[127] | 1 | package negotiator.boaframework.opponentmodel;
|
---|
| 2 |
|
---|
| 3 | import java.util.ArrayList;
|
---|
| 4 |
|
---|
| 5 | import agents.Jama.Matrix;
|
---|
| 6 | import agents.uk.ac.soton.ecs.gp4j.bmc.BasicPrior;
|
---|
| 7 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessMixture;
|
---|
| 8 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessMixturePrediction;
|
---|
| 9 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessRegressionBMC;
|
---|
| 10 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.CovarianceFunction;
|
---|
| 11 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.Matern3CovarianceFunction;
|
---|
| 12 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.NoiseCovarianceFunction;
|
---|
| 13 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.SumCovarianceFunction;
|
---|
| 14 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
| 15 |
|
---|
| 16 | /**
|
---|
| 17 | * This class is a component of the ANAC 2011 agent IAMHaggler where it estimates
|
---|
| 18 | * the concession rate of the opponent. For more information on how it works see
|
---|
| 19 | * "Using Gaussian Processes to Optimise Concession in Complex Negotiations against Unknown Opponents"
|
---|
| 20 | * by Colins et al.
|
---|
| 21 | * @author Alex Dirkzwager
|
---|
| 22 | *
|
---|
| 23 | */
|
---|
| 24 |
|
---|
| 25 | public class IAMHagglerOpponentConcessionModel {
|
---|
| 26 |
|
---|
| 27 | private Matrix timeSamples;
|
---|
| 28 | private Matrix means;
|
---|
| 29 | private Matrix variances;
|
---|
| 30 | private GaussianProcessRegressionBMC regression;
|
---|
| 31 | private int lastTimeSlot = -1;
|
---|
| 32 | private ArrayList<Double> opponentTimes = new ArrayList<Double>();
|
---|
| 33 | private ArrayList<Double> opponentUtilities = new ArrayList<Double>();
|
---|
| 34 | private double intercept;
|
---|
| 35 | private double maxUtilityInTimeSlot;
|
---|
| 36 | private Matrix matrixTimeSamplesAdjust;
|
---|
| 37 | private int slots;
|
---|
| 38 |
|
---|
| 39 |
|
---|
| 40 |
|
---|
| 41 | /**
|
---|
| 42 | *
|
---|
| 43 | * @param numberOfSlots (within the total negotiation
|
---|
| 44 | * @param utilitySpace
|
---|
| 45 | */
|
---|
| 46 | public IAMHagglerOpponentConcessionModel(int numberOfSlots, AdditiveUtilitySpace utilitySpace, int amountOfSamples){
|
---|
| 47 | double discountingFactor = 0.5;
|
---|
| 48 | try
|
---|
| 49 | {
|
---|
| 50 | discountingFactor = utilitySpace.getDiscountFactor();
|
---|
| 51 | }
|
---|
| 52 | catch(Exception ex)
|
---|
| 53 | {
|
---|
| 54 | ex.printStackTrace();
|
---|
| 55 | }
|
---|
| 56 | if(discountingFactor == 0)
|
---|
| 57 | discountingFactor = 1;
|
---|
| 58 | makeTimeSamples(amountOfSamples);
|
---|
| 59 | this.slots = numberOfSlots;
|
---|
| 60 | BasicPrior[] bps = { new BasicPrior(11, 0.252, 0.5),
|
---|
| 61 | new BasicPrior(11, 0.166, 0.5), new BasicPrior(1, .01, 1.0) };
|
---|
| 62 | CovarianceFunction cf = new SumCovarianceFunction(
|
---|
| 63 | Matern3CovarianceFunction.getInstance(),
|
---|
| 64 | NoiseCovarianceFunction.getInstance());
|
---|
| 65 |
|
---|
| 66 | regression = new GaussianProcessRegressionBMC();
|
---|
| 67 | regression.setCovarianceFunction(cf);
|
---|
| 68 | regression.setPriors(bps);
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | /**
|
---|
| 72 | * updates the model with the most recent opponent bid
|
---|
| 73 | * @param opponentUtility
|
---|
| 74 | * @param time
|
---|
| 75 | */
|
---|
| 76 | public void updateModel(double opponentUtility, double time) {
|
---|
| 77 | // Calculate the current time slot
|
---|
| 78 | int timeSlot = (int) Math.floor(time * slots);
|
---|
| 79 |
|
---|
| 80 | boolean regressionUpdateRequired = false;
|
---|
| 81 | if (lastTimeSlot == -1) {
|
---|
| 82 | regressionUpdateRequired = true;
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | // If the time slot has changed
|
---|
| 86 | if (timeSlot != lastTimeSlot) {
|
---|
| 87 | if (lastTimeSlot != -1) {
|
---|
| 88 | // Store the data from the time slot
|
---|
| 89 | opponentTimes.add((lastTimeSlot + 0.5) / slots);
|
---|
| 90 | if(opponentUtilities.size() == 0)
|
---|
| 91 | {
|
---|
| 92 | intercept = Math.max(0.5, maxUtilityInTimeSlot);
|
---|
| 93 | double[] timeSamplesAdjust = new double[timeSamples.getColumnDimension()];
|
---|
| 94 | System.out.println("timeSampleAdjusted[15]: " + timeSamplesAdjust.length);
|
---|
| 95 |
|
---|
| 96 |
|
---|
| 97 | int i = 0;
|
---|
| 98 | double gradient = 0.9 - intercept;
|
---|
| 99 | for (double d : timeSamples.getRowPackedCopy()) {
|
---|
| 100 | timeSamplesAdjust[i++] = intercept + (gradient * d);
|
---|
| 101 | }
|
---|
| 102 | matrixTimeSamplesAdjust = new Matrix(timeSamplesAdjust, timeSamplesAdjust.length);
|
---|
| 103 | }
|
---|
| 104 | opponentUtilities.add(maxUtilityInTimeSlot);
|
---|
| 105 | // Flag regression receiveMessage required
|
---|
| 106 | regressionUpdateRequired = true;
|
---|
| 107 | }
|
---|
| 108 | // Update the time slot
|
---|
| 109 | lastTimeSlot = timeSlot;
|
---|
| 110 | // Reset the max utility
|
---|
| 111 | maxUtilityInTimeSlot = 0;
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | // Calculate the maximum utility observed in the current time slot
|
---|
| 115 | maxUtilityInTimeSlot = Math.max(maxUtilityInTimeSlot, opponentUtility);
|
---|
| 116 |
|
---|
| 117 | if (timeSlot == 0) {
|
---|
| 118 | return;
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | if (regressionUpdateRequired && opponentTimes.size() > 0) {
|
---|
| 122 | double gradient = 0.9 - intercept;
|
---|
| 123 |
|
---|
| 124 | GaussianProcessMixture predictor;
|
---|
| 125 |
|
---|
| 126 | if(lastTimeSlot == -1)
|
---|
| 127 | {
|
---|
| 128 | predictor = regression.calculateRegression(new double[] {}, new double[] {});
|
---|
| 129 | }
|
---|
| 130 | else
|
---|
| 131 | {
|
---|
| 132 | double x;
|
---|
| 133 | double y;
|
---|
| 134 | try {
|
---|
| 135 | x = opponentTimes.get(opponentTimes.size() - 1);
|
---|
| 136 | y = opponentUtilities.get(opponentUtilities.size() - 1);
|
---|
| 137 |
|
---|
| 138 | } catch(Exception ex) {
|
---|
| 139 | System.out.println("Error getting x or y");
|
---|
| 140 | throw new Error(ex);
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | predictor = regression.updateRegression(
|
---|
| 144 | new Matrix(new double[] {x}, 1),
|
---|
| 145 | new Matrix(new double[] {y - intercept - (gradient * x)}, 1));
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 | GaussianProcessMixturePrediction prediction = predictor
|
---|
| 149 | .calculatePrediction(timeSamples.transpose());
|
---|
| 150 |
|
---|
| 151 | // Store the means and variances
|
---|
| 152 | means = prediction.getMean().plus(matrixTimeSamplesAdjust);
|
---|
| 153 |
|
---|
| 154 | variances = prediction.getVariance();
|
---|
| 155 | }
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | /**
|
---|
| 159 | * Gets all means in a n-by-1 Matrix
|
---|
| 160 | * @return
|
---|
| 161 | */
|
---|
| 162 | public Matrix getMeans(){
|
---|
| 163 | return means;
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | /**
|
---|
| 167 | * Gets a specific mean point corresponding to the timeSlot
|
---|
| 168 | * @param timeSlot
|
---|
| 169 | * @return
|
---|
| 170 | */
|
---|
| 171 | public double getMeanAt(int timeSlot){
|
---|
| 172 | return means.get(timeSlot, 0);
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | /**
|
---|
| 176 | * Gets all Variances in a n-by-1 Matrix
|
---|
| 177 | * @return
|
---|
| 178 | */
|
---|
| 179 | public Matrix getVariance(){
|
---|
| 180 | return variances;
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | /**
|
---|
| 184 | * Gets a specific variance point corresponding to the timeSlot
|
---|
| 185 | * @param timeSlot
|
---|
| 186 | * @return
|
---|
| 187 | */
|
---|
| 188 | public double getVarianceAt(int timeSlot){
|
---|
| 189 | return variances.get(timeSlot, 0);
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | /**
|
---|
| 193 | * Create a 1-by-n matrix of time samples.
|
---|
| 194 | *
|
---|
| 195 | * @param n
|
---|
| 196 | * The sample size.
|
---|
| 197 | */
|
---|
| 198 | private void makeTimeSamples(int n) {
|
---|
| 199 | double[] timeSamplesArray = new double[n + 1];
|
---|
| 200 | {
|
---|
| 201 | for (int i = 0; i < timeSamplesArray.length; i++) {
|
---|
| 202 | timeSamplesArray[i] = ((double) i) / ((double) n);
|
---|
| 203 | }
|
---|
| 204 | }
|
---|
| 205 | System.out.println("timeSampleArray[15]: " + timeSamplesArray.length);
|
---|
| 206 | timeSamples = new Matrix(timeSamplesArray, 1);
|
---|
| 207 | }
|
---|
| 208 | }
|
---|