1 | package negotiator.boaframework.opponentmodel;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 |
|
---|
5 | import agents.Jama.Matrix;
|
---|
6 | import agents.uk.ac.soton.ecs.gp4j.bmc.BasicPrior;
|
---|
7 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessMixture;
|
---|
8 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessMixturePrediction;
|
---|
9 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessRegressionBMC;
|
---|
10 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.CovarianceFunction;
|
---|
11 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.Matern3CovarianceFunction;
|
---|
12 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.NoiseCovarianceFunction;
|
---|
13 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.SumCovarianceFunction;
|
---|
14 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
15 |
|
---|
16 | /**
|
---|
17 | * This class is a component of the ANAC 2011 agent IAMHaggler where it estimates
|
---|
18 | * the concession rate of the opponent. For more information on how it works see
|
---|
19 | * "Using Gaussian Processes to Optimise Concession in Complex Negotiations against Unknown Opponents"
|
---|
20 | * by Colins et al.
|
---|
21 | * @author Alex Dirkzwager
|
---|
22 | *
|
---|
23 | */
|
---|
24 |
|
---|
25 | public class IAMHagglerOpponentConcessionModel {
|
---|
26 |
|
---|
27 | private Matrix timeSamples;
|
---|
28 | private Matrix means;
|
---|
29 | private Matrix variances;
|
---|
30 | private GaussianProcessRegressionBMC regression;
|
---|
31 | private int lastTimeSlot = -1;
|
---|
32 | private ArrayList<Double> opponentTimes = new ArrayList<Double>();
|
---|
33 | private ArrayList<Double> opponentUtilities = new ArrayList<Double>();
|
---|
34 | private double intercept;
|
---|
35 | private double maxUtilityInTimeSlot;
|
---|
36 | private Matrix matrixTimeSamplesAdjust;
|
---|
37 | private int slots;
|
---|
38 |
|
---|
39 |
|
---|
40 |
|
---|
41 | /**
|
---|
42 | *
|
---|
43 | * @param numberOfSlots (within the total negotiation
|
---|
44 | * @param utilitySpace
|
---|
45 | */
|
---|
46 | public IAMHagglerOpponentConcessionModel(int numberOfSlots, AdditiveUtilitySpace utilitySpace, int amountOfSamples){
|
---|
47 | double discountingFactor = 0.5;
|
---|
48 | try
|
---|
49 | {
|
---|
50 | discountingFactor = utilitySpace.getDiscountFactor();
|
---|
51 | }
|
---|
52 | catch(Exception ex)
|
---|
53 | {
|
---|
54 | ex.printStackTrace();
|
---|
55 | }
|
---|
56 | if(discountingFactor == 0)
|
---|
57 | discountingFactor = 1;
|
---|
58 | makeTimeSamples(amountOfSamples);
|
---|
59 | this.slots = numberOfSlots;
|
---|
60 | BasicPrior[] bps = { new BasicPrior(11, 0.252, 0.5),
|
---|
61 | new BasicPrior(11, 0.166, 0.5), new BasicPrior(1, .01, 1.0) };
|
---|
62 | CovarianceFunction cf = new SumCovarianceFunction(
|
---|
63 | Matern3CovarianceFunction.getInstance(),
|
---|
64 | NoiseCovarianceFunction.getInstance());
|
---|
65 |
|
---|
66 | regression = new GaussianProcessRegressionBMC();
|
---|
67 | regression.setCovarianceFunction(cf);
|
---|
68 | regression.setPriors(bps);
|
---|
69 | }
|
---|
70 |
|
---|
71 | /**
|
---|
72 | * updates the model with the most recent opponent bid
|
---|
73 | * @param opponentUtility
|
---|
74 | * @param time
|
---|
75 | */
|
---|
76 | public void updateModel(double opponentUtility, double time) {
|
---|
77 | // Calculate the current time slot
|
---|
78 | int timeSlot = (int) Math.floor(time * slots);
|
---|
79 |
|
---|
80 | boolean regressionUpdateRequired = false;
|
---|
81 | if (lastTimeSlot == -1) {
|
---|
82 | regressionUpdateRequired = true;
|
---|
83 | }
|
---|
84 |
|
---|
85 | // If the time slot has changed
|
---|
86 | if (timeSlot != lastTimeSlot) {
|
---|
87 | if (lastTimeSlot != -1) {
|
---|
88 | // Store the data from the time slot
|
---|
89 | opponentTimes.add((lastTimeSlot + 0.5) / slots);
|
---|
90 | if(opponentUtilities.size() == 0)
|
---|
91 | {
|
---|
92 | intercept = Math.max(0.5, maxUtilityInTimeSlot);
|
---|
93 | double[] timeSamplesAdjust = new double[timeSamples.getColumnDimension()];
|
---|
94 | System.out.println("timeSampleAdjusted[15]: " + timeSamplesAdjust.length);
|
---|
95 |
|
---|
96 |
|
---|
97 | int i = 0;
|
---|
98 | double gradient = 0.9 - intercept;
|
---|
99 | for (double d : timeSamples.getRowPackedCopy()) {
|
---|
100 | timeSamplesAdjust[i++] = intercept + (gradient * d);
|
---|
101 | }
|
---|
102 | matrixTimeSamplesAdjust = new Matrix(timeSamplesAdjust, timeSamplesAdjust.length);
|
---|
103 | }
|
---|
104 | opponentUtilities.add(maxUtilityInTimeSlot);
|
---|
105 | // Flag regression receiveMessage required
|
---|
106 | regressionUpdateRequired = true;
|
---|
107 | }
|
---|
108 | // Update the time slot
|
---|
109 | lastTimeSlot = timeSlot;
|
---|
110 | // Reset the max utility
|
---|
111 | maxUtilityInTimeSlot = 0;
|
---|
112 | }
|
---|
113 |
|
---|
114 | // Calculate the maximum utility observed in the current time slot
|
---|
115 | maxUtilityInTimeSlot = Math.max(maxUtilityInTimeSlot, opponentUtility);
|
---|
116 |
|
---|
117 | if (timeSlot == 0) {
|
---|
118 | return;
|
---|
119 | }
|
---|
120 |
|
---|
121 | if (regressionUpdateRequired && opponentTimes.size() > 0) {
|
---|
122 | double gradient = 0.9 - intercept;
|
---|
123 |
|
---|
124 | GaussianProcessMixture predictor;
|
---|
125 |
|
---|
126 | if(lastTimeSlot == -1)
|
---|
127 | {
|
---|
128 | predictor = regression.calculateRegression(new double[] {}, new double[] {});
|
---|
129 | }
|
---|
130 | else
|
---|
131 | {
|
---|
132 | double x;
|
---|
133 | double y;
|
---|
134 | try {
|
---|
135 | x = opponentTimes.get(opponentTimes.size() - 1);
|
---|
136 | y = opponentUtilities.get(opponentUtilities.size() - 1);
|
---|
137 |
|
---|
138 | } catch(Exception ex) {
|
---|
139 | System.out.println("Error getting x or y");
|
---|
140 | throw new Error(ex);
|
---|
141 | }
|
---|
142 |
|
---|
143 | predictor = regression.updateRegression(
|
---|
144 | new Matrix(new double[] {x}, 1),
|
---|
145 | new Matrix(new double[] {y - intercept - (gradient * x)}, 1));
|
---|
146 | }
|
---|
147 |
|
---|
148 | GaussianProcessMixturePrediction prediction = predictor
|
---|
149 | .calculatePrediction(timeSamples.transpose());
|
---|
150 |
|
---|
151 | // Store the means and variances
|
---|
152 | means = prediction.getMean().plus(matrixTimeSamplesAdjust);
|
---|
153 |
|
---|
154 | variances = prediction.getVariance();
|
---|
155 | }
|
---|
156 | }
|
---|
157 |
|
---|
158 | /**
|
---|
159 | * Gets all means in a n-by-1 Matrix
|
---|
160 | * @return
|
---|
161 | */
|
---|
162 | public Matrix getMeans(){
|
---|
163 | return means;
|
---|
164 | }
|
---|
165 |
|
---|
166 | /**
|
---|
167 | * Gets a specific mean point corresponding to the timeSlot
|
---|
168 | * @param timeSlot
|
---|
169 | * @return
|
---|
170 | */
|
---|
171 | public double getMeanAt(int timeSlot){
|
---|
172 | return means.get(timeSlot, 0);
|
---|
173 | }
|
---|
174 |
|
---|
175 | /**
|
---|
176 | * Gets all Variances in a n-by-1 Matrix
|
---|
177 | * @return
|
---|
178 | */
|
---|
179 | public Matrix getVariance(){
|
---|
180 | return variances;
|
---|
181 | }
|
---|
182 |
|
---|
183 | /**
|
---|
184 | * Gets a specific variance point corresponding to the timeSlot
|
---|
185 | * @param timeSlot
|
---|
186 | * @return
|
---|
187 | */
|
---|
188 | public double getVarianceAt(int timeSlot){
|
---|
189 | return variances.get(timeSlot, 0);
|
---|
190 | }
|
---|
191 |
|
---|
192 | /**
|
---|
193 | * Create a 1-by-n matrix of time samples.
|
---|
194 | *
|
---|
195 | * @param n
|
---|
196 | * The sample size.
|
---|
197 | */
|
---|
198 | private void makeTimeSamples(int n) {
|
---|
199 | double[] timeSamplesArray = new double[n + 1];
|
---|
200 | {
|
---|
201 | for (int i = 0; i < timeSamplesArray.length; i++) {
|
---|
202 | timeSamplesArray[i] = ((double) i) / ((double) n);
|
---|
203 | }
|
---|
204 | }
|
---|
205 | System.out.println("timeSampleArray[15]: " + timeSamplesArray.length);
|
---|
206 | timeSamples = new Matrix(timeSamplesArray, 1);
|
---|
207 | }
|
---|
208 | }
|
---|