[127] | 1 | package agents.bayesianopponentmodel;
|
---|
| 2 |
|
---|
| 3 | import java.util.ArrayList;
|
---|
| 4 | import java.util.List;
|
---|
| 5 |
|
---|
| 6 | import genius.core.Bid;
|
---|
| 7 | import genius.core.issue.Issue;
|
---|
| 8 | import genius.core.issue.IssueDiscrete;
|
---|
| 9 | import genius.core.issue.IssueReal;
|
---|
| 10 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
| 11 | import genius.core.utility.EVALFUNCTYPE;
|
---|
| 12 | import genius.core.utility.EvaluatorDiscrete;
|
---|
| 13 | import genius.core.utility.EvaluatorReal;
|
---|
| 14 |
|
---|
| 15 | /**
|
---|
| 16 | * Implementation of the scalable Bayesian Model.
|
---|
| 17 | *
|
---|
| 18 | * Opponent Modelling in Automated Multi-Issue Negotiation Using Bayesian
|
---|
| 19 | * Learning by K. Hindriks, D. Tykhonov
|
---|
| 20 | *
|
---|
| 21 | * KNOWN BUGS: 1. Opponent model does not take the opponent's strategy into
|
---|
| 22 | * account, in contrast to the original paper which depicts an assumption about
|
---|
| 23 | * the opponent'strategy which adapts over time.
|
---|
| 24 | *
|
---|
| 25 | * 2. The opponent model becomes invalid after a while as NaN occurs in some
|
---|
| 26 | * hypotheses, corrupting the overall estimation.
|
---|
| 27 | */
|
---|
| 28 | public class BayesianOpponentModelScalable extends OpponentModel {
|
---|
| 29 |
|
---|
| 30 | private AdditiveUtilitySpace fUS;
|
---|
| 31 | private ArrayList<ArrayList<WeightHypothesis2>> fWeightHyps;
|
---|
| 32 | private ArrayList<ArrayList<EvaluatorHypothesis>> fEvaluatorHyps;
|
---|
| 33 | // private ArrayList<EvaluatorHypothesis[]> fEvalHyps;
|
---|
| 34 | // public ArrayList<Bid> fBiddingHistory; // previous bids of the opponent,
|
---|
| 35 | // not our bids.
|
---|
| 36 | // private ArrayList<UtilitySpaceHypothesis> fUSHyps;
|
---|
| 37 | private double fPreviousBidUtility;
|
---|
| 38 | List<Issue> issues;
|
---|
| 39 | private double[] fExpectedWeights;
|
---|
| 40 |
|
---|
| 41 | public BayesianOpponentModelScalable(AdditiveUtilitySpace pUtilitySpace) {
|
---|
| 42 | //
|
---|
| 43 |
|
---|
| 44 | fPreviousBidUtility = 1;
|
---|
| 45 | fDomain = pUtilitySpace.getDomain();
|
---|
| 46 | issues = fDomain.getIssues();
|
---|
| 47 | fUS = pUtilitySpace;
|
---|
| 48 | fBiddingHistory = new ArrayList<Bid>();
|
---|
| 49 | fExpectedWeights = new double[pUtilitySpace.getDomain().getIssues()
|
---|
| 50 | .size()];
|
---|
| 51 | fWeightHyps = new ArrayList<ArrayList<WeightHypothesis2>>();
|
---|
| 52 | // generate all possible ordering combinations of the weights
|
---|
| 53 |
|
---|
| 54 | initWeightHyps();
|
---|
| 55 | // generate all possible hyps of evaluation functions
|
---|
| 56 | fEvaluatorHyps = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
| 57 | int lTotalTriangularFns = 4;
|
---|
| 58 | for (int i = 0; i < fUS.getNrOfEvaluators(); i++) {
|
---|
| 59 | ArrayList<EvaluatorHypothesis> lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
| 60 |
|
---|
| 61 | switch (fUS.getEvaluator(issues.get(i).getNumber()).getType()) {
|
---|
| 62 |
|
---|
| 63 | case REAL:
|
---|
| 64 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
| 65 | fEvaluatorHyps.add(lEvalHyps);
|
---|
| 66 | // EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
| 67 | IssueReal lIssue = (IssueReal) (fDomain.getIssues().get(i));
|
---|
| 68 | // uphill
|
---|
| 69 | EvaluatorReal lHypEval = new EvaluatorReal();
|
---|
| 70 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 71 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 72 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
| 73 | lHypEval.addParam(1, (double) 1
|
---|
| 74 | / (lHypEval.getUpperBound() - lHypEval.getLowerBound()));
|
---|
| 75 | lHypEval.addParam(
|
---|
| 76 | 0,
|
---|
| 77 | -lHypEval.getLowerBound()
|
---|
| 78 | / (lHypEval.getUpperBound() - lHypEval
|
---|
| 79 | .getLowerBound()));
|
---|
| 80 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 81 | lHypEval);
|
---|
| 82 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 83 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 84 | // downhill
|
---|
| 85 | lHypEval = new EvaluatorReal();
|
---|
| 86 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 87 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 88 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
| 89 | lHypEval.addParam(1, -(double) 1
|
---|
| 90 | / (lHypEval.getUpperBound() - lHypEval.getLowerBound()));
|
---|
| 91 | lHypEval.addParam(0, (double) 1 + lHypEval.getLowerBound()
|
---|
| 92 | / (lHypEval.getUpperBound() - lHypEval.getLowerBound()));
|
---|
| 93 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
| 94 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 95 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
| 96 | for (int k = 1; k <= lTotalTriangularFns; k++) {
|
---|
| 97 | // triangular
|
---|
| 98 | lHypEval = new EvaluatorReal();
|
---|
| 99 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 100 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 101 | lHypEval.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
| 102 | lHypEval.addParam(0, lHypEval.getLowerBound());
|
---|
| 103 | lHypEval.addParam(1, lHypEval.getUpperBound());
|
---|
| 104 | double lMaxPoint = lHypEval.getLowerBound()
|
---|
| 105 | + (double) k
|
---|
| 106 | * (lHypEval.getUpperBound() - lHypEval
|
---|
| 107 | .getLowerBound())
|
---|
| 108 | / (lTotalTriangularFns + 1);
|
---|
| 109 | lHypEval.addParam(2, lMaxPoint);
|
---|
| 110 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
| 111 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 112 | lEvaluatorHypothesis.setDesc("triangular "
|
---|
| 113 | + String.format("%1.2f", lMaxPoint));
|
---|
| 114 | }
|
---|
| 115 | for (int k = 0; k < lEvalHyps.size(); k++) {
|
---|
| 116 | lEvalHyps.get(k).setProbability(
|
---|
| 117 | (double) 1 / lEvalHyps.size());
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | break;
|
---|
| 121 | case DISCRETE:
|
---|
| 122 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
| 123 | fEvaluatorHyps.add(lEvalHyps);
|
---|
| 124 | // EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
| 125 | IssueDiscrete lDiscIssue = (IssueDiscrete) (fDomain.getIssues()
|
---|
| 126 | .get(i));
|
---|
| 127 | // uphill
|
---|
| 128 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 129 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
| 130 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
| 131 | 1000 * j + 1);
|
---|
| 132 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEval);
|
---|
| 133 | lEvaluatorHypothesis.setProbability((double) 1 / 3);
|
---|
| 134 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 135 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 136 | // downhill
|
---|
| 137 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 138 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
| 139 | lDiscreteEval
|
---|
| 140 | .addEvaluation(
|
---|
| 141 | lDiscIssue.getValue(j),
|
---|
| 142 | 1000 * (lDiscIssue.getNumberOfValues() - j - 1) + 1);
|
---|
| 143 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEval);
|
---|
| 144 | lEvaluatorHypothesis.setProbability((double) 1 / 3);
|
---|
| 145 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 146 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
| 147 | if (lDiscIssue.getNumberOfValues() > 2) {
|
---|
| 148 | lTotalTriangularFns = lDiscIssue.getNumberOfValues() - 1;
|
---|
| 149 | for (int k = 1; k < lTotalTriangularFns; k++) {
|
---|
| 150 | // triangular. Wouter: we need to CHECK this.
|
---|
| 151 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 152 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
| 153 | if (j < k) {
|
---|
| 154 | lDiscreteEval.addEvaluation(
|
---|
| 155 | lDiscIssue.getValue(j), 1000 * j / k);
|
---|
| 156 | } else {
|
---|
| 157 | // lEval =
|
---|
| 158 | // (1.0-(double)(j-k)/(lDiscIssue.getNumberOfValues()-1.0-k));
|
---|
| 159 | lDiscreteEval.addEvaluation(
|
---|
| 160 | lDiscIssue.getValue(j),
|
---|
| 161 | 1000
|
---|
| 162 | * (lDiscIssue
|
---|
| 163 | .getNumberOfValues()
|
---|
| 164 | - j - 1)
|
---|
| 165 | / (lDiscIssue
|
---|
| 166 | .getNumberOfValues()
|
---|
| 167 | - k - 1) + 1);
|
---|
| 168 | }
|
---|
| 169 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 170 | lDiscreteEval);
|
---|
| 171 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 172 | lEvaluatorHypothesis.setDesc("triangular "
|
---|
| 173 | + String.valueOf(k));
|
---|
| 174 | }// for
|
---|
| 175 | }// if
|
---|
| 176 | for (int k = 0; k < lEvalHyps.size(); k++) {
|
---|
| 177 | lEvalHyps.get(k).setProbability(
|
---|
| 178 | (double) 1 / lEvalHyps.size());
|
---|
| 179 | }
|
---|
| 180 | break;
|
---|
| 181 | }// switch
|
---|
| 182 | }
|
---|
| 183 | for (int i = 0; i < fExpectedWeights.length; i++)
|
---|
| 184 | fExpectedWeights[i] = getExpectedWeight(i);
|
---|
| 185 |
|
---|
| 186 | // printEvalsDistribution();
|
---|
| 187 | }
|
---|
| 188 |
|
---|
| 189 | void initWeightHyps() {
|
---|
| 190 | int lWeightHypsNumber = 11;
|
---|
| 191 | for (int i = 0; i < fUS.getDomain().getIssues().size(); i++) {
|
---|
| 192 | ArrayList<WeightHypothesis2> lWeightHyps = new ArrayList<WeightHypothesis2>();
|
---|
| 193 | for (int j = 0; j < lWeightHypsNumber; j++) {
|
---|
| 194 | WeightHypothesis2 lHyp = new WeightHypothesis2(fDomain);
|
---|
| 195 | lHyp.setProbability((1.0 - ((double) j + 1.0)
|
---|
| 196 | / lWeightHypsNumber)
|
---|
| 197 | * (1.0 - ((double) j + 1.0) / lWeightHypsNumber)
|
---|
| 198 | * (1.0 - ((double) j + 1.0) / lWeightHypsNumber));
|
---|
| 199 | lHyp.setWeight((double) j / (lWeightHypsNumber - 1));
|
---|
| 200 | lWeightHyps.add(lHyp);
|
---|
| 201 | }
|
---|
| 202 | double lN = 0;
|
---|
| 203 | for (int j = 0; j < lWeightHypsNumber; j++) {
|
---|
| 204 | lN += lWeightHyps.get(j).getProbability();
|
---|
| 205 | }
|
---|
| 206 | for (int j = 0; j < lWeightHypsNumber; j++) {
|
---|
| 207 | lWeightHyps.get(j).setProbability(
|
---|
| 208 | lWeightHyps.get(j).getProbability() / lN);
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | fWeightHyps.add(lWeightHyps);
|
---|
| 212 | }
|
---|
| 213 | }
|
---|
| 214 |
|
---|
| 215 | private double conditionalDistribution(double pUtility,
|
---|
| 216 | double pPreviousBidUtility) {
|
---|
| 217 | // TODO: check this condition
|
---|
| 218 | // if(pPreviousBidUtility<pUtility) return 0;
|
---|
| 219 | // else {
|
---|
| 220 | double lSigma = 0.25;
|
---|
| 221 | double x = (pPreviousBidUtility - pUtility) / pPreviousBidUtility;
|
---|
| 222 | double lResult = 1.0 / (lSigma * Math.sqrt(2.0 * Math.PI))
|
---|
| 223 | * Math.exp(-(x * x) / (2.0 * lSigma * lSigma));
|
---|
| 224 | return lResult;
|
---|
| 225 | // }
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | public double getExpectedEvaluationValue(Bid pBid, int pIssueNumber)
|
---|
| 229 | throws Exception {
|
---|
| 230 | double lExpectedEval = 0;
|
---|
| 231 | for (int j = 0; j < fEvaluatorHyps.get(pIssueNumber).size(); j++) {
|
---|
| 232 | lExpectedEval = lExpectedEval
|
---|
| 233 | + fEvaluatorHyps.get(pIssueNumber).get(j).getProbability()
|
---|
| 234 | * fEvaluatorHyps
|
---|
| 235 | .get(pIssueNumber)
|
---|
| 236 | .get(j)
|
---|
| 237 | .getEvaluator()
|
---|
| 238 | .getEvaluation(fUS, pBid,
|
---|
| 239 | issues.get(pIssueNumber).getNumber());
|
---|
| 240 | }
|
---|
| 241 | return lExpectedEval;
|
---|
| 242 |
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | public double getExpectedWeight(int pIssueNumber) {
|
---|
| 246 | double lExpectedWeight = 0;
|
---|
| 247 | for (int i = 0; i < fWeightHyps.get(pIssueNumber).size(); i++) {
|
---|
| 248 | lExpectedWeight += fWeightHyps.get(pIssueNumber).get(i)
|
---|
| 249 | .getProbability()
|
---|
| 250 | * fWeightHyps.get(pIssueNumber).get(i).getWeight();
|
---|
| 251 | }
|
---|
| 252 | return lExpectedWeight;
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | private double getPartialUtility(Bid pBid, int pIssueIndex)
|
---|
| 256 | throws Exception {
|
---|
| 257 | // calculate partial utility w/o issue pIssueIndex
|
---|
| 258 | double u = 0;
|
---|
| 259 | for (int j = 0; j < fDomain.getIssues().size(); j++) {
|
---|
| 260 | if (pIssueIndex == j)
|
---|
| 261 | continue;
|
---|
| 262 | // calculate expected weight of the issue
|
---|
| 263 | double w = 0;
|
---|
| 264 | for (int k = 0; k < fWeightHyps.get(j).size(); k++)
|
---|
| 265 | w += fWeightHyps.get(j).get(k).getProbability()
|
---|
| 266 | * fWeightHyps.get(j).get(k).getWeight();
|
---|
| 267 | u = u + w * getExpectedEvaluationValue(pBid, j);
|
---|
| 268 | }
|
---|
| 269 | return u;
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 | public void updateWeights() throws Exception {
|
---|
| 273 | Bid lBid = fBiddingHistory.get(fBiddingHistory.size() - 1);
|
---|
| 274 | ArrayList<ArrayList<WeightHypothesis2>> lWeightHyps = new ArrayList<ArrayList<WeightHypothesis2>>();
|
---|
| 275 | // make new hyps array
|
---|
| 276 | for (int i = 0; i < fWeightHyps.size(); i++) {
|
---|
| 277 | ArrayList<WeightHypothesis2> lTmp = new ArrayList<WeightHypothesis2>();
|
---|
| 278 | for (int j = 0; j < fWeightHyps.get(i).size(); j++) {
|
---|
| 279 | WeightHypothesis2 lHyp = new WeightHypothesis2(fUS.getDomain());
|
---|
| 280 | lHyp.setWeight(fWeightHyps.get(i).get(j).getWeight());
|
---|
| 281 | lHyp.setProbability(fWeightHyps.get(i).get(j).getProbability());
|
---|
| 282 | lTmp.add(lHyp);
|
---|
| 283 | }
|
---|
| 284 | lWeightHyps.add(lTmp);
|
---|
| 285 | }
|
---|
| 286 |
|
---|
| 287 | // for(int k=0;k<5;k++) {
|
---|
| 288 | for (int j = 0; j < fDomain.getIssues().size(); j++) {
|
---|
| 289 | double lN = 0;
|
---|
| 290 | double lUtility = 0;
|
---|
| 291 | for (int i = 0; i < fWeightHyps.get(j).size(); i++) {
|
---|
| 292 | // if(!lBid.getValue(j).equals(lPreviousBid.getValue(j))) {
|
---|
| 293 | lUtility = fWeightHyps.get(j).get(i).getWeight()
|
---|
| 294 | * getExpectedEvaluationValue(lBid, j)
|
---|
| 295 | + getPartialUtility(lBid, j);
|
---|
| 296 | lN += fWeightHyps.get(j).get(i).getProbability()
|
---|
| 297 | * conditionalDistribution(lUtility, fPreviousBidUtility);
|
---|
| 298 | /*
|
---|
| 299 | * } else { lN += fWeightHyps.get(j).get(i).getProbability(); }
|
---|
| 300 | */
|
---|
| 301 | }
|
---|
| 302 | // 2. receiveMessage probabilities
|
---|
| 303 | for (int i = 0; i < fWeightHyps.get(j).size(); i++) {
|
---|
| 304 | // if(!lBid.getValue(j).equals(lPreviousBid.getValue(j))) {
|
---|
| 305 | lUtility = fWeightHyps.get(j).get(i).getWeight()
|
---|
| 306 | * getExpectedEvaluationValue(lBid, j)
|
---|
| 307 | + getPartialUtility(lBid, j);
|
---|
| 308 | lWeightHyps
|
---|
| 309 | .get(j)
|
---|
| 310 | .get(i)
|
---|
| 311 | .setProbability(
|
---|
| 312 | fWeightHyps.get(j).get(i).getProbability()
|
---|
| 313 | * conditionalDistribution(lUtility,
|
---|
| 314 | fPreviousBidUtility) / lN);
|
---|
| 315 | /*
|
---|
| 316 | * } else {
|
---|
| 317 | * lWeightHyps.get(j).get(i).setProbability(fWeightHyps.
|
---|
| 318 | * get(j).get(i).getProbability()/lN); }
|
---|
| 319 | */
|
---|
| 320 | }
|
---|
| 321 | }
|
---|
| 322 | // }
|
---|
| 323 | fWeightHyps = lWeightHyps;
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 | public void updateEvaluationFns() throws Exception {
|
---|
| 327 | Bid lBid = fBiddingHistory.get(fBiddingHistory.size() - 1);
|
---|
| 328 | // make new hyps array
|
---|
| 329 | // for(int k=0;k<5;k++){
|
---|
| 330 | ArrayList<ArrayList<EvaluatorHypothesis>> lEvaluatorHyps = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
| 331 | for (int i = 0; i < fEvaluatorHyps.size(); i++) {
|
---|
| 332 | ArrayList<EvaluatorHypothesis> lTmp = new ArrayList<EvaluatorHypothesis>();
|
---|
| 333 | for (int j = 0; j < fEvaluatorHyps.get(i).size(); j++) {
|
---|
| 334 | EvaluatorHypothesis lHyp = new EvaluatorHypothesis(
|
---|
| 335 | fEvaluatorHyps.get(i).get(j).getEvaluator());
|
---|
| 336 | lHyp.setDesc(fEvaluatorHyps.get(i).get(j).getDesc());
|
---|
| 337 | lHyp.setProbability(fEvaluatorHyps.get(i).get(j)
|
---|
| 338 | .getProbability());
|
---|
| 339 | lTmp.add(lHyp);
|
---|
| 340 | }
|
---|
| 341 | lEvaluatorHyps.add(lTmp);
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | // 1. calculate the normalization factor
|
---|
| 345 |
|
---|
| 346 | for (int i = 0; i < fDomain.getIssues().size(); i++) {
|
---|
| 347 | // 1. calculate the normalization factor
|
---|
| 348 | double lN = 0;
|
---|
| 349 | for (int j = 0; j < fEvaluatorHyps.get(i).size(); j++) {
|
---|
| 350 | EvaluatorHypothesis lHyp = fEvaluatorHyps.get(i).get(j);
|
---|
| 351 | lN += lHyp.getProbability()
|
---|
| 352 | * conditionalDistribution(
|
---|
| 353 | getPartialUtility(lBid, i)
|
---|
| 354 | + getExpectedWeight(i)
|
---|
| 355 | * (lHyp.getEvaluator().getEvaluation(
|
---|
| 356 | fUS, lBid, issues.get(i)
|
---|
| 357 | .getNumber())),
|
---|
| 358 | fPreviousBidUtility);
|
---|
| 359 | }
|
---|
| 360 | // 2. receiveMessage probabilities
|
---|
| 361 | for (int j = 0; j < fEvaluatorHyps.get(i).size(); j++) {
|
---|
| 362 | EvaluatorHypothesis lHyp = fEvaluatorHyps.get(i).get(j);
|
---|
| 363 | lEvaluatorHyps
|
---|
| 364 | .get(i)
|
---|
| 365 | .get(j)
|
---|
| 366 | .setProbability(
|
---|
| 367 | lHyp.getProbability()
|
---|
| 368 | * conditionalDistribution(
|
---|
| 369 | getPartialUtility(lBid, i)
|
---|
| 370 | + getExpectedWeight(i)
|
---|
| 371 | * (lHyp.getEvaluator()
|
---|
| 372 | .getEvaluation(
|
---|
| 373 | fUS,
|
---|
| 374 | lBid,
|
---|
| 375 | issues.get(
|
---|
| 376 | i)
|
---|
| 377 | .getNumber())),
|
---|
| 378 | fPreviousBidUtility) / lN);
|
---|
| 379 | }
|
---|
| 380 | }
|
---|
| 381 | fEvaluatorHyps = lEvaluatorHyps;
|
---|
| 382 | // }
|
---|
| 383 | printEvalsDistribution();
|
---|
| 384 | }
|
---|
| 385 |
|
---|
| 386 | public boolean haveSeenBefore(Bid pBid) {
|
---|
| 387 | for (Bid tmpBid : fBiddingHistory) {
|
---|
| 388 | if (pBid.equals(tmpBid))
|
---|
| 389 | return true;
|
---|
| 390 | }
|
---|
| 391 | return false;
|
---|
| 392 | }
|
---|
| 393 |
|
---|
| 394 | public void updateBeliefs(Bid pBid) throws Exception {
|
---|
| 395 | if (!isCrashed()) {
|
---|
| 396 | if (haveSeenBefore(pBid))
|
---|
| 397 | return;
|
---|
| 398 | fBiddingHistory.add(pBid);
|
---|
| 399 |
|
---|
| 400 | // do not receiveMessage the bids if it is the first bid
|
---|
| 401 | if (fBiddingHistory.size() > 1) {
|
---|
| 402 |
|
---|
| 403 | // receiveMessage the weights
|
---|
| 404 | updateWeights();
|
---|
| 405 | // receiveMessage evaluation functions
|
---|
| 406 | updateEvaluationFns();
|
---|
| 407 | } else {
|
---|
| 408 | // do not receiveMessage the weights
|
---|
| 409 | // receiveMessage evaluation functions
|
---|
| 410 | updateEvaluationFns();
|
---|
| 411 | } // if
|
---|
| 412 |
|
---|
| 413 | // System.out.println(getMaxHyp().toString());
|
---|
| 414 | // calculate utility of the next partner's bid according to the
|
---|
| 415 | // concession functions
|
---|
| 416 | fPreviousBidUtility = fPreviousBidUtility - 0.003;
|
---|
| 417 | for (int i = 0; i < fExpectedWeights.length; i++) {
|
---|
| 418 | fExpectedWeights[i] = getExpectedWeight(i);
|
---|
| 419 | }
|
---|
| 420 | findMinMaxUtility();
|
---|
| 421 | // printBestHyp();
|
---|
| 422 | }
|
---|
| 423 | }
|
---|
| 424 |
|
---|
| 425 | /**
|
---|
| 426 | * Plan: cache the results for pBid in a Hash table. empty the hash table
|
---|
| 427 | * whenever updateWeights or updateEvaluationFns is called.
|
---|
| 428 | *
|
---|
| 429 | * @param pBid
|
---|
| 430 | * @return weeighted utility where weights represent likelihood of each
|
---|
| 431 | * hypothesis
|
---|
| 432 | * @throws Exception
|
---|
| 433 | */
|
---|
| 434 | public double getExpectedUtility(Bid pBid) throws Exception {
|
---|
| 435 | // calculate expected utility
|
---|
| 436 | double u = 0;
|
---|
| 437 | for (int j = 0; j < fDomain.getIssues().size(); j++) {
|
---|
| 438 | // calculate expected weight of the issue
|
---|
| 439 | double w = fExpectedWeights[j];
|
---|
| 440 | /*
|
---|
| 441 | * for(int k=0;k<fWeightHyps.get(j).size();k++) w +=
|
---|
| 442 | * fWeightHyps.get(
|
---|
| 443 | * j).get(k).getProbability()*fWeightHyps.get(j).get(
|
---|
| 444 | * k).getWeight();(
|
---|
| 445 | */
|
---|
| 446 | u = u + w * getExpectedEvaluationValue(pBid, j);
|
---|
| 447 | }
|
---|
| 448 |
|
---|
| 449 | return u;
|
---|
| 450 | }
|
---|
| 451 |
|
---|
| 452 | private void printBestHyp() {
|
---|
| 453 | double[] lBestWeights = new double[fUS.getDomain().getIssues().size()];
|
---|
| 454 | EvaluatorHypothesis[] lBestEvals = new EvaluatorHypothesis[fUS
|
---|
| 455 | .getDomain().getIssues().size()];
|
---|
| 456 | for (int i = 0; i < fUS.getDomain().getIssues().size(); i++) {
|
---|
| 457 | // find best weight
|
---|
| 458 | double lMaxWeightProb = -1;
|
---|
| 459 | for (int j = 0; j < fWeightHyps.get(i).size(); j++) {
|
---|
| 460 | if (fWeightHyps.get(i).get(j).getProbability() > lMaxWeightProb) {
|
---|
| 461 | lMaxWeightProb = fWeightHyps.get(i).get(j).getProbability();
|
---|
| 462 | lBestWeights[i] = fWeightHyps.get(i).get(j).getWeight();
|
---|
| 463 | }
|
---|
| 464 | }
|
---|
| 465 | // find best evaluation fn
|
---|
| 466 | double lMaxEvalProb = -1;
|
---|
| 467 | for (int j = 0; j < fEvaluatorHyps.get(i).size(); j++) {
|
---|
| 468 | if (fEvaluatorHyps.get(i).get(j).getProbability() > lMaxEvalProb) {
|
---|
| 469 | lMaxEvalProb = fEvaluatorHyps.get(i).get(j)
|
---|
| 470 | .getProbability();
|
---|
| 471 | lBestEvals[i] = fEvaluatorHyps.get(i).get(j);
|
---|
| 472 | }
|
---|
| 473 | }
|
---|
| 474 |
|
---|
| 475 | }
|
---|
| 476 | /*
|
---|
| 477 | * //print all weights for(int
|
---|
| 478 | * i=0;i<fUS.getDomain().getIssues().size();i++) {
|
---|
| 479 | * System.out.print(String.format("%1.2f", getExpectedWeight(i))+";"); }
|
---|
| 480 | * //print all Evaluators for(int
|
---|
| 481 | * i=0;i<fUS.getDomain().getIssues().size();i++) {
|
---|
| 482 | * System.out.print(lBestEvals[i].getDesc()+";"); }
|
---|
| 483 | * System.out.println();
|
---|
| 484 | */
|
---|
| 485 | }
|
---|
| 486 |
|
---|
| 487 | void printEvalsDistribution() {
|
---|
| 488 | /*
|
---|
| 489 | * for(int i=0;i<fUS.getDomain().getIssues().size();i++) { for(int
|
---|
| 490 | * j=0;j<fEvaluatorHyps.get(i).size();j++)
|
---|
| 491 | * System.out.print(String.format("%1.2f",
|
---|
| 492 | * fEvaluatorHyps.get(i).get(j).getProbability())+";");
|
---|
| 493 | * System.out.println(); }
|
---|
| 494 | */
|
---|
| 495 |
|
---|
| 496 | }
|
---|
| 497 |
|
---|
| 498 | public double getNormalizedWeight(Issue i, int startingNumber) {
|
---|
| 499 | double sum = 0;
|
---|
| 500 | for (Issue issue : fDomain.getIssues()) {
|
---|
| 501 | sum += getExpectedWeight(issue.getNumber() - startingNumber);
|
---|
| 502 | }
|
---|
| 503 | return (getExpectedWeight(i.getNumber() - startingNumber)) / sum;
|
---|
| 504 | }
|
---|
| 505 |
|
---|
| 506 | }
|
---|