[1] | 1 | /*
|
---|
| 2 | * jcobyla
|
---|
| 3 | *
|
---|
| 4 | * The MIT License
|
---|
| 5 | *
|
---|
| 6 | * Copyright (c) 2012 Anders Gustafsson, Cureos AB.
|
---|
| 7 | *
|
---|
| 8 | * Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
|
---|
| 9 | * (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
|
---|
| 10 | * publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
|
---|
| 11 | * subject to the following conditions:
|
---|
| 12 | *
|
---|
| 13 | * The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
---|
| 14 | *
|
---|
| 15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
---|
| 16 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
|
---|
| 17 | * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
---|
| 18 | * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
---|
| 19 | *
|
---|
| 20 | * Remarks:
|
---|
| 21 | *
|
---|
| 22 | * The original Fortran 77 version of this code was by Michael Powell (M.J.D.Powell @ damtp.cam.ac.uk)
|
---|
| 23 | * The Fortran 90 version was by Alan Miller (Alan.Miller @ vic.cmis.csiro.au). Latest revision - 30 October 1998
|
---|
| 24 | */
|
---|
| 25 | package geniusweb.exampleparties.simpleshaop;
|
---|
| 26 |
|
---|
| 27 | /**
|
---|
| 28 | * Constrained Optimization BY Linear Approximation in Java.
|
---|
| 29 | *
|
---|
| 30 | * COBYLA2 is an implementation of Powell’s nonlinear derivative–free constrained optimization that uses
|
---|
| 31 | * a linear approximation approach. The algorithm is a sequential trust–region algorithm that employs linear
|
---|
| 32 | * approximations to the objective and constraint functions, where the approximations are formed by linear
|
---|
| 33 | * interpolation at n + 1 points in the space of the variables and tries to maintain a regular–shaped simplex
|
---|
| 34 | * over iterations.
|
---|
| 35 | *
|
---|
| 36 | * It solves nonsmooth NLP with a moderate number of variables (about 100). Inequality constraints only.
|
---|
| 37 | *
|
---|
| 38 | * The initial point X is taken as one vertex of the initial simplex with zero being another, so, X should
|
---|
| 39 | * not be entered as the zero vector.
|
---|
| 40 | *
|
---|
| 41 | * @author Anders Gustafsson, Cureos AB.
|
---|
| 42 | */
|
---|
| 43 | public class Cobyla
|
---|
| 44 | {
|
---|
| 45 | /**
|
---|
| 46 | * Minimizes the objective function F with respect to a set of inequality constraints CON,
|
---|
| 47 | * and returns the optimal variable array. F and CON may be non-linear, and should preferably be smooth.
|
---|
| 48 | *
|
---|
| 49 | * @param calcfc Interface implementation for calculating objective function and constraints.
|
---|
| 50 | * @param n Number of variables.
|
---|
| 51 | * @param m Number of constraints.
|
---|
| 52 | * @param x On input initial values of the variables (zero-based array). On output
|
---|
| 53 | * optimal values of the variables obtained in the COBYLA minimization.
|
---|
| 54 | * @param rhobeg Initial size of the simplex.
|
---|
| 55 | * @param rhoend Final value of the simplex.
|
---|
| 56 | * @param iprint Print level, 0 <= iprint <= 3, where 0 provides no output and
|
---|
| 57 | * 3 provides full output to the console.
|
---|
| 58 | * @param maxfun Maximum number of function evaluations before terminating.
|
---|
| 59 | * @return Exit status of the COBYLA2 optimization.
|
---|
| 60 | */
|
---|
| 61 | public static CobylaExitStatus FindMinimum(final Calcfc calcfc, int n, int m, double[] x, double rhobeg, double rhoend, int iprint, int maxfun)
|
---|
| 62 | {
|
---|
| 63 | // This subroutine minimizes an objective function F(X) subject to M
|
---|
| 64 | // inequality constraints on X, where X is a vector of variables that has
|
---|
| 65 | // N components. The algorithm employs linear approximations to the
|
---|
| 66 | // objective and constraint functions, the approximations being formed by
|
---|
| 67 | // linear interpolation at N+1 points in the space of the variables.
|
---|
| 68 | // We regard these interpolation points as vertices of a simplex. The
|
---|
| 69 | // parameter RHO controls the size of the simplex and it is reduced
|
---|
| 70 | // automatically from RHOBEG to RHOEND. For each RHO the subroutine tries
|
---|
| 71 | // to achieve a good vector of variables for the current size, and then
|
---|
| 72 | // RHO is reduced until the value RHOEND is reached. Therefore RHOBEG and
|
---|
| 73 | // RHOEND should be set to reasonable initial changes to and the required
|
---|
| 74 | // accuracy in the variables respectively, but this accuracy should be
|
---|
| 75 | // viewed as a subject for experimentation because it is not guaranteed.
|
---|
| 76 | // The subroutine has an advantage over many of its competitors, however,
|
---|
| 77 | // which is that it treats each constraint individually when calculating
|
---|
| 78 | // a change to the variables, instead of lumping the constraints together
|
---|
| 79 | // into a single penalty function. The name of the subroutine is derived
|
---|
| 80 | // from the phrase Constrained Optimization BY Linear Approximations.
|
---|
| 81 |
|
---|
| 82 | // The user must set the values of N, M, RHOBEG and RHOEND, and must
|
---|
| 83 | // provide an initial vector of variables in X. Further, the value of
|
---|
| 84 | // IPRINT should be set to 0, 1, 2 or 3, which controls the amount of
|
---|
| 85 | // printing during the calculation. Specifically, there is no output if
|
---|
| 86 | // IPRINT=0 and there is output only at the end of the calculation if
|
---|
| 87 | // IPRINT=1. Otherwise each new value of RHO and SIGMA is printed.
|
---|
| 88 | // Further, the vector of variables and some function information are
|
---|
| 89 | // given either when RHO is reduced or when each new value of F(X) is
|
---|
| 90 | // computed in the cases IPRINT=2 or IPRINT=3 respectively. Here SIGMA
|
---|
| 91 | // is a penalty parameter, it being assumed that a change to X is an
|
---|
| 92 | // improvement if it reduces the merit function
|
---|
| 93 | // F(X)+SIGMA*MAX(0.0, - C1(X), - C2(X),..., - CM(X)),
|
---|
| 94 | // where C1,C2,...,CM denote the constraint functions that should become
|
---|
| 95 | // nonnegative eventually, at least to the precision of RHOEND. In the
|
---|
| 96 | // printed output the displayed term that is multiplied by SIGMA is
|
---|
| 97 | // called MAXCV, which stands for 'MAXimum Constraint Violation'. The
|
---|
| 98 | // argument ITERS is an integer variable that must be set by the user to a
|
---|
| 99 | // limit on the number of calls of CALCFC, the purpose of this routine being
|
---|
| 100 | // given below. The value of ITERS will be altered to the number of calls
|
---|
| 101 | // of CALCFC that are made.
|
---|
| 102 |
|
---|
| 103 | // In order to define the objective and constraint functions, we require
|
---|
| 104 | // a subroutine that has the name and arguments
|
---|
| 105 | // SUBROUTINE CALCFC (N,M,X,F,CON)
|
---|
| 106 | // DIMENSION X(:),CON(:) .
|
---|
| 107 | // The values of N and M are fixed and have been defined already, while
|
---|
| 108 | // X is now the current vector of variables. The subroutine should return
|
---|
| 109 | // the objective and constraint functions at X in F and CON(1),CON(2),
|
---|
| 110 | // ...,CON(M). Note that we are trying to adjust X so that F(X) is as
|
---|
| 111 | // small as possible subject to the constraint functions being nonnegative.
|
---|
| 112 |
|
---|
| 113 | // Local variables
|
---|
| 114 | int mpp = m + 2;
|
---|
| 115 |
|
---|
| 116 | // Internal base-1 X array
|
---|
| 117 | double[] iox = new double[n + 1];
|
---|
| 118 | System.arraycopy(x, 0, iox, 1, n);
|
---|
| 119 |
|
---|
| 120 | // Internal representation of the objective and constraints calculation method,
|
---|
| 121 | // accounting for that X and CON arrays in the cobylb method are base-1 arrays.
|
---|
| 122 | Calcfc fcalcfc = new Calcfc()
|
---|
| 123 | {
|
---|
| 124 | /**
|
---|
| 125 | *
|
---|
| 126 | * @param n the value of n
|
---|
| 127 | * @param m the value of m
|
---|
| 128 | * @param x the value of x
|
---|
| 129 | * @param con the value of con
|
---|
| 130 | * @return the double
|
---|
| 131 | */
|
---|
| 132 | @Override
|
---|
| 133 | public double Compute(int n, int m, double[] x, double[] con)
|
---|
| 134 | {
|
---|
| 135 | double[] ix = new double[n];
|
---|
| 136 | System.arraycopy(x, 1, ix, 0, n);
|
---|
| 137 | double[] ocon = new double[m];
|
---|
| 138 | double f = calcfc.Compute(n, m, ix, ocon);
|
---|
| 139 | System.arraycopy(ocon, 0, con, 1, m);
|
---|
| 140 | return f;
|
---|
| 141 | }
|
---|
| 142 | };
|
---|
| 143 |
|
---|
| 144 | CobylaExitStatus status = cobylb(fcalcfc, n, m, mpp, iox, rhobeg, rhoend, iprint, maxfun);
|
---|
| 145 | System.arraycopy(iox, 1, x, 0, n);
|
---|
| 146 |
|
---|
| 147 | return status;
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | private static CobylaExitStatus cobylb(Calcfc calcfc, int n, int m, int mpp, double[] x,
|
---|
| 151 | double rhobeg, double rhoend, int iprint, int maxfun)
|
---|
| 152 | {
|
---|
| 153 | // N.B. Arguments CON, SIM, SIMI, DATMAT, A, VSIG, VETA, SIGBAR, DX, W & IACT
|
---|
| 154 | // have been removed.
|
---|
| 155 |
|
---|
| 156 | // Set the initial values of some parameters. The last column of SIM holds
|
---|
| 157 | // the optimal vertex of the current simplex, and the preceding N columns
|
---|
| 158 | // hold the displacements from the optimal vertex to the other vertices.
|
---|
| 159 | // Further, SIMI holds the inverse of the matrix that is contained in the
|
---|
| 160 | // first N columns of SIM.
|
---|
| 161 |
|
---|
| 162 | // Local variables
|
---|
| 163 |
|
---|
| 164 | CobylaExitStatus status;
|
---|
| 165 |
|
---|
| 166 | double alpha = 0.25;
|
---|
| 167 | double beta = 2.1;
|
---|
| 168 | double gamma = 0.5;
|
---|
| 169 | double delta = 1.1;
|
---|
| 170 |
|
---|
| 171 | double f = 0.0;
|
---|
| 172 | double resmax = 0.0;
|
---|
| 173 | double total;
|
---|
| 174 |
|
---|
| 175 | int np = n + 1;
|
---|
| 176 | int mp = m + 1;
|
---|
| 177 | double rho = rhobeg;
|
---|
| 178 | double parmu = 0.0;
|
---|
| 179 |
|
---|
| 180 | boolean iflag = false;
|
---|
| 181 | boolean ifull = false;
|
---|
| 182 | double parsig = 0.0;
|
---|
| 183 | double prerec = 0.0;
|
---|
| 184 | double prerem = 0.0;
|
---|
| 185 |
|
---|
| 186 | double[] con = new double[1 + mpp];
|
---|
| 187 | double[][] sim = new double[1 + n][1 + np];
|
---|
| 188 | double[][] simi = new double[1 + n][1 + n];
|
---|
| 189 | double[][] datmat = new double[1 + mpp][1 + np];
|
---|
| 190 | double[][] a = new double[1 + n][1 + mp];
|
---|
| 191 | double[] vsig = new double[1 + n];
|
---|
| 192 | double[] veta = new double[1 + n];
|
---|
| 193 | double[] sigbar = new double[1 + n];
|
---|
| 194 | double[] dx = new double[1 + n];
|
---|
| 195 | double[] w = new double[1 + n];
|
---|
| 196 |
|
---|
| 197 | if (iprint >= 2) System.out.format("%nThe initial value of RHO is %13.6f and PARMU is set to zero.%n", rho);
|
---|
| 198 |
|
---|
| 199 | int nfvals = 0;
|
---|
| 200 | double temp = 1.0 / rho;
|
---|
| 201 |
|
---|
| 202 | for (int i = 1; i <= n; ++i)
|
---|
| 203 | {
|
---|
| 204 | sim[i][np] = x[i];
|
---|
| 205 | sim[i][i] = rho;
|
---|
| 206 | simi[i][i] = temp;
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 | int jdrop = np;
|
---|
| 210 | boolean ibrnch = false;
|
---|
| 211 |
|
---|
| 212 | // Make the next call of the user-supplied subroutine CALCFC. These
|
---|
| 213 | // instructions are also used for calling CALCFC during the iterations of
|
---|
| 214 | // the algorithm.
|
---|
| 215 |
|
---|
| 216 | L_40:
|
---|
| 217 | do
|
---|
| 218 | {
|
---|
| 219 | if (nfvals >= maxfun && nfvals > 0)
|
---|
| 220 | {
|
---|
| 221 | status = CobylaExitStatus.MaxIterationsReached;
|
---|
| 222 | break L_40;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | ++nfvals;
|
---|
| 226 |
|
---|
| 227 | f = calcfc.Compute(n, m, x, con);
|
---|
| 228 | resmax = 0.0; for (int k = 1; k <= m; ++k) resmax = Math.max(resmax, -con[k]);
|
---|
| 229 |
|
---|
| 230 | if (nfvals == iprint - 1 || iprint == 3)
|
---|
| 231 | {
|
---|
| 232 | PrintIterationResult(nfvals, f, resmax, x, n);
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | con[mp] = f;
|
---|
| 236 | con[mpp] = resmax;
|
---|
| 237 |
|
---|
| 238 | // Set the recently calculated function values in a column of DATMAT. This
|
---|
| 239 | // array has a column for each vertex of the current simplex, the entries of
|
---|
| 240 | // each column being the values of the constraint functions (if any)
|
---|
| 241 | // followed by the objective function and the greatest constraint violation
|
---|
| 242 | // at the vertex.
|
---|
| 243 |
|
---|
| 244 | boolean skipVertexIdent = true;
|
---|
| 245 | if (!ibrnch)
|
---|
| 246 | {
|
---|
| 247 | skipVertexIdent = false;
|
---|
| 248 |
|
---|
| 249 | for (int i = 1; i <= mpp; ++i) datmat[i][jdrop] = con[i];
|
---|
| 250 |
|
---|
| 251 | if (nfvals <= np)
|
---|
| 252 | {
|
---|
| 253 | // Exchange the new vertex of the initial simplex with the optimal vertex if
|
---|
| 254 | // necessary. Then, if the initial simplex is not complete, pick its next
|
---|
| 255 | // vertex and calculate the function values there.
|
---|
| 256 |
|
---|
| 257 | if (jdrop <= n)
|
---|
| 258 | {
|
---|
| 259 | if (datmat[mp][np] <= f)
|
---|
| 260 | {
|
---|
| 261 | x[jdrop] = sim[jdrop][np];
|
---|
| 262 | }
|
---|
| 263 | else
|
---|
| 264 | {
|
---|
| 265 | sim[jdrop][np] = x[jdrop];
|
---|
| 266 | for (int k = 1; k <= mpp; ++k)
|
---|
| 267 | {
|
---|
| 268 | datmat[k][jdrop] = datmat[k][np];
|
---|
| 269 | datmat[k][np] = con[k];
|
---|
| 270 | }
|
---|
| 271 | for (int k = 1; k <= jdrop; ++k)
|
---|
| 272 | {
|
---|
| 273 | sim[jdrop][k] = -rho;
|
---|
| 274 | temp = 0.0; for (int i = k; i <= jdrop; ++i) temp -= simi[i][k];
|
---|
| 275 | simi[jdrop][k] = temp;
|
---|
| 276 | }
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 | if (nfvals <= n)
|
---|
| 280 | {
|
---|
| 281 | jdrop = nfvals;
|
---|
| 282 | x[jdrop] += rho;
|
---|
| 283 | continue L_40;
|
---|
| 284 | }
|
---|
| 285 | }
|
---|
| 286 |
|
---|
| 287 | ibrnch = true;
|
---|
| 288 | }
|
---|
| 289 |
|
---|
| 290 | L_140:
|
---|
| 291 | do
|
---|
| 292 | {
|
---|
| 293 | L_550:
|
---|
| 294 | do
|
---|
| 295 | {
|
---|
| 296 | if (!skipVertexIdent)
|
---|
| 297 | {
|
---|
| 298 | // Identify the optimal vertex of the current simplex.
|
---|
| 299 |
|
---|
| 300 | double phimin = datmat[mp][np] + parmu * datmat[mpp][np];
|
---|
| 301 | int nbest = np;
|
---|
| 302 |
|
---|
| 303 | for (int j = 1; j <= n; ++j)
|
---|
| 304 | {
|
---|
| 305 | temp = datmat[mp][j] + parmu * datmat[mpp][j];
|
---|
| 306 | if (temp < phimin)
|
---|
| 307 | {
|
---|
| 308 | nbest = j;
|
---|
| 309 | phimin = temp;
|
---|
| 310 | }
|
---|
| 311 | else if (temp == phimin && parmu == 0.0 && datmat[mpp][j] < datmat[mpp][nbest])
|
---|
| 312 | {
|
---|
| 313 | nbest = j;
|
---|
| 314 | }
|
---|
| 315 | }
|
---|
| 316 |
|
---|
| 317 | // Switch the best vertex into pole position if it is not there already,
|
---|
| 318 | // and also update SIM, SIMI and DATMAT.
|
---|
| 319 |
|
---|
| 320 | if (nbest <= n)
|
---|
| 321 | {
|
---|
| 322 | for (int i = 1; i <= mpp; ++i)
|
---|
| 323 | {
|
---|
| 324 | temp = datmat[i][np];
|
---|
| 325 | datmat[i][np] = datmat[i][nbest];
|
---|
| 326 | datmat[i][nbest] = temp;
|
---|
| 327 | }
|
---|
| 328 | for (int i = 1; i <= n; ++i)
|
---|
| 329 | {
|
---|
| 330 | temp = sim[i][nbest];
|
---|
| 331 | sim[i][nbest] = 0.0;
|
---|
| 332 | sim[i][np] += temp;
|
---|
| 333 |
|
---|
| 334 | double tempa = 0.0;
|
---|
| 335 | for (int k = 1; k <= n; ++k)
|
---|
| 336 | {
|
---|
| 337 | sim[i][k] -= temp;
|
---|
| 338 | tempa -= simi[k][i];
|
---|
| 339 | }
|
---|
| 340 | simi[nbest][i] = tempa;
|
---|
| 341 | }
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | // Make an error return if SIGI is a poor approximation to the inverse of
|
---|
| 345 | // the leading N by N submatrix of SIG.
|
---|
| 346 |
|
---|
| 347 | double error = 0.0;
|
---|
| 348 | for (int i = 1; i <= n; ++i)
|
---|
| 349 | {
|
---|
| 350 | for (int j = 1; j <= n; ++j)
|
---|
| 351 | {
|
---|
| 352 | temp = DOT_PRODUCT(PART(ROW(simi, i), 1, n), PART(COL(sim, j), 1, n)) - (i == j ? 1.0 : 0.0);
|
---|
| 353 | error = Math.max(error, Math.abs(temp));
|
---|
| 354 | }
|
---|
| 355 | }
|
---|
| 356 | if (error > 0.1)
|
---|
| 357 | {
|
---|
| 358 | status = CobylaExitStatus.DivergingRoundingErrors;
|
---|
| 359 | break L_40;
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | // Calculate the coefficients of the linear approximations to the objective
|
---|
| 363 | // and constraint functions, placing minus the objective function gradient
|
---|
| 364 | // after the constraint gradients in the array A. The vector W is used for
|
---|
| 365 | // working space.
|
---|
| 366 |
|
---|
| 367 | for (int k = 1; k <= mp; ++k)
|
---|
| 368 | {
|
---|
| 369 | con[k] = -datmat[k][np];
|
---|
| 370 | for (int j = 1; j <= n; ++j) w[j] = datmat[k][j] + con[k];
|
---|
| 371 |
|
---|
| 372 | for (int i = 1; i <= n; ++i)
|
---|
| 373 | {
|
---|
| 374 | a[i][k] = (k == mp ? -1.0 : 1.0) * DOT_PRODUCT(PART(w, 1, n), PART(COL(simi, i), 1, n));
|
---|
| 375 | }
|
---|
| 376 | }
|
---|
| 377 |
|
---|
| 378 | // Calculate the values of sigma and eta, and set IFLAG = 0 if the current
|
---|
| 379 | // simplex is not acceptable.
|
---|
| 380 |
|
---|
| 381 | iflag = true;
|
---|
| 382 | parsig = alpha * rho;
|
---|
| 383 | double pareta = beta * rho;
|
---|
| 384 |
|
---|
| 385 | for (int j = 1; j <= n; ++j)
|
---|
| 386 | {
|
---|
| 387 | double wsig = 0.0; for (int k = 1; k <= n; ++k) wsig += simi[j][k] * simi[j][k];
|
---|
| 388 | double weta = 0.0; for (int k = 1; k <= n; ++k) weta += sim[k][j] * sim[k][j];
|
---|
| 389 | vsig[j] = 1.0 / Math.sqrt(wsig);
|
---|
| 390 | veta[j] = Math.sqrt(weta);
|
---|
| 391 | if (vsig[j] < parsig || veta[j] > pareta) iflag = false;
|
---|
| 392 | }
|
---|
| 393 |
|
---|
| 394 | // If a new vertex is needed to improve acceptability, then decide which
|
---|
| 395 | // vertex to drop from the simplex.
|
---|
| 396 |
|
---|
| 397 | if (!ibrnch && !iflag)
|
---|
| 398 | {
|
---|
| 399 | jdrop = 0;
|
---|
| 400 | temp = pareta;
|
---|
| 401 | for (int j = 1; j <= n; ++j)
|
---|
| 402 | {
|
---|
| 403 | if (veta[j] > temp)
|
---|
| 404 | {
|
---|
| 405 | jdrop = j;
|
---|
| 406 | temp = veta[j];
|
---|
| 407 | }
|
---|
| 408 | }
|
---|
| 409 | if (jdrop == 0)
|
---|
| 410 | {
|
---|
| 411 | for (int j = 1; j <= n; ++j)
|
---|
| 412 | {
|
---|
| 413 | if (vsig[j] < temp)
|
---|
| 414 | {
|
---|
| 415 | jdrop = j;
|
---|
| 416 | temp = vsig[j];
|
---|
| 417 | }
|
---|
| 418 | }
|
---|
| 419 | }
|
---|
| 420 |
|
---|
| 421 | // Calculate the step to the new vertex and its sign.
|
---|
| 422 |
|
---|
| 423 | temp = gamma * rho * vsig[jdrop];
|
---|
| 424 | for (int k = 1; k <= n; ++k) dx[k] = temp * simi[jdrop][k];
|
---|
| 425 | double cvmaxp = 0.0;
|
---|
| 426 | double cvmaxm = 0.0;
|
---|
| 427 |
|
---|
| 428 | total = 0.0;
|
---|
| 429 | for (int k = 1; k <= mp; ++k)
|
---|
| 430 | {
|
---|
| 431 | total = DOT_PRODUCT(PART(COL(a, k), 1, n), PART(dx, 1, n));
|
---|
| 432 | if (k < mp)
|
---|
| 433 | {
|
---|
| 434 | temp = datmat[k][np];
|
---|
| 435 | cvmaxp = Math.max(cvmaxp, -total - temp);
|
---|
| 436 | cvmaxm = Math.max(cvmaxm, total - temp);
|
---|
| 437 | }
|
---|
| 438 | }
|
---|
| 439 | double dxsign = parmu * (cvmaxp - cvmaxm) > 2.0 * total ? -1.0 : 1.0;
|
---|
| 440 |
|
---|
| 441 | // Update the elements of SIM and SIMI, and set the next X.
|
---|
| 442 |
|
---|
| 443 | temp = 0.0;
|
---|
| 444 | for (int i = 1; i <= n; ++i)
|
---|
| 445 | {
|
---|
| 446 | dx[i] = dxsign * dx[i];
|
---|
| 447 | sim[i][jdrop] = dx[i];
|
---|
| 448 | temp += simi[jdrop][i] * dx[i];
|
---|
| 449 | }
|
---|
| 450 | for (int k = 1; k <= n; ++k) simi[jdrop][k] /= temp;
|
---|
| 451 |
|
---|
| 452 | for (int j = 1; j <= n; ++j)
|
---|
| 453 | {
|
---|
| 454 | if (j != jdrop)
|
---|
| 455 | {
|
---|
| 456 | temp = DOT_PRODUCT(PART(ROW(simi, j), 1, n), PART(dx, 1, n));
|
---|
| 457 | for (int k = 1; k <= n; ++k) simi[j][k] -= temp * simi[jdrop][k];
|
---|
| 458 | }
|
---|
| 459 | x[j] = sim[j][np] + dx[j];
|
---|
| 460 | }
|
---|
| 461 | continue L_40;
|
---|
| 462 | }
|
---|
| 463 |
|
---|
| 464 | // Calculate DX = x(*)-x(0).
|
---|
| 465 | // Branch if the length of DX is less than 0.5*RHO.
|
---|
| 466 |
|
---|
| 467 | ifull = trstlp(n, m, a, con, rho, dx);
|
---|
| 468 | if (!ifull)
|
---|
| 469 | {
|
---|
| 470 | temp = 0.0; for (int k = 1; k <= n; ++k) temp += dx[k] * dx[k];
|
---|
| 471 | if (temp < 0.25 * rho * rho)
|
---|
| 472 | {
|
---|
| 473 | ibrnch = true;
|
---|
| 474 | break L_550;
|
---|
| 475 | }
|
---|
| 476 | }
|
---|
| 477 |
|
---|
| 478 | // Predict the change to F and the new maximum constraint violation if the
|
---|
| 479 | // variables are altered from x(0) to x(0) + DX.
|
---|
| 480 |
|
---|
| 481 | total = 0.0;
|
---|
| 482 | double resnew = 0.0;
|
---|
| 483 | con[mp] = 0.0;
|
---|
| 484 | for (int k = 1; k <= mp; ++k)
|
---|
| 485 | {
|
---|
| 486 | total = con[k] - DOT_PRODUCT(PART(COL(a, k), 1, n), PART(dx, 1, n));
|
---|
| 487 | if (k < mp) resnew = Math.max(resnew, total);
|
---|
| 488 | }
|
---|
| 489 |
|
---|
| 490 | // Increase PARMU if necessary and branch back if this change alters the
|
---|
| 491 | // optimal vertex. Otherwise PREREM and PREREC will be set to the predicted
|
---|
| 492 | // reductions in the merit function and the maximum constraint violation
|
---|
| 493 | // respectively.
|
---|
| 494 |
|
---|
| 495 | prerec = datmat[mpp][np] - resnew;
|
---|
| 496 | double barmu = prerec > 0.0 ? total / prerec : 0.0;
|
---|
| 497 | if (parmu < 1.5 * barmu)
|
---|
| 498 | {
|
---|
| 499 | parmu = 2.0 * barmu;
|
---|
| 500 | if (iprint >= 2) System.out.format("%nIncrease in PARMU to %13.6f%n", parmu);
|
---|
| 501 | double phi = datmat[mp][np] + parmu * datmat[mpp][np];
|
---|
| 502 | for (int j = 1; j <= n; ++j)
|
---|
| 503 | {
|
---|
| 504 | temp = datmat[mp][j] + parmu * datmat[mpp][j];
|
---|
| 505 | if (temp < phi || (temp == phi && parmu == 0.0 && datmat[mpp][j] < datmat[mpp][np])) continue L_140;
|
---|
| 506 | }
|
---|
| 507 | }
|
---|
| 508 | prerem = parmu * prerec - total;
|
---|
| 509 |
|
---|
| 510 | // Calculate the constraint and objective functions at x(*).
|
---|
| 511 | // Then find the actual reduction in the merit function.
|
---|
| 512 |
|
---|
| 513 | for (int k = 1; k <= n; ++k) x[k] = sim[k][np] + dx[k];
|
---|
| 514 | ibrnch = true;
|
---|
| 515 | continue L_40;
|
---|
| 516 | }
|
---|
| 517 |
|
---|
| 518 | skipVertexIdent = false;
|
---|
| 519 | double vmold = datmat[mp][np] + parmu * datmat[mpp][np];
|
---|
| 520 | double vmnew = f + parmu * resmax;
|
---|
| 521 | double trured = vmold - vmnew;
|
---|
| 522 | if (parmu == 0.0 && f == datmat[mp][np])
|
---|
| 523 | {
|
---|
| 524 | prerem = prerec;
|
---|
| 525 | trured = datmat[mpp][np] - resmax;
|
---|
| 526 | }
|
---|
| 527 |
|
---|
| 528 | // Begin the operations that decide whether x(*) should replace one of the
|
---|
| 529 | // vertices of the current simplex, the change being mandatory if TRURED is
|
---|
| 530 | // positive. Firstly, JDROP is set to the index of the vertex that is to be
|
---|
| 531 | // replaced.
|
---|
| 532 |
|
---|
| 533 | double ratio = trured <= 0.0 ? 1.0 : 0.0;
|
---|
| 534 | jdrop = 0;
|
---|
| 535 | for (int j = 1; j <= n; ++j)
|
---|
| 536 | {
|
---|
| 537 | temp = Math.abs(DOT_PRODUCT(PART(ROW(simi, j), 1, n), PART(dx, 1, n)));
|
---|
| 538 | if (temp > ratio)
|
---|
| 539 | {
|
---|
| 540 | jdrop = j;
|
---|
| 541 | ratio = temp;
|
---|
| 542 | }
|
---|
| 543 | sigbar[j] = temp * vsig[j];
|
---|
| 544 | }
|
---|
| 545 |
|
---|
| 546 | // Calculate the value of ell.
|
---|
| 547 |
|
---|
| 548 | double edgmax = delta * rho;
|
---|
| 549 | int l = 0;
|
---|
| 550 | for (int j = 1; j <= n; ++j)
|
---|
| 551 | {
|
---|
| 552 | if (sigbar[j] >= parsig || sigbar[j] >= vsig[j])
|
---|
| 553 | {
|
---|
| 554 | temp = veta[j];
|
---|
| 555 | if (trured > 0.0)
|
---|
| 556 | {
|
---|
| 557 | temp = 0.0; for (int k = 1; k <= n; ++k) temp += Math.pow(dx[k] - sim[k][j], 2.0);
|
---|
| 558 | temp = Math.sqrt(temp);
|
---|
| 559 | }
|
---|
| 560 | if (temp > edgmax)
|
---|
| 561 | {
|
---|
| 562 | l = j;
|
---|
| 563 | edgmax = temp;
|
---|
| 564 | }
|
---|
| 565 | }
|
---|
| 566 | }
|
---|
| 567 | if (l > 0) jdrop = l;
|
---|
| 568 |
|
---|
| 569 | if (jdrop != 0)
|
---|
| 570 | {
|
---|
| 571 | // Revise the simplex by updating the elements of SIM, SIMI and DATMAT.
|
---|
| 572 |
|
---|
| 573 | temp = 0.0;
|
---|
| 574 | for (int i = 1; i <= n; ++i)
|
---|
| 575 | {
|
---|
| 576 | sim[i][jdrop] = dx[i];
|
---|
| 577 | temp += simi[jdrop][i] * dx[i];
|
---|
| 578 | }
|
---|
| 579 | for (int k = 1; k <= n; ++k) simi[jdrop][k] /= temp;
|
---|
| 580 | for (int j = 1; j <= n; ++j)
|
---|
| 581 | {
|
---|
| 582 | if (j != jdrop)
|
---|
| 583 | {
|
---|
| 584 | temp = DOT_PRODUCT(PART(ROW(simi, j), 1, n), PART(dx, 1, n));
|
---|
| 585 | for (int k = 1; k <= n; ++k) simi[j][k] -= temp * simi[jdrop][k];
|
---|
| 586 | }
|
---|
| 587 | }
|
---|
| 588 | for (int k = 1; k <= mpp; ++k) datmat[k][jdrop] = con[k];
|
---|
| 589 |
|
---|
| 590 | // Branch back for further iterations with the current RHO.
|
---|
| 591 |
|
---|
| 592 | if (trured > 0.0 && trured >= 0.1 * prerem) continue L_140;
|
---|
| 593 | }
|
---|
| 594 | } while (false);
|
---|
| 595 |
|
---|
| 596 | if (!iflag)
|
---|
| 597 | {
|
---|
| 598 | ibrnch = false;
|
---|
| 599 | continue L_140;
|
---|
| 600 | }
|
---|
| 601 |
|
---|
| 602 | if (rho <= rhoend)
|
---|
| 603 | {
|
---|
| 604 | status = CobylaExitStatus.Normal;
|
---|
| 605 | break L_40;
|
---|
| 606 | }
|
---|
| 607 |
|
---|
| 608 | // Otherwise reduce RHO if it is not at its least value and reset PARMU.
|
---|
| 609 |
|
---|
| 610 | double cmin = 0.0, cmax = 0.0;
|
---|
| 611 |
|
---|
| 612 | rho *= 0.5;
|
---|
| 613 | if (rho <= 1.5 * rhoend) rho = rhoend;
|
---|
| 614 | if (parmu > 0.0)
|
---|
| 615 | {
|
---|
| 616 | double denom = 0.0;
|
---|
| 617 | for (int k = 1; k <= mp; ++k)
|
---|
| 618 | {
|
---|
| 619 | cmin = datmat[k][np];
|
---|
| 620 | cmax = cmin;
|
---|
| 621 | for (int i = 1; i <= n; ++i)
|
---|
| 622 | {
|
---|
| 623 | cmin = Math.min(cmin, datmat[k][i]);
|
---|
| 624 | cmax = Math.max(cmax, datmat[k][i]);
|
---|
| 625 | }
|
---|
| 626 | if (k <= m && cmin < 0.5 * cmax)
|
---|
| 627 | {
|
---|
| 628 | temp = Math.max(cmax, 0.0) - cmin;
|
---|
| 629 | denom = denom <= 0.0 ? temp : Math.min(denom, temp);
|
---|
| 630 | }
|
---|
| 631 | }
|
---|
| 632 | if (denom == 0.0)
|
---|
| 633 | {
|
---|
| 634 | parmu = 0.0;
|
---|
| 635 | }
|
---|
| 636 | else if (cmax - cmin < parmu * denom)
|
---|
| 637 | {
|
---|
| 638 | parmu = (cmax - cmin) / denom;
|
---|
| 639 | }
|
---|
| 640 | }
|
---|
| 641 | if (iprint >= 2)
|
---|
| 642 | System.out.format("%nReduction in RHO to %1$13.6f and PARMU = %2$13.6f%n", rho, parmu);
|
---|
| 643 | if (iprint == 2)
|
---|
| 644 | PrintIterationResult(nfvals, datmat[mp][np], datmat[mpp][np], COL(sim, np), n);
|
---|
| 645 |
|
---|
| 646 | } while (true);
|
---|
| 647 | } while (true);
|
---|
| 648 |
|
---|
| 649 | switch (status)
|
---|
| 650 | {
|
---|
| 651 | case Normal:
|
---|
| 652 | if (iprint >= 1) System.out.format("%nNormal return from subroutine COBYLA%n");
|
---|
| 653 | if (ifull)
|
---|
| 654 | {
|
---|
| 655 | if (iprint >= 1) PrintIterationResult(nfvals, f, resmax, x, n);
|
---|
| 656 | return status;
|
---|
| 657 | }
|
---|
| 658 | break;
|
---|
| 659 | case MaxIterationsReached:
|
---|
| 660 | if (iprint >= 1)
|
---|
| 661 | System.out.format("%nReturn from subroutine COBYLA because the MAXFUN limit has been reached.%n");
|
---|
| 662 | break;
|
---|
| 663 | case DivergingRoundingErrors:
|
---|
| 664 | if (iprint >= 1)
|
---|
| 665 | System.out.format("%nReturn from subroutine COBYLA because rounding errors are becoming damaging.%n");
|
---|
| 666 | break;
|
---|
| 667 | }
|
---|
| 668 |
|
---|
| 669 | for (int k = 1; k <= n; ++k) x[k] = sim[k][np];
|
---|
| 670 | f = datmat[mp][np];
|
---|
| 671 | resmax = datmat[mpp][np];
|
---|
| 672 | if (iprint >= 1) PrintIterationResult(nfvals, f, resmax, x, n);
|
---|
| 673 |
|
---|
| 674 | return status;
|
---|
| 675 | }
|
---|
| 676 |
|
---|
| 677 | private static boolean trstlp(int n, int m, double[][] a, double[] b, double rho, double[] dx)
|
---|
| 678 | {
|
---|
| 679 | // N.B. Arguments Z, ZDOTA, VMULTC, SDIRN, DXNEW, VMULTD & IACT have been removed.
|
---|
| 680 |
|
---|
| 681 | // This subroutine calculates an N-component vector DX by applying the
|
---|
| 682 | // following two stages. In the first stage, DX is set to the shortest
|
---|
| 683 | // vector that minimizes the greatest violation of the constraints
|
---|
| 684 | // A(1,K)*DX(1)+A(2,K)*DX(2)+...+A(N,K)*DX(N) .GE. B(K), K = 2,3,...,M,
|
---|
| 685 | // subject to the Euclidean length of DX being at most RHO. If its length is
|
---|
| 686 | // strictly less than RHO, then we use the resultant freedom in DX to
|
---|
| 687 | // minimize the objective function
|
---|
| 688 | // -A(1,M+1)*DX(1) - A(2,M+1)*DX(2) - ... - A(N,M+1)*DX(N)
|
---|
| 689 | // subject to no increase in any greatest constraint violation. This
|
---|
| 690 | // notation allows the gradient of the objective function to be regarded as
|
---|
| 691 | // the gradient of a constraint. Therefore the two stages are distinguished
|
---|
| 692 | // by MCON .EQ. M and MCON .GT. M respectively. It is possible that a
|
---|
| 693 | // degeneracy may prevent DX from attaining the target length RHO. Then the
|
---|
| 694 | // value IFULL = 0 would be set, but usually IFULL = 1 on return.
|
---|
| 695 |
|
---|
| 696 | // In general NACT is the number of constraints in the active set and
|
---|
| 697 | // IACT(1),...,IACT(NACT) are their indices, while the remainder of IACT
|
---|
| 698 | // contains a permutation of the remaining constraint indices. Further, Z
|
---|
| 699 | // is an orthogonal matrix whose first NACT columns can be regarded as the
|
---|
| 700 | // result of Gram-Schmidt applied to the active constraint gradients. For
|
---|
| 701 | // J = 1,2,...,NACT, the number ZDOTA(J) is the scalar product of the J-th
|
---|
| 702 | // column of Z with the gradient of the J-th active constraint. DX is the
|
---|
| 703 | // current vector of variables and here the residuals of the active
|
---|
| 704 | // constraints should be zero. Further, the active constraints have
|
---|
| 705 | // nonnegative Lagrange multipliers that are held at the beginning of
|
---|
| 706 | // VMULTC. The remainder of this vector holds the residuals of the inactive
|
---|
| 707 | // constraints at DX, the ordering of the components of VMULTC being in
|
---|
| 708 | // agreement with the permutation of the indices of the constraints that is
|
---|
| 709 | // in IACT. All these residuals are nonnegative, which is achieved by the
|
---|
| 710 | // shift RESMAX that makes the least residual zero.
|
---|
| 711 |
|
---|
| 712 | // Initialize Z and some other variables. The value of RESMAX will be
|
---|
| 713 | // appropriate to DX = 0, while ICON will be the index of a most violated
|
---|
| 714 | // constraint if RESMAX is positive. Usually during the first stage the
|
---|
| 715 | // vector SDIRN gives a search direction that reduces all the active
|
---|
| 716 | // constraint violations by one simultaneously.
|
---|
| 717 |
|
---|
| 718 | // Local variables
|
---|
| 719 |
|
---|
| 720 | double temp;
|
---|
| 721 |
|
---|
| 722 | int nactx = 0;
|
---|
| 723 | double resold = 0.0;
|
---|
| 724 |
|
---|
| 725 | double[][] z = new double[1 + n][1 + n];
|
---|
| 726 | double[] zdota = new double[2 + m];
|
---|
| 727 | double[] vmultc = new double[2 + m];
|
---|
| 728 | double[] sdirn = new double[1 + n];
|
---|
| 729 | double[] dxnew = new double[1 + n];
|
---|
| 730 | double[] vmultd = new double[2 + m];
|
---|
| 731 | int[] iact = new int[2 + m];
|
---|
| 732 |
|
---|
| 733 | int mcon = m;
|
---|
| 734 | int nact = 0;
|
---|
| 735 | for (int i = 1; i <= n; ++i)
|
---|
| 736 | {
|
---|
| 737 | z[i][i] = 1.0;
|
---|
| 738 | dx[i] = 0.0;
|
---|
| 739 | }
|
---|
| 740 |
|
---|
| 741 | int icon = 0;
|
---|
| 742 | double resmax = 0.0;
|
---|
| 743 | if (m >= 1)
|
---|
| 744 | {
|
---|
| 745 | for (int k = 1; k <= m; ++k)
|
---|
| 746 | {
|
---|
| 747 | if (b[k] > resmax)
|
---|
| 748 | {
|
---|
| 749 | resmax = b[k];
|
---|
| 750 | icon = k;
|
---|
| 751 | }
|
---|
| 752 | }
|
---|
| 753 | for (int k = 1; k <= m; ++k)
|
---|
| 754 | {
|
---|
| 755 | iact[k] = k;
|
---|
| 756 | vmultc[k] = resmax - b[k];
|
---|
| 757 | }
|
---|
| 758 | }
|
---|
| 759 |
|
---|
| 760 | // End the current stage of the calculation if 3 consecutive iterations
|
---|
| 761 | // have either failed to reduce the best calculated value of the objective
|
---|
| 762 | // function or to increase the number of active constraints since the best
|
---|
| 763 | // value was calculated. This strategy prevents cycling, but there is a
|
---|
| 764 | // remote possibility that it will cause premature termination.
|
---|
| 765 |
|
---|
| 766 | boolean first = true;
|
---|
| 767 | do
|
---|
| 768 | {
|
---|
| 769 | L_60:
|
---|
| 770 | do
|
---|
| 771 | {
|
---|
| 772 | if (!first || (first && resmax == 0.0))
|
---|
| 773 | {
|
---|
| 774 | mcon = m + 1;
|
---|
| 775 | icon = mcon;
|
---|
| 776 | iact[mcon] = mcon;
|
---|
| 777 | vmultc[mcon] = 0.0;
|
---|
| 778 | }
|
---|
| 779 | first = false;
|
---|
| 780 |
|
---|
| 781 | double optold = 0.0;
|
---|
| 782 | int icount = 0;
|
---|
| 783 |
|
---|
| 784 | double step, stpful;
|
---|
| 785 |
|
---|
| 786 | L_70:
|
---|
| 787 | do
|
---|
| 788 | {
|
---|
| 789 | double optnew = mcon == m ? resmax : -DOT_PRODUCT(PART(dx, 1, n), PART(COL(a, mcon), 1, n));
|
---|
| 790 |
|
---|
| 791 | if (icount == 0 || optnew < optold)
|
---|
| 792 | {
|
---|
| 793 | optold = optnew;
|
---|
| 794 | nactx = nact;
|
---|
| 795 | icount = 3;
|
---|
| 796 | }
|
---|
| 797 | else if (nact > nactx)
|
---|
| 798 | {
|
---|
| 799 | nactx = nact;
|
---|
| 800 | icount = 3;
|
---|
| 801 | }
|
---|
| 802 | else
|
---|
| 803 | {
|
---|
| 804 | --icount;
|
---|
| 805 | }
|
---|
| 806 | if (icount == 0) break L_60;
|
---|
| 807 |
|
---|
| 808 | // If ICON exceeds NACT, then we add the constraint with index IACT(ICON) to
|
---|
| 809 | // the active set. Apply Givens rotations so that the last N-NACT-1 columns
|
---|
| 810 | // of Z are orthogonal to the gradient of the new constraint, a scalar
|
---|
| 811 | // product being set to zero if its nonzero value could be due to computer
|
---|
| 812 | // rounding errors. The array DXNEW is used for working space.
|
---|
| 813 |
|
---|
| 814 | double ratio;
|
---|
| 815 | if (icon <= nact)
|
---|
| 816 | {
|
---|
| 817 | if (icon < nact)
|
---|
| 818 | {
|
---|
| 819 | // Delete the constraint that has the index IACT(ICON) from the active set.
|
---|
| 820 |
|
---|
| 821 | int isave = iact[icon];
|
---|
| 822 | double vsave = vmultc[icon];
|
---|
| 823 | int k = icon;
|
---|
| 824 | do
|
---|
| 825 | {
|
---|
| 826 | int kp = k + 1;
|
---|
| 827 | int kk = iact[kp];
|
---|
| 828 | double sp = DOT_PRODUCT(PART(COL(z, k), 1, n), PART(COL(a, kk), 1, n));
|
---|
| 829 | temp = Math.sqrt(sp * sp + zdota[kp] * zdota[kp]);
|
---|
| 830 | double alpha = zdota[kp] / temp;
|
---|
| 831 | double beta = sp / temp;
|
---|
| 832 | zdota[kp] = alpha * zdota[k];
|
---|
| 833 | zdota[k] = temp;
|
---|
| 834 | for (int i = 1; i <= n; ++i)
|
---|
| 835 | {
|
---|
| 836 | temp = alpha * z[i][kp] + beta * z[i][k];
|
---|
| 837 | z[i][kp] = alpha * z[i][k] - beta * z[i][kp];
|
---|
| 838 | z[i][k] = temp;
|
---|
| 839 | }
|
---|
| 840 | iact[k] = kk;
|
---|
| 841 | vmultc[k] = vmultc[kp];
|
---|
| 842 | k = kp;
|
---|
| 843 | } while (k < nact);
|
---|
| 844 |
|
---|
| 845 | iact[k] = isave;
|
---|
| 846 | vmultc[k] = vsave;
|
---|
| 847 | }
|
---|
| 848 | --nact;
|
---|
| 849 |
|
---|
| 850 | // If stage one is in progress, then set SDIRN to the direction of the next
|
---|
| 851 | // change to the current vector of variables.
|
---|
| 852 |
|
---|
| 853 | if (mcon > m)
|
---|
| 854 | {
|
---|
| 855 | // Pick the next search direction of stage two.
|
---|
| 856 |
|
---|
| 857 | temp = 1.0 / zdota[nact];
|
---|
| 858 | for (int k = 1; k <= n; ++k) sdirn[k] = temp * z[k][nact];
|
---|
| 859 | }
|
---|
| 860 | else
|
---|
| 861 | {
|
---|
| 862 | temp = DOT_PRODUCT(PART(sdirn, 1, n), PART(COL(z, nact + 1), 1, n));
|
---|
| 863 | for (int k = 1; k <= n; ++k) sdirn[k] -= temp * z[k][nact + 1];
|
---|
| 864 | }
|
---|
| 865 | }
|
---|
| 866 | else
|
---|
| 867 | {
|
---|
| 868 | int kk = iact[icon];
|
---|
| 869 | for (int k = 1; k <= n; ++k) dxnew[k] = a[k][kk];
|
---|
| 870 | double tot = 0.0;
|
---|
| 871 |
|
---|
| 872 | {
|
---|
| 873 | int k = n;
|
---|
| 874 | while (k > nact)
|
---|
| 875 | {
|
---|
| 876 | double sp = 0.0;
|
---|
| 877 | double spabs = 0.0;
|
---|
| 878 | for (int i = 1; i <= n; ++i)
|
---|
| 879 | {
|
---|
| 880 | temp = z[i][k] * dxnew[i];
|
---|
| 881 | sp += temp;
|
---|
| 882 | spabs += Math.abs(temp);
|
---|
| 883 | }
|
---|
| 884 | double acca = spabs + 0.1 * Math.abs(sp);
|
---|
| 885 | double accb = spabs + 0.2 * Math.abs(sp);
|
---|
| 886 | if (spabs >= acca || acca >= accb) sp = 0.0;
|
---|
| 887 | if (tot == 0.0)
|
---|
| 888 | {
|
---|
| 889 | tot = sp;
|
---|
| 890 | }
|
---|
| 891 | else
|
---|
| 892 | {
|
---|
| 893 | int kp = k + 1;
|
---|
| 894 | temp = Math.sqrt(sp * sp + tot * tot);
|
---|
| 895 | double alpha = sp / temp;
|
---|
| 896 | double beta = tot / temp;
|
---|
| 897 | tot = temp;
|
---|
| 898 | for (int i = 1; i <= n; ++i)
|
---|
| 899 | {
|
---|
| 900 | temp = alpha * z[i][k] + beta * z[i][kp];
|
---|
| 901 | z[i][kp] = alpha * z[i][kp] - beta * z[i][k];
|
---|
| 902 | z[i][k] = temp;
|
---|
| 903 | }
|
---|
| 904 | }
|
---|
| 905 | --k;
|
---|
| 906 | }
|
---|
| 907 | }
|
---|
| 908 |
|
---|
| 909 | if (tot == 0.0)
|
---|
| 910 | {
|
---|
| 911 | // The next instruction is reached if a deletion has to be made from the
|
---|
| 912 | // active set in order to make room for the new active constraint, because
|
---|
| 913 | // the new constraint gradient is a linear combination of the gradients of
|
---|
| 914 | // the old active constraints. Set the elements of VMULTD to the multipliers
|
---|
| 915 | // of the linear combination. Further, set IOUT to the index of the
|
---|
| 916 | // constraint to be deleted, but branch if no suitable index can be found.
|
---|
| 917 |
|
---|
| 918 | ratio = -1.0;
|
---|
| 919 | {
|
---|
| 920 | int k = nact;
|
---|
| 921 | do
|
---|
| 922 | {
|
---|
| 923 | double zdotv = 0.0;
|
---|
| 924 | double zdvabs = 0.0;
|
---|
| 925 |
|
---|
| 926 | for (int i = 1; i <= n; ++i)
|
---|
| 927 | {
|
---|
| 928 | temp = z[i][k] * dxnew[i];
|
---|
| 929 | zdotv += temp;
|
---|
| 930 | zdvabs += Math.abs(temp);
|
---|
| 931 | }
|
---|
| 932 | double acca = zdvabs + 0.1 * Math.abs(zdotv);
|
---|
| 933 | double accb = zdvabs + 0.2 * Math.abs(zdotv);
|
---|
| 934 | if (zdvabs < acca && acca < accb)
|
---|
| 935 | {
|
---|
| 936 | temp = zdotv / zdota[k];
|
---|
| 937 | if (temp > 0.0 && iact[k] <= m)
|
---|
| 938 | {
|
---|
| 939 | double tempa = vmultc[k] / temp;
|
---|
| 940 | if (ratio < 0.0 || tempa < ratio) ratio = tempa;
|
---|
| 941 | }
|
---|
| 942 |
|
---|
| 943 | if (k >= 2)
|
---|
| 944 | {
|
---|
| 945 | int kw = iact[k];
|
---|
| 946 | for (int i = 1; i <= n; ++i) dxnew[i] -= temp * a[i][kw];
|
---|
| 947 | }
|
---|
| 948 | vmultd[k] = temp;
|
---|
| 949 | }
|
---|
| 950 | else
|
---|
| 951 | {
|
---|
| 952 | vmultd[k] = 0.0;
|
---|
| 953 | }
|
---|
| 954 | } while (--k > 0);
|
---|
| 955 | }
|
---|
| 956 | if (ratio < 0.0) break L_60;
|
---|
| 957 |
|
---|
| 958 | // Revise the Lagrange multipliers and reorder the active constraints so
|
---|
| 959 | // that the one to be replaced is at the end of the list. Also calculate the
|
---|
| 960 | // new value of ZDOTA(NACT) and branch if it is not acceptable.
|
---|
| 961 |
|
---|
| 962 | for (int k = 1; k <= nact; ++k)
|
---|
| 963 | vmultc[k] = Math.max(0.0, vmultc[k] - ratio * vmultd[k]);
|
---|
| 964 | if (icon < nact)
|
---|
| 965 | {
|
---|
| 966 | int isave = iact[icon];
|
---|
| 967 | double vsave = vmultc[icon];
|
---|
| 968 | int k = icon;
|
---|
| 969 | do
|
---|
| 970 | {
|
---|
| 971 | int kp = k + 1;
|
---|
| 972 | int kw = iact[kp];
|
---|
| 973 | double sp = DOT_PRODUCT(PART(COL(z, k), 1, n), PART(COL(a, kw), 1, n));
|
---|
| 974 | temp = Math.sqrt(sp * sp + zdota[kp] * zdota[kp]);
|
---|
| 975 | double alpha = zdota[kp] / temp;
|
---|
| 976 | double beta = sp / temp;
|
---|
| 977 | zdota[kp] = alpha * zdota[k];
|
---|
| 978 | zdota[k] = temp;
|
---|
| 979 | for (int i = 1; i <= n; ++i)
|
---|
| 980 | {
|
---|
| 981 | temp = alpha * z[i][kp] + beta * z[i][k];
|
---|
| 982 | z[i][kp] = alpha * z[i][k] - beta * z[i][kp];
|
---|
| 983 | z[i][k] = temp;
|
---|
| 984 | }
|
---|
| 985 | iact[k] = kw;
|
---|
| 986 | vmultc[k] = vmultc[kp];
|
---|
| 987 | k = kp;
|
---|
| 988 | } while (k < nact);
|
---|
| 989 | iact[k] = isave;
|
---|
| 990 | vmultc[k] = vsave;
|
---|
| 991 | }
|
---|
| 992 | temp = DOT_PRODUCT(PART(COL(z, nact), 1, n), PART(COL(a, kk), 1, n));
|
---|
| 993 | if (temp == 0.0) break L_60;
|
---|
| 994 | zdota[nact] = temp;
|
---|
| 995 | vmultc[icon] = 0.0;
|
---|
| 996 | vmultc[nact] = ratio;
|
---|
| 997 | }
|
---|
| 998 | else
|
---|
| 999 | {
|
---|
| 1000 | // Add the new constraint if this can be done without a deletion from the
|
---|
| 1001 | // active set.
|
---|
| 1002 |
|
---|
| 1003 | ++nact;
|
---|
| 1004 | zdota[nact] = tot;
|
---|
| 1005 | vmultc[icon] = vmultc[nact];
|
---|
| 1006 | vmultc[nact] = 0.0;
|
---|
| 1007 | }
|
---|
| 1008 |
|
---|
| 1009 | // Update IACT and ensure that the objective function continues to be
|
---|
| 1010 | // treated as the last active constraint when MCON>M.
|
---|
| 1011 |
|
---|
| 1012 | iact[icon] = iact[nact];
|
---|
| 1013 | iact[nact] = kk;
|
---|
| 1014 | if (mcon > m && kk != mcon)
|
---|
| 1015 | {
|
---|
| 1016 | int k = nact - 1;
|
---|
| 1017 | double sp = DOT_PRODUCT(PART(COL(z, k), 1, n), PART(COL(a, kk), 1, n));
|
---|
| 1018 | temp = Math.sqrt(sp * sp + zdota[nact] * zdota[nact]);
|
---|
| 1019 | double alpha = zdota[nact] / temp;
|
---|
| 1020 | double beta = sp / temp;
|
---|
| 1021 | zdota[nact] = alpha * zdota[k];
|
---|
| 1022 | zdota[k] = temp;
|
---|
| 1023 | for (int i = 1; i <= n; ++i)
|
---|
| 1024 | {
|
---|
| 1025 | temp = alpha * z[i][nact] + beta * z[i][k];
|
---|
| 1026 | z[i][nact] = alpha * z[i][k] - beta * z[i][nact];
|
---|
| 1027 | z[i][k] = temp;
|
---|
| 1028 | }
|
---|
| 1029 | iact[nact] = iact[k];
|
---|
| 1030 | iact[k] = kk;
|
---|
| 1031 | temp = vmultc[k];
|
---|
| 1032 | vmultc[k] = vmultc[nact];
|
---|
| 1033 | vmultc[nact] = temp;
|
---|
| 1034 | }
|
---|
| 1035 |
|
---|
| 1036 | // If stage one is in progress, then set SDIRN to the direction of the next
|
---|
| 1037 | // change to the current vector of variables.
|
---|
| 1038 |
|
---|
| 1039 | if (mcon > m)
|
---|
| 1040 | {
|
---|
| 1041 | // Pick the next search direction of stage two.
|
---|
| 1042 |
|
---|
| 1043 | temp = 1.0 / zdota[nact];
|
---|
| 1044 | for (int k = 1; k <= n; ++k) sdirn[k] = temp * z[k][nact];
|
---|
| 1045 | }
|
---|
| 1046 | else
|
---|
| 1047 | {
|
---|
| 1048 | kk = iact[nact];
|
---|
| 1049 | temp = (DOT_PRODUCT(PART(sdirn, 1, n), PART(COL(a, kk), 1, n)) - 1.0) / zdota[nact];
|
---|
| 1050 | for (int k = 1; k <= n; ++k) sdirn[k] -= temp * z[k][nact];
|
---|
| 1051 | }
|
---|
| 1052 | }
|
---|
| 1053 |
|
---|
| 1054 | // Calculate the step to the boundary of the trust region or take the step
|
---|
| 1055 | // that reduces RESMAX to zero. The two statements below that include the
|
---|
| 1056 | // factor 1.0E-6 prevent some harmless underflows that occurred in a test
|
---|
| 1057 | // calculation. Further, we skip the step if it could be zero within a
|
---|
| 1058 | // reasonable tolerance for computer rounding errors.
|
---|
| 1059 |
|
---|
| 1060 | double dd = rho * rho;
|
---|
| 1061 | double sd = 0.0;
|
---|
| 1062 | double ss = 0.0;
|
---|
| 1063 | for (int i = 1; i <= n; ++i)
|
---|
| 1064 | {
|
---|
| 1065 | if (Math.abs(dx[i]) >= 1.0E-6 * rho) dd -= dx[i] * dx[i];
|
---|
| 1066 | sd += dx[i] * sdirn[i];
|
---|
| 1067 | ss += sdirn[i] * sdirn[i];
|
---|
| 1068 | }
|
---|
| 1069 | if (dd <= 0.0) break L_60;
|
---|
| 1070 | temp = Math.sqrt(ss * dd);
|
---|
| 1071 | if (Math.abs(sd) >= 1.0E-6 * temp) temp = Math.sqrt(ss * dd + sd * sd);
|
---|
| 1072 | stpful = dd / (temp + sd);
|
---|
| 1073 | step = stpful;
|
---|
| 1074 | if (mcon == m)
|
---|
| 1075 | {
|
---|
| 1076 | double acca = step + 0.1 * resmax;
|
---|
| 1077 | double accb = step + 0.2 * resmax;
|
---|
| 1078 | if (step >= acca || acca >= accb) break L_70;
|
---|
| 1079 | step = Math.min(step, resmax);
|
---|
| 1080 | }
|
---|
| 1081 |
|
---|
| 1082 | // Set DXNEW to the new variables if STEP is the steplength, and reduce
|
---|
| 1083 | // RESMAX to the corresponding maximum residual if stage one is being done.
|
---|
| 1084 | // Because DXNEW will be changed during the calculation of some Lagrange
|
---|
| 1085 | // multipliers, it will be restored to the following value later.
|
---|
| 1086 |
|
---|
| 1087 | for (int k = 1; k <= n; ++k) dxnew[k] = dx[k] + step * sdirn[k];
|
---|
| 1088 | if (mcon == m)
|
---|
| 1089 | {
|
---|
| 1090 | resold = resmax;
|
---|
| 1091 | resmax = 0.0;
|
---|
| 1092 | for (int k = 1; k <= nact; ++k)
|
---|
| 1093 | {
|
---|
| 1094 | int kk = iact[k];
|
---|
| 1095 | temp = b[kk] - DOT_PRODUCT(PART(COL(a, kk), 1, n), PART(dxnew, 1, n));
|
---|
| 1096 | resmax = Math.max(resmax, temp);
|
---|
| 1097 | }
|
---|
| 1098 | }
|
---|
| 1099 |
|
---|
| 1100 | // Set VMULTD to the VMULTC vector that would occur if DX became DXNEW. A
|
---|
| 1101 | // device is included to force VMULTD(K) = 0.0 if deviations from this value
|
---|
| 1102 | // can be attributed to computer rounding errors. First calculate the new
|
---|
| 1103 | // Lagrange multipliers.
|
---|
| 1104 |
|
---|
| 1105 | {
|
---|
| 1106 | int k = nact;
|
---|
| 1107 | do
|
---|
| 1108 | {
|
---|
| 1109 | double zdotw = 0.0;
|
---|
| 1110 | double zdwabs = 0.0;
|
---|
| 1111 | for (int i = 1; i <= n; ++i)
|
---|
| 1112 | {
|
---|
| 1113 | temp = z[i][k] * dxnew[i];
|
---|
| 1114 | zdotw += temp;
|
---|
| 1115 | zdwabs += Math.abs(temp);
|
---|
| 1116 | }
|
---|
| 1117 | double acca = zdwabs + 0.1 * Math.abs(zdotw);
|
---|
| 1118 | double accb = zdwabs + 0.2 * Math.abs(zdotw);
|
---|
| 1119 | if (zdwabs >= acca || acca >= accb) zdotw = 0.0;
|
---|
| 1120 | vmultd[k] = zdotw / zdota[k];
|
---|
| 1121 | if (k >= 2)
|
---|
| 1122 | {
|
---|
| 1123 | int kk = iact[k];
|
---|
| 1124 | for (int i = 1; i <= n; ++i) dxnew[i] -= vmultd[k] * a[i][kk];
|
---|
| 1125 | }
|
---|
| 1126 | } while (k-- >= 2);
|
---|
| 1127 | if (mcon > m) vmultd[nact] = Math.max(0.0, vmultd[nact]);
|
---|
| 1128 | }
|
---|
| 1129 |
|
---|
| 1130 | // Complete VMULTC by finding the new constraint residuals.
|
---|
| 1131 |
|
---|
| 1132 | for (int k = 1; k <= n; ++k) dxnew[k] = dx[k] + step * sdirn[k];
|
---|
| 1133 | if (mcon > nact)
|
---|
| 1134 | {
|
---|
| 1135 | int kl = nact + 1;
|
---|
| 1136 | for (int k = kl; k <= mcon; ++k)
|
---|
| 1137 | {
|
---|
| 1138 | int kk = iact[k];
|
---|
| 1139 | double total = resmax - b[kk];
|
---|
| 1140 | double sumabs = resmax + Math.abs(b[kk]);
|
---|
| 1141 | for (int i = 1; i <= n; ++i)
|
---|
| 1142 | {
|
---|
| 1143 | temp = a[i][kk] * dxnew[i];
|
---|
| 1144 | total += temp;
|
---|
| 1145 | sumabs += Math.abs(temp);
|
---|
| 1146 | }
|
---|
| 1147 | double acca = sumabs + 0.1 * Math.abs(total);
|
---|
| 1148 | double accb = sumabs + 0.2 * Math.abs(total);
|
---|
| 1149 | if (sumabs >= acca || acca >= accb) total = 0.0;
|
---|
| 1150 | vmultd[k] = total;
|
---|
| 1151 | }
|
---|
| 1152 | }
|
---|
| 1153 |
|
---|
| 1154 | // Calculate the fraction of the step from DX to DXNEW that will be taken.
|
---|
| 1155 |
|
---|
| 1156 | ratio = 1.0;
|
---|
| 1157 | icon = 0;
|
---|
| 1158 | for (int k = 1; k <= mcon; ++k)
|
---|
| 1159 | {
|
---|
| 1160 | if (vmultd[k] < 0.0)
|
---|
| 1161 | {
|
---|
| 1162 | temp = vmultc[k] / (vmultc[k] - vmultd[k]);
|
---|
| 1163 | if (temp < ratio)
|
---|
| 1164 | {
|
---|
| 1165 | ratio = temp;
|
---|
| 1166 | icon = k;
|
---|
| 1167 | }
|
---|
| 1168 | }
|
---|
| 1169 | }
|
---|
| 1170 |
|
---|
| 1171 | // Update DX, VMULTC and RESMAX.
|
---|
| 1172 |
|
---|
| 1173 | temp = 1.0 - ratio;
|
---|
| 1174 | for (int k = 1; k <= n; ++k) dx[k] = temp * dx[k] + ratio * dxnew[k];
|
---|
| 1175 | for (int k = 1; k <= mcon; ++k)
|
---|
| 1176 | vmultc[k] = Math.max(0.0, temp * vmultc[k] + ratio * vmultd[k]);
|
---|
| 1177 | if (mcon == m) resmax = resold + ratio * (resmax - resold);
|
---|
| 1178 |
|
---|
| 1179 | // If the full step is not acceptable then begin another iteration.
|
---|
| 1180 | // Otherwise switch to stage two or end the calculation.
|
---|
| 1181 |
|
---|
| 1182 | } while (icon > 0);
|
---|
| 1183 |
|
---|
| 1184 | if (step == stpful) return true;
|
---|
| 1185 |
|
---|
| 1186 | } while (true);
|
---|
| 1187 |
|
---|
| 1188 | // We employ any freedom that may be available to reduce the objective
|
---|
| 1189 | // function before returning a DX whose length is less than RHO.
|
---|
| 1190 |
|
---|
| 1191 | } while (mcon == m);
|
---|
| 1192 |
|
---|
| 1193 | return false;
|
---|
| 1194 | }
|
---|
| 1195 |
|
---|
| 1196 | private static void PrintIterationResult(int nfvals, double f, double resmax, double[] x, int n)
|
---|
| 1197 | {
|
---|
| 1198 | System.out.format("%nNFVALS = %1$5d F = %2$13.6f MAXCV = %3$13.6e%n", nfvals, f, resmax);
|
---|
| 1199 | System.out.format("X = %s%n", FORMAT(PART(x, 1, n)));
|
---|
| 1200 | }
|
---|
| 1201 |
|
---|
| 1202 | private static double[] ROW(double[][] src, int rowidx)
|
---|
| 1203 | {
|
---|
| 1204 | int cols = src[0].length;
|
---|
| 1205 | double[] dest = new double[cols];
|
---|
| 1206 | for (int col = 0; col < cols; ++col) dest[col] = src[rowidx][col];
|
---|
| 1207 | return dest;
|
---|
| 1208 | }
|
---|
| 1209 |
|
---|
| 1210 | private static double[] COL(double[][] src, int colidx)
|
---|
| 1211 | {
|
---|
| 1212 | int rows = src.length;
|
---|
| 1213 | double[] dest = new double[rows];
|
---|
| 1214 | for (int row = 0; row < rows; ++row) dest[row] = src[row][colidx];
|
---|
| 1215 | return dest;
|
---|
| 1216 | }
|
---|
| 1217 |
|
---|
| 1218 | private static double[] PART(double[] src, int from, int to)
|
---|
| 1219 | {
|
---|
| 1220 | double[] dest = new double[to - from + 1];
|
---|
| 1221 | int destidx = 0;
|
---|
| 1222 | for (int srcidx = from; srcidx <= to; ++srcidx, ++destidx) dest[destidx] = src[srcidx];
|
---|
| 1223 | return dest;
|
---|
| 1224 | }
|
---|
| 1225 |
|
---|
| 1226 | private static String FORMAT(double[] x)
|
---|
| 1227 | {
|
---|
| 1228 | String fmt = "";
|
---|
| 1229 | for (int i = 0; i < x.length; ++i) fmt = fmt + String.format("%13.6f", x[i]);
|
---|
| 1230 | return fmt;
|
---|
| 1231 | }
|
---|
| 1232 |
|
---|
| 1233 | private static double DOT_PRODUCT(double[] lhs, double[] rhs)
|
---|
| 1234 | {
|
---|
| 1235 | double sum = 0.0; for (int i = 0; i < lhs.length; ++i) sum += lhs[i] * rhs[i];
|
---|
| 1236 | return sum;
|
---|
| 1237 | }
|
---|
| 1238 | }
|
---|