.
|
---|
765 |
|
---|
766 | boolean first = true;
|
---|
767 | do
|
---|
768 | {
|
---|
769 | L_60:
|
---|
770 | do
|
---|
771 | {
|
---|
772 | if (!first || (first && resmax == 0.0))
|
---|
773 | {
|
---|
774 | mcon = m + 1;
|
---|
775 | icon = mcon;
|
---|
776 | iact[mcon] = mcon;
|
---|
777 | vmultc[mcon] = 0.0;
|
---|
778 | }
|
---|
779 | first = false;
|
---|
780 |
|
---|
781 | double optold = 0.0;
|
---|
782 | int icount = 0;
|
---|
783 |
|
---|
784 | double step, stpful;
|
---|
785 |
|
---|
786 | L_70:
|
---|
787 | do
|
---|
788 | {
|
---|
789 | double optnew = mcon == m ? resmax : -DOT_PRODUCT(PART(dx, 1, n), PART(COL(a, mcon), 1, n));
|
---|
790 |
|
---|
791 | if (icount == 0 || optnew < optold)
|
---|
792 | {
|
---|
793 | optold = optnew;
|
---|
794 | nactx = nact;
|
---|
795 | icount = 3;
|
---|
796 | }
|
---|
797 | else if (nact > nactx)
|
---|
798 | {
|
---|
799 | nactx = nact;
|
---|
800 | icount = 3;
|
---|
801 | }
|
---|
802 | else
|
---|
803 | {
|
---|
804 | --icount;
|
---|
805 | }
|
---|
806 | if (icount == 0) break L_60;
|
---|
807 |
|
---|
808 | // If ICON exceeds NACT, then we add the constraint with index IACT(ICON) to
|
---|
809 | // the active set. Apply Givens rotations so that the last N-NACT-1 columns
|
---|
810 | // of Z are orthogonal to the gradient of the new constraint, a scalar
|
---|
811 | // product being set to zero if its nonzero value could be due to computer
|
---|
812 | // rounding errors. The array DXNEW is used for working space.
|
---|
813 |
|
---|
814 | double ratio;
|
---|
815 | if (icon <= nact)
|
---|
816 | {
|
---|
817 | if (icon < nact)
|
---|
818 | {
|
---|
819 | // Delete the constraint that has the index IACT(ICON) from the active set.
|
---|
820 |
|
---|
821 | int isave = iact[icon];
|
---|
822 | double vsave = vmultc[icon];
|
---|
823 | int k = icon;
|
---|
824 | do
|
---|
825 | {
|
---|
826 | int kp = k + 1;
|
---|
827 | int kk = iact[kp];
|
---|
828 | double sp = DOT_PRODUCT(PART(COL(z, k), 1, n), PART(COL(a, kk), 1, n));
|
---|
829 | temp = Math.sqrt(sp * sp + zdota[kp] * zdota[kp]);
|
---|
830 | double alpha = zdota[kp] / temp;
|
---|
831 | double beta = sp / temp;
|
---|
832 | zdota[kp] = alpha * zdota[k];
|
---|
833 | zdota[k] = temp;
|
---|
834 | for (int i = 1; i <= n; ++i)
|
---|
835 | {
|
---|
836 | temp = alpha * z[i][kp] + beta * z[i][k];
|
---|
837 | z[i][kp] = alpha * z[i][k] - beta * z[i][kp];
|
---|
838 | z[i][k] = temp;
|
---|
839 | }
|
---|
840 | iact[k] = kk;
|
---|
841 | vmultc[k] = vmultc[kp];
|
---|
842 | k = kp;
|
---|
843 | } while (k < nact);
|
---|
844 |
|
---|
845 | iact[k] = isave;
|
---|
846 | vmultc[k] = vsave;
|
---|
847 | }
|
---|
848 | --nact;
|
---|
849 |
|
---|
850 | // If stage one is in progress, then set SDIRN to the direction of the next
|
---|
851 | // change to the current vector of variables.
|
---|
852 |
|
---|
853 | if (mcon > m)
|
---|
854 | {
|
---|
855 | // Pick the next search direction of stage two.
|
---|
856 |
|
---|
857 | temp = 1.0 / zdota[nact];
|
---|
858 | for (int k = 1; k <= n; ++k) sdirn[k] = temp * z[k][nact];
|
---|
859 | }
|
---|
860 | else
|
---|
861 | {
|
---|
862 | temp = DOT_PRODUCT(PART(sdirn, 1, n), PART(COL(z, nact + 1), 1, n));
|
---|
863 | for (int k = 1; k <= n; ++k) sdirn[k] -= temp * z[k][nact + 1];
|
---|
864 | }
|
---|
865 | }
|
---|
866 | else
|
---|
867 | {
|
---|
868 | int kk = iact[icon];
|
---|
869 | for (int k = 1; k <= n; ++k) dxnew[k] = a[k][kk];
|
---|
870 | double tot = 0.0;
|
---|
871 |
|
---|
872 | {
|
---|
873 | int k = n;
|
---|
874 | while (k > nact)
|
---|
875 | {
|
---|
876 | double sp = 0.0;
|
---|
877 | double spabs = 0.0;
|
---|
878 | for (int i = 1; i <= n; ++i)
|
---|
879 | {
|
---|
880 | temp = z[i][k] * dxnew[i];
|
---|
881 | sp += temp;
|
---|
882 | spabs += Math.abs(temp);
|
---|
883 | }
|
---|
884 | double acca = spabs + 0.1 * Math.abs(sp);
|
---|
885 | double accb = spabs + 0.2 * Math.abs(sp);
|
---|
886 | if (spabs >= acca || acca >= accb) sp = 0.0;
|
---|
887 | if (tot == 0.0)
|
---|
888 | {
|
---|
889 | tot = sp;
|
---|
890 | }
|
---|
891 | else
|
---|
892 | {
|
---|
893 | int kp = k + 1;
|
---|
894 | temp = Math.sqrt(sp * sp + tot * tot);
|
---|
895 | double alpha = sp / temp;
|
---|
896 | double beta = tot / temp;
|
---|
897 | tot = temp;
|
---|
898 | for (int i = 1; i <= n; ++i)
|
---|
899 | {
|
---|
900 | temp = alpha * z[i][k] + beta * z[i][kp];
|
---|
901 | z[i][kp] = alpha * z[i][kp] - beta * z[i][k];
|
---|
902 | z[i][k] = temp;
|
---|
903 | }
|
---|
904 | }
|
---|
905 | --k;
|
---|
906 | }
|
---|
907 | }
|
---|
908 |
|
---|
909 | if (tot == 0.0)
|
---|
910 | {
|
---|
911 | // The next instruction is reached if a deletion has to be made from the
|
---|
912 | // active set in order to make room for the new active constraint, because
|
---|
913 | // the new constraint gradient is a linear combination of the gradients of
|
---|
914 | // the old active constraints. Set the elements of VMULTD to the multipliers
|
---|
915 | // of the linear combination. Further, set IOUT to the index of the
|
---|
916 | // constraint to be deleted, but branch if no suitable index can be found.
|
---|
917 |
|
---|
918 | ratio = -1.0;
|
---|
919 | {
|
---|
920 | int k = nact;
|
---|
921 | do
|
---|
922 | {
|
---|
923 | double zdotv = 0.0;
|
---|
924 | double zdvabs = 0.0;
|
---|
925 |
|
---|
926 | for (int i = 1; i <= n; ++i)
|
---|
927 | {
|
---|
928 | temp = z[i][k] * dxnew[i];
|
---|
929 | zdotv += temp;
|
---|
930 | zdvabs += Math.abs(temp);
|
---|
931 | }
|
---|
932 | double acca = zdvabs + 0.1 * Math.abs(zdotv);
|
---|
933 | double accb = zdvabs + 0.2 * Math.abs(zdotv);
|
---|
934 | if (zdvabs < acca && acca < accb)
|
---|
935 | {
|
---|
936 | temp = zdotv / zdota[k];
|
---|
937 | if (temp > 0.0 && iact[k] <= m)
|
---|
938 | {
|
---|
939 | double tempa = vmultc[k] / temp;
|
---|
940 | if (ratio < 0.0 || tempa < ratio) ratio = tempa;
|
---|
941 | }
|
---|
942 |
|
---|
943 | if (k >= 2)
|
---|
944 | {
|
---|
945 | int kw = iact[k];
|
---|
946 | for (int i = 1; i <= n; ++i) dxnew[i] -= temp * a[i][kw];
|
---|
947 | }
|
---|
948 | vmultd[k] = temp;
|
---|
949 | }
|
---|
950 | else
|
---|
951 | {
|
---|
952 | vmultd[k] = 0.0;
|
---|
953 | }
|
---|
954 | } while (--k > 0);
|
---|
955 | }
|
---|
956 | if (ratio < 0.0) break L_60;
|
---|
957 |
|
---|
958 | // Revise the Lagrange multipliers and reorder the active constraints so
|
---|
959 | // that the one to be replaced is at the end of the list. Also calculate the
|
---|
960 | // new value of ZDOTA(NACT) and branch if it is not acceptable.
|
---|
961 |
|
---|
962 | for (int k = 1; k <= nact; ++k)
|
---|
963 | vmultc[k] = Math.max(0.0, vmultc[k] - ratio * vmultd[k]);
|
---|
964 | if (icon < nact)
|
---|
965 | {
|
---|
966 | int isave = iact[icon];
|
---|
967 | double vsave = vmultc[icon];
|
---|
968 | int k = icon;
|
---|
969 | do
|
---|
970 | {
|
---|
971 | int kp = k + 1;
|
---|
972 | int kw = iact[kp];
|
---|
973 | double sp = DOT_PRODUCT(PART(COL(z, k), 1, n), PART(COL(a, kw), 1, n));
|
---|
974 | temp = Math.sqrt(sp * sp + zdota[kp] * zdota[kp]);
|
---|
975 | double alpha = zdota[kp] / temp;
|
---|
976 | double beta = sp / temp;
|
---|
977 | zdota[kp] = alpha * zdota[k];
|
---|
978 | zdota[k] = temp;
|
---|
979 | for (int i = 1; i <= n; ++i)
|
---|
980 | {
|
---|
981 | temp = alpha * z[i][kp] + beta * z[i][k];
|
---|
982 | z[i][kp] = alpha * z[i][k] - beta * z[i][kp];
|
---|
983 | z[i][k] = temp;
|
---|
984 | }
|
---|
985 | iact[k] = kw;
|
---|
986 | vmultc[k] = vmultc[kp];
|
---|
987 | k = kp;
|
---|
988 | } while (k < nact);
|
---|
989 | iact[k] = isave;
|
---|
990 | vmultc[k] = vsave;
|
---|
991 | }
|
---|
992 | temp = DOT_PRODUCT(PART(COL(z, nact), 1, n), PART(COL(a, kk), 1, n));
|
---|
993 | if (temp == 0.0) break L_60;
|
---|
994 | zdota[nact] = temp;
|
---|
995 | vmultc[icon] = 0.0;
|
---|
996 | vmultc[nact] = ratio;
|
---|
997 | }
|
---|
998 | else
|
---|
999 | {
|
---|
1000 | // Add the new constraint if this can be done without a deletion from the
|
---|
1001 | // active set.
|
---|
1002 |
|
---|
1003 | ++nact;
|
---|
1004 | zdota[nact] = tot;
|
---|
1005 | vmultc[icon] = vmultc[nact];
|
---|
1006 | vmultc[nact] = 0.0;
|
---|
1007 | }
|
---|
1008 |
|
---|
1009 | // Update IACT and ensure that the objective function continues to be
|
---|
1010 | // treated as the last active constraint when MCON>M.
|
---|
1011 |
|
---|
1012 | iact[icon] = iact[nact];
|
---|
1013 | iact[nact] = kk;
|
---|
1014 | if (mcon > m && kk != mcon)
|
---|
1015 | {
|
---|
1016 | int k = nact - 1;
|
---|
1017 | double sp = DOT_PRODUCT(PART(COL(z, k), 1, n), PART(COL(a, kk), 1, n));
|
---|
1018 | temp = Math.sqrt(sp * sp + zdota[nact] * zdota[nact]);
|
---|
1019 | double alpha = zdota[nact] / temp;
|
---|
1020 | double beta = sp / temp;
|
---|
1021 | zdota[nact] = alpha * zdota[k];
|
---|
1022 | zdota[k] = temp;
|
---|
1023 | for (int i = 1; i <= n; ++i)
|
---|
1024 | {
|
---|
1025 | temp = alpha * z[i][nact] + beta * z[i][k];
|
---|
1026 | z[i][nact] = alpha * z[i][k] - beta * z[i][nact];
|
---|
1027 | z[i][k] = temp;
|
---|
1028 | }
|
---|
1029 | iact[nact] = iact[k];
|
---|
1030 | iact[k] = kk;
|
---|
1031 | temp = vmultc[k];
|
---|
1032 | vmultc[k] = vmultc[nact];
|
---|
1033 | vmultc[nact] = temp;
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | // If stage one is in progress, then set SDIRN to the direction of the next
|
---|
1037 | // change to the current vector of variables.
|
---|
1038 |
|
---|
1039 | if (mcon > m)
|
---|
1040 | {
|
---|
1041 | // Pick the next search direction of stage two.
|
---|
1042 |
|
---|
1043 | temp = 1.0 / zdota[nact];
|
---|
1044 | for (int k = 1; k <= n; ++k) sdirn[k] = temp * z[k][nact];
|
---|
1045 | }
|
---|
1046 | else
|
---|
1047 | {
|
---|
1048 | kk = iact[nact];
|
---|
1049 | temp = (DOT_PRODUCT(PART(sdirn, 1, n), PART(COL(a, kk), 1, n)) - 1.0) / zdota[nact];
|
---|
1050 | for (int k = 1; k <= n; ++k) sdirn[k] -= temp * z[k][nact];
|
---|
1051 | }
|
---|
1052 | }
|
---|
1053 |
|
---|
1054 | // Calculate the step to the boundary of the trust region or take the step
|
---|
1055 | // that reduces RESMAX to zero. The two statements below that include the
|
---|
1056 | // factor 1.0E-6 prevent some harmless underflows that occurred in a test
|
---|
1057 | // calculation. Further, we skip the step if it could be zero within a
|
---|
1058 | // reasonable tolerance for computer rounding errors.
|
---|
1059 |
|
---|
1060 | double dd = rho * rho;
|
---|
1061 | double sd = 0.0;
|
---|
1062 | double ss = 0.0;
|
---|
1063 | for (int i = 1; i <= n; ++i)
|
---|
1064 | {
|
---|
1065 | if (Math.abs(dx[i]) >= 1.0E-6 * rho) dd -= dx[i] * dx[i];
|
---|
1066 | sd += dx[i] * sdirn[i];
|
---|
1067 | ss += sdirn[i] * sdirn[i];
|
---|
1068 | }
|
---|
1069 | if (dd <= 0.0) break L_60;
|
---|
1070 | temp = Math.sqrt(ss * dd);
|
---|
1071 | if (Math.abs(sd) >= 1.0E-6 * temp) temp = Math.sqrt(ss * dd + sd * sd);
|
---|
1072 | stpful = dd / (temp + sd);
|
---|
1073 | step = stpful;
|
---|
1074 | if (mcon == m)
|
---|
1075 | {
|
---|
1076 | double acca = step + 0.1 * resmax;
|
---|
1077 | double accb = step + 0.2 * resmax;
|
---|
1078 | if (step >= acca || acca >= accb) break L_70;
|
---|
1079 | step = Math.min(step, resmax);
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 | // Set DXNEW to the new variables if STEP is the steplength, and reduce
|
---|
1083 | // RESMAX to the corresponding maximum residual if stage one is being done.
|
---|
1084 | // Because DXNEW will be changed during the calculation of some Lagrange
|
---|
1085 | // multipliers, it will be restored to the following value later.
|
---|
1086 |
|
---|
1087 | for (int k = 1; k <= n; ++k) dxnew[k] = dx[k] + step * sdirn[k];
|
---|
1088 | if (mcon == m)
|
---|
1089 | {
|
---|
1090 | resold = resmax;
|
---|
1091 | resmax = 0.0;
|
---|
1092 | for (int k = 1; k <= nact; ++k)
|
---|
1093 | {
|
---|
1094 | int kk = iact[k];
|
---|
1095 | temp = b[kk] - DOT_PRODUCT(PART(COL(a, kk), 1, n), PART(dxnew, 1, n));
|
---|
1096 | resmax = Math.max(resmax, temp);
|
---|
1097 | }
|
---|
1098 | }
|
---|
1099 |
|
---|
1100 | // Set VMULTD to the VMULTC vector that would occur if DX became DXNEW. A
|
---|
1101 | // device is included to force VMULTD(K) = 0.0 if deviations from this value
|
---|
1102 | // can be attributed to computer rounding errors. First calculate the new
|
---|
1103 | // Lagrange multipliers.
|
---|
1104 |
|
---|
1105 | {
|
---|
1106 | int k = nact;
|
---|
1107 | do
|
---|
1108 | {
|
---|
1109 | double zdotw = 0.0;
|
---|
1110 | double zdwabs = 0.0;
|
---|
1111 | for (int i = 1; i <= n; ++i)
|
---|
1112 | {
|
---|
1113 | temp = z[i][k] * dxnew[i];
|
---|
1114 | zdotw += temp;
|
---|
1115 | zdwabs += Math.abs(temp);
|
---|
1116 | }
|
---|
1117 | double acca = zdwabs + 0.1 * Math.abs(zdotw);
|
---|
1118 | double accb = zdwabs + 0.2 * Math.abs(zdotw);
|
---|
1119 | if (zdwabs >= acca || acca >= accb) zdotw = 0.0;
|
---|
1120 | vmultd[k] = zdotw / zdota[k];
|
---|
1121 | if (k >= 2)
|
---|
1122 | {
|
---|
1123 | int kk = iact[k];
|
---|
1124 | for (int i = 1; i <= n; ++i) dxnew[i] -= vmultd[k] * a[i][kk];
|
---|
1125 | }
|
---|
1126 | } while (k-- >= 2);
|
---|
1127 | if (mcon > m) vmultd[nact] = Math.max(0.0, vmultd[nact]);
|
---|
1128 | }
|
---|
1129 |
|
---|
1130 | // Complete VMULTC by finding the new constraint residuals.
|
---|
1131 |
|
---|
1132 | for (int k = 1; k <= n; ++k) dxnew[k] = dx[k] + step * sdirn[k];
|
---|
1133 | if (mcon > nact)
|
---|
1134 | {
|
---|
1135 | int kl = nact + 1;
|
---|
1136 | for (int k = kl; k <= mcon; ++k)
|
---|
1137 | {
|
---|
1138 | int kk = iact[k];
|
---|
1139 | double total = resmax - b[kk];
|
---|
1140 | double sumabs = resmax + Math.abs(b[kk]);
|
---|
1141 | for (int i = 1; i <= n; ++i)
|
---|
1142 | {
|
---|
1143 | temp = a[i][kk] * dxnew[i];
|
---|
1144 | total += temp;
|
---|
1145 | sumabs += Math.abs(temp);
|
---|
1146 | }
|
---|
1147 | double acca = sumabs + 0.1 * Math.abs(total);
|
---|
1148 | double accb = sumabs + 0.2 * Math.abs(total);
|
---|
1149 | if (sumabs >= acca || acca >= accb) total = 0.0;
|
---|
1150 | vmultd[k] = total;
|
---|
1151 | }
|
---|
1152 | }
|
---|
1153 |
|
---|
1154 | // Calculate the fraction of the step from DX to DXNEW that will be taken.
|
---|
1155 |
|
---|
1156 | ratio = 1.0;
|
---|
1157 | icon = 0;
|
---|
1158 | for (int k = 1; k <= mcon; ++k)
|
---|
1159 | {
|
---|
1160 | if (vmultd[k] < 0.0)
|
---|
1161 | {
|
---|
1162 | temp = vmultc[k] / (vmultc[k] - vmultd[k]);
|
---|
1163 | if (temp < ratio)
|
---|
1164 | {
|
---|
1165 | ratio = temp;
|
---|
1166 | icon = k;
|
---|
1167 | }
|
---|
1168 | }
|
---|
1169 | }
|
---|
1170 |
|
---|
1171 | // Update DX, VMULTC and RESMAX.
|
---|
1172 |
|
---|
1173 | temp = 1.0 - ratio;
|
---|
1174 | for (int k = 1; k <= n; ++k) dx[k] = temp * dx[k] + ratio * dxnew[k];
|
---|
1175 | for (int k = 1; k <= mcon; ++k)
|
---|
1176 | vmultc[k] = Math.max(0.0, temp * vmultc[k] + ratio * vmultd[k]);
|
---|
1177 | if (mcon == m) resmax = resold + ratio * (resmax - resold);
|
---|
1178 |
|
---|
1179 | // If the full step is not acceptable then begin another iteration.
|
---|
1180 | // Otherwise switch to stage two or end the calculation.
|
---|
1181 |
|
---|
1182 | } while (icon > 0);
|
---|
1183 |
|
---|
1184 | if (step == stpful) return true;
|
---|
1185 |
|
---|
1186 | } while (true);
|
---|
1187 |
|
---|
1188 | // We employ any freedom that may be available to reduce the objective
|
---|
1189 | // function before returning a DX whose length is less than RHO.
|
---|
1190 |
|
---|
1191 | } while (mcon == m);
|
---|
1192 |
|
---|
1193 | return false;
|
---|
1194 | }
|
---|
1195 |
|
---|
1196 | private static void PrintIterationResult(int nfvals, double f, double resmax, double[] x, int n)
|
---|
1197 | {
|
---|
1198 | System.out.format("%nNFVALS = %1$5d F = %2$13.6f MAXCV = %3$13.6e%n", nfvals, f, resmax);
|
---|
1199 | System.out.format("X = %s%n", FORMAT(PART(x, 1, n)));
|
---|
1200 | }
|
---|
1201 |
|
---|
1202 | private static double[] ROW(double[][] src, int rowidx)
|
---|
1203 | {
|
---|
1204 | int cols = src[0].length;
|
---|
1205 | double[] dest = new double[cols];
|
---|
1206 | for (int col = 0; col < cols; ++col) dest[col] = src[rowidx][col];
|
---|
1207 | return dest;
|
---|
1208 | }
|
---|
1209 |
|
---|
1210 | private static double[] COL(double[][] src, int colidx)
|
---|
1211 | {
|
---|
1212 | int rows = src.length;
|
---|
1213 | double[] dest = new double[rows];
|
---|
1214 | for (int row = 0; row < rows; ++row) dest[row] = src[row][colidx];
|
---|
1215 | return dest;
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 | private static double[] PART(double[] src, int from, int to)
|
---|
1219 | {
|
---|
1220 | double[] dest = new double[to - from + 1];
|
---|
1221 | int destidx = 0;
|
---|
1222 | for (int srcidx = from; srcidx <= to; ++srcidx, ++destidx) dest[destidx] = src[srcidx];
|
---|
1223 | return dest;
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 | private static String FORMAT(double[] x)
|
---|
1227 | {
|
---|
1228 | String fmt = "";
|
---|
1229 | for (int i = 0; i < x.length; ++i) fmt = fmt + String.format("%13.6f", x[i]);
|
---|
1230 | return fmt;
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | private static double DOT_PRODUCT(double[] lhs, double[] rhs)
|
---|
1234 | {
|
---|
1235 | double sum = 0.0; for (int i = 0; i < lhs.length; ++i) sum += lhs[i] * rhs[i];
|
---|
1236 | return sum;
|
---|
1237 | }
|
---|
1238 | }
|
---|