1 | package agents.bayesianopponentmodel;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 | import java.util.List;
|
---|
5 |
|
---|
6 | import genius.core.Bid;
|
---|
7 | import genius.core.issue.Issue;
|
---|
8 | import genius.core.issue.IssueDiscrete;
|
---|
9 | import genius.core.issue.IssueReal;
|
---|
10 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
11 | import genius.core.utility.EVALFUNCTYPE;
|
---|
12 | import genius.core.utility.EvaluatorDiscrete;
|
---|
13 | import genius.core.utility.EvaluatorReal;
|
---|
14 |
|
---|
15 | /**
|
---|
16 | * Implementation of the scalable Bayesian Model.
|
---|
17 | *
|
---|
18 | * Opponent Modelling in Automated Multi-Issue Negotiation Using Bayesian
|
---|
19 | * Learning by K. Hindriks, D. Tykhonov
|
---|
20 | *
|
---|
21 | * KNOWN BUGS: 1. Opponent model does not take the opponent's strategy into
|
---|
22 | * account, in contrast to the original paper which depicts an assumption about
|
---|
23 | * the opponent'strategy which adapts over time.
|
---|
24 | *
|
---|
25 | * 2. The opponent model becomes invalid after a while as NaN occurs in some
|
---|
26 | * hypotheses, corrupting the overall estimation.
|
---|
27 | */
|
---|
28 | public class BayesianOpponentModelScalable extends OpponentModel {
|
---|
29 |
|
---|
30 | private AdditiveUtilitySpace fUS;
|
---|
31 | private ArrayList<ArrayList<WeightHypothesis2>> fWeightHyps;
|
---|
32 | private ArrayList<ArrayList<EvaluatorHypothesis>> fEvaluatorHyps;
|
---|
33 | // private ArrayList<EvaluatorHypothesis[]> fEvalHyps;
|
---|
34 | // public ArrayList<Bid> fBiddingHistory; // previous bids of the opponent,
|
---|
35 | // not our bids.
|
---|
36 | // private ArrayList<UtilitySpaceHypothesis> fUSHyps;
|
---|
37 | private double fPreviousBidUtility;
|
---|
38 | List<Issue> issues;
|
---|
39 | private double[] fExpectedWeights;
|
---|
40 |
|
---|
41 | public BayesianOpponentModelScalable(AdditiveUtilitySpace pUtilitySpace) {
|
---|
42 | //
|
---|
43 |
|
---|
44 | fPreviousBidUtility = 1;
|
---|
45 | fDomain = pUtilitySpace.getDomain();
|
---|
46 | issues = fDomain.getIssues();
|
---|
47 | fUS = pUtilitySpace;
|
---|
48 | fBiddingHistory = new ArrayList<Bid>();
|
---|
49 | fExpectedWeights = new double[pUtilitySpace.getDomain().getIssues()
|
---|
50 | .size()];
|
---|
51 | fWeightHyps = new ArrayList<ArrayList<WeightHypothesis2>>();
|
---|
52 | // generate all possible ordering combinations of the weights
|
---|
53 |
|
---|
54 | initWeightHyps();
|
---|
55 | // generate all possible hyps of evaluation functions
|
---|
56 | fEvaluatorHyps = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
57 | int lTotalTriangularFns = 4;
|
---|
58 | for (int i = 0; i < fUS.getNrOfEvaluators(); i++) {
|
---|
59 | ArrayList<EvaluatorHypothesis> lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
60 |
|
---|
61 | switch (fUS.getEvaluator(issues.get(i).getNumber()).getType()) {
|
---|
62 |
|
---|
63 | case REAL:
|
---|
64 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
65 | fEvaluatorHyps.add(lEvalHyps);
|
---|
66 | // EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
67 | IssueReal lIssue = (IssueReal) (fDomain.getIssues().get(i));
|
---|
68 | // uphill
|
---|
69 | EvaluatorReal lHypEval = new EvaluatorReal();
|
---|
70 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
71 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
72 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
73 | lHypEval.addParam(1, (double) 1
|
---|
74 | / (lHypEval.getUpperBound() - lHypEval.getLowerBound()));
|
---|
75 | lHypEval.addParam(
|
---|
76 | 0,
|
---|
77 | -lHypEval.getLowerBound()
|
---|
78 | / (lHypEval.getUpperBound() - lHypEval
|
---|
79 | .getLowerBound()));
|
---|
80 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
81 | lHypEval);
|
---|
82 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
83 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
84 | // downhill
|
---|
85 | lHypEval = new EvaluatorReal();
|
---|
86 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
87 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
88 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
89 | lHypEval.addParam(1, -(double) 1
|
---|
90 | / (lHypEval.getUpperBound() - lHypEval.getLowerBound()));
|
---|
91 | lHypEval.addParam(0, (double) 1 + lHypEval.getLowerBound()
|
---|
92 | / (lHypEval.getUpperBound() - lHypEval.getLowerBound()));
|
---|
93 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
94 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
95 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
96 | for (int k = 1; k <= lTotalTriangularFns; k++) {
|
---|
97 | // triangular
|
---|
98 | lHypEval = new EvaluatorReal();
|
---|
99 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
100 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
101 | lHypEval.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
102 | lHypEval.addParam(0, lHypEval.getLowerBound());
|
---|
103 | lHypEval.addParam(1, lHypEval.getUpperBound());
|
---|
104 | double lMaxPoint = lHypEval.getLowerBound()
|
---|
105 | + (double) k
|
---|
106 | * (lHypEval.getUpperBound() - lHypEval
|
---|
107 | .getLowerBound())
|
---|
108 | / (lTotalTriangularFns + 1);
|
---|
109 | lHypEval.addParam(2, lMaxPoint);
|
---|
110 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
111 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
112 | lEvaluatorHypothesis.setDesc("triangular "
|
---|
113 | + String.format("%1.2f", lMaxPoint));
|
---|
114 | }
|
---|
115 | for (int k = 0; k < lEvalHyps.size(); k++) {
|
---|
116 | lEvalHyps.get(k).setProbability(
|
---|
117 | (double) 1 / lEvalHyps.size());
|
---|
118 | }
|
---|
119 |
|
---|
120 | break;
|
---|
121 | case DISCRETE:
|
---|
122 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
123 | fEvaluatorHyps.add(lEvalHyps);
|
---|
124 | // EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
125 | IssueDiscrete lDiscIssue = (IssueDiscrete) (fDomain.getIssues()
|
---|
126 | .get(i));
|
---|
127 | // uphill
|
---|
128 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
129 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
130 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
131 | 1000 * j + 1);
|
---|
132 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEval);
|
---|
133 | lEvaluatorHypothesis.setProbability((double) 1 / 3);
|
---|
134 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
135 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
136 | // downhill
|
---|
137 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
138 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
139 | lDiscreteEval
|
---|
140 | .addEvaluation(
|
---|
141 | lDiscIssue.getValue(j),
|
---|
142 | 1000 * (lDiscIssue.getNumberOfValues() - j - 1) + 1);
|
---|
143 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEval);
|
---|
144 | lEvaluatorHypothesis.setProbability((double) 1 / 3);
|
---|
145 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
146 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
147 | if (lDiscIssue.getNumberOfValues() > 2) {
|
---|
148 | lTotalTriangularFns = lDiscIssue.getNumberOfValues() - 1;
|
---|
149 | for (int k = 1; k < lTotalTriangularFns; k++) {
|
---|
150 | // triangular. Wouter: we need to CHECK this.
|
---|
151 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
152 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
153 | if (j < k) {
|
---|
154 | lDiscreteEval.addEvaluation(
|
---|
155 | lDiscIssue.getValue(j), 1000 * j / k);
|
---|
156 | } else {
|
---|
157 | // lEval =
|
---|
158 | // (1.0-(double)(j-k)/(lDiscIssue.getNumberOfValues()-1.0-k));
|
---|
159 | lDiscreteEval.addEvaluation(
|
---|
160 | lDiscIssue.getValue(j),
|
---|
161 | 1000
|
---|
162 | * (lDiscIssue
|
---|
163 | .getNumberOfValues()
|
---|
164 | - j - 1)
|
---|
165 | / (lDiscIssue
|
---|
166 | .getNumberOfValues()
|
---|
167 | - k - 1) + 1);
|
---|
168 | }
|
---|
169 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
170 | lDiscreteEval);
|
---|
171 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
172 | lEvaluatorHypothesis.setDesc("triangular "
|
---|
173 | + String.valueOf(k));
|
---|
174 | }// for
|
---|
175 | }// if
|
---|
176 | for (int k = 0; k < lEvalHyps.size(); k++) {
|
---|
177 | lEvalHyps.get(k).setProbability(
|
---|
178 | (double) 1 / lEvalHyps.size());
|
---|
179 | }
|
---|
180 | break;
|
---|
181 | }// switch
|
---|
182 | }
|
---|
183 | for (int i = 0; i < fExpectedWeights.length; i++)
|
---|
184 | fExpectedWeights[i] = getExpectedWeight(i);
|
---|
185 |
|
---|
186 | // printEvalsDistribution();
|
---|
187 | }
|
---|
188 |
|
---|
189 | void initWeightHyps() {
|
---|
190 | int lWeightHypsNumber = 11;
|
---|
191 | for (int i = 0; i < fUS.getDomain().getIssues().size(); i++) {
|
---|
192 | ArrayList<WeightHypothesis2> lWeightHyps = new ArrayList<WeightHypothesis2>();
|
---|
193 | for (int j = 0; j < lWeightHypsNumber; j++) {
|
---|
194 | WeightHypothesis2 lHyp = new WeightHypothesis2(fDomain);
|
---|
195 | lHyp.setProbability((1.0 - ((double) j + 1.0)
|
---|
196 | / lWeightHypsNumber)
|
---|
197 | * (1.0 - ((double) j + 1.0) / lWeightHypsNumber)
|
---|
198 | * (1.0 - ((double) j + 1.0) / lWeightHypsNumber));
|
---|
199 | lHyp.setWeight((double) j / (lWeightHypsNumber - 1));
|
---|
200 | lWeightHyps.add(lHyp);
|
---|
201 | }
|
---|
202 | double lN = 0;
|
---|
203 | for (int j = 0; j < lWeightHypsNumber; j++) {
|
---|
204 | lN += lWeightHyps.get(j).getProbability();
|
---|
205 | }
|
---|
206 | for (int j = 0; j < lWeightHypsNumber; j++) {
|
---|
207 | lWeightHyps.get(j).setProbability(
|
---|
208 | lWeightHyps.get(j).getProbability() / lN);
|
---|
209 | }
|
---|
210 |
|
---|
211 | fWeightHyps.add(lWeightHyps);
|
---|
212 | }
|
---|
213 | }
|
---|
214 |
|
---|
215 | private double conditionalDistribution(double pUtility,
|
---|
216 | double pPreviousBidUtility) {
|
---|
217 | // TODO: check this condition
|
---|
218 | // if(pPreviousBidUtility<pUtility) return 0;
|
---|
219 | // else {
|
---|
220 | double lSigma = 0.25;
|
---|
221 | double x = (pPreviousBidUtility - pUtility) / pPreviousBidUtility;
|
---|
222 | double lResult = 1.0 / (lSigma * Math.sqrt(2.0 * Math.PI))
|
---|
223 | * Math.exp(-(x * x) / (2.0 * lSigma * lSigma));
|
---|
224 | return lResult;
|
---|
225 | // }
|
---|
226 | }
|
---|
227 |
|
---|
228 | public double getExpectedEvaluationValue(Bid pBid, int pIssueNumber)
|
---|
229 | throws Exception {
|
---|
230 | double lExpectedEval = 0;
|
---|
231 | for (int j = 0; j < fEvaluatorHyps.get(pIssueNumber).size(); j++) {
|
---|
232 | lExpectedEval = lExpectedEval
|
---|
233 | + fEvaluatorHyps.get(pIssueNumber).get(j).getProbability()
|
---|
234 | * fEvaluatorHyps
|
---|
235 | .get(pIssueNumber)
|
---|
236 | .get(j)
|
---|
237 | .getEvaluator()
|
---|
238 | .getEvaluation(fUS, pBid,
|
---|
239 | issues.get(pIssueNumber).getNumber());
|
---|
240 | }
|
---|
241 | return lExpectedEval;
|
---|
242 |
|
---|
243 | }
|
---|
244 |
|
---|
245 | public double getExpectedWeight(int pIssueNumber) {
|
---|
246 | double lExpectedWeight = 0;
|
---|
247 | for (int i = 0; i < fWeightHyps.get(pIssueNumber).size(); i++) {
|
---|
248 | lExpectedWeight += fWeightHyps.get(pIssueNumber).get(i)
|
---|
249 | .getProbability()
|
---|
250 | * fWeightHyps.get(pIssueNumber).get(i).getWeight();
|
---|
251 | }
|
---|
252 | return lExpectedWeight;
|
---|
253 | }
|
---|
254 |
|
---|
255 | private double getPartialUtility(Bid pBid, int pIssueIndex)
|
---|
256 | throws Exception {
|
---|
257 | // calculate partial utility w/o issue pIssueIndex
|
---|
258 | double u = 0;
|
---|
259 | for (int j = 0; j < fDomain.getIssues().size(); j++) {
|
---|
260 | if (pIssueIndex == j)
|
---|
261 | continue;
|
---|
262 | // calculate expected weight of the issue
|
---|
263 | double w = 0;
|
---|
264 | for (int k = 0; k < fWeightHyps.get(j).size(); k++)
|
---|
265 | w += fWeightHyps.get(j).get(k).getProbability()
|
---|
266 | * fWeightHyps.get(j).get(k).getWeight();
|
---|
267 | u = u + w * getExpectedEvaluationValue(pBid, j);
|
---|
268 | }
|
---|
269 | return u;
|
---|
270 | }
|
---|
271 |
|
---|
272 | public void updateWeights() throws Exception {
|
---|
273 | Bid lBid = fBiddingHistory.get(fBiddingHistory.size() - 1);
|
---|
274 | ArrayList<ArrayList<WeightHypothesis2>> lWeightHyps = new ArrayList<ArrayList<WeightHypothesis2>>();
|
---|
275 | // make new hyps array
|
---|
276 | for (int i = 0; i < fWeightHyps.size(); i++) {
|
---|
277 | ArrayList<WeightHypothesis2> lTmp = new ArrayList<WeightHypothesis2>();
|
---|
278 | for (int j = 0; j < fWeightHyps.get(i).size(); j++) {
|
---|
279 | WeightHypothesis2 lHyp = new WeightHypothesis2(fUS.getDomain());
|
---|
280 | lHyp.setWeight(fWeightHyps.get(i).get(j).getWeight());
|
---|
281 | lHyp.setProbability(fWeightHyps.get(i).get(j).getProbability());
|
---|
282 | lTmp.add(lHyp);
|
---|
283 | }
|
---|
284 | lWeightHyps.add(lTmp);
|
---|
285 | }
|
---|
286 |
|
---|
287 | // for(int k=0;k<5;k++) {
|
---|
288 | for (int j = 0; j < fDomain.getIssues().size(); j++) {
|
---|
289 | double lN = 0;
|
---|
290 | double lUtility = 0;
|
---|
291 | for (int i = 0; i < fWeightHyps.get(j).size(); i++) {
|
---|
292 | // if(!lBid.getValue(j).equals(lPreviousBid.getValue(j))) {
|
---|
293 | lUtility = fWeightHyps.get(j).get(i).getWeight()
|
---|
294 | * getExpectedEvaluationValue(lBid, j)
|
---|
295 | + getPartialUtility(lBid, j);
|
---|
296 | lN += fWeightHyps.get(j).get(i).getProbability()
|
---|
297 | * conditionalDistribution(lUtility, fPreviousBidUtility);
|
---|
298 | /*
|
---|
299 | * } else { lN += fWeightHyps.get(j).get(i).getProbability(); }
|
---|
300 | */
|
---|
301 | }
|
---|
302 | // 2. receiveMessage probabilities
|
---|
303 | for (int i = 0; i < fWeightHyps.get(j).size(); i++) {
|
---|
304 | // if(!lBid.getValue(j).equals(lPreviousBid.getValue(j))) {
|
---|
305 | lUtility = fWeightHyps.get(j).get(i).getWeight()
|
---|
306 | * getExpectedEvaluationValue(lBid, j)
|
---|
307 | + getPartialUtility(lBid, j);
|
---|
308 | lWeightHyps
|
---|
309 | .get(j)
|
---|
310 | .get(i)
|
---|
311 | .setProbability(
|
---|
312 | fWeightHyps.get(j).get(i).getProbability()
|
---|
313 | * conditionalDistribution(lUtility,
|
---|
314 | fPreviousBidUtility) / lN);
|
---|
315 | /*
|
---|
316 | * } else {
|
---|
317 | * lWeightHyps.get(j).get(i).setProbability(fWeightHyps.
|
---|
318 | * get(j).get(i).getProbability()/lN); }
|
---|
319 | */
|
---|
320 | }
|
---|
321 | }
|
---|
322 | // }
|
---|
323 | fWeightHyps = lWeightHyps;
|
---|
324 | }
|
---|
325 |
|
---|
326 | public void updateEvaluationFns() throws Exception {
|
---|
327 | Bid lBid = fBiddingHistory.get(fBiddingHistory.size() - 1);
|
---|
328 | // make new hyps array
|
---|
329 | // for(int k=0;k<5;k++){
|
---|
330 | ArrayList<ArrayList<EvaluatorHypothesis>> lEvaluatorHyps = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
331 | for (int i = 0; i < fEvaluatorHyps.size(); i++) {
|
---|
332 | ArrayList<EvaluatorHypothesis> lTmp = new ArrayList<EvaluatorHypothesis>();
|
---|
333 | for (int j = 0; j < fEvaluatorHyps.get(i).size(); j++) {
|
---|
334 | EvaluatorHypothesis lHyp = new EvaluatorHypothesis(
|
---|
335 | fEvaluatorHyps.get(i).get(j).getEvaluator());
|
---|
336 | lHyp.setDesc(fEvaluatorHyps.get(i).get(j).getDesc());
|
---|
337 | lHyp.setProbability(fEvaluatorHyps.get(i).get(j)
|
---|
338 | .getProbability());
|
---|
339 | lTmp.add(lHyp);
|
---|
340 | }
|
---|
341 | lEvaluatorHyps.add(lTmp);
|
---|
342 | }
|
---|
343 |
|
---|
344 | // 1. calculate the normalization factor
|
---|
345 |
|
---|
346 | for (int i = 0; i < fDomain.getIssues().size(); i++) {
|
---|
347 | // 1. calculate the normalization factor
|
---|
348 | double lN = 0;
|
---|
349 | for (int j = 0; j < fEvaluatorHyps.get(i).size(); j++) {
|
---|
350 | EvaluatorHypothesis lHyp = fEvaluatorHyps.get(i).get(j);
|
---|
351 | lN += lHyp.getProbability()
|
---|
352 | * conditionalDistribution(
|
---|
353 | getPartialUtility(lBid, i)
|
---|
354 | + getExpectedWeight(i)
|
---|
355 | * (lHyp.getEvaluator().getEvaluation(
|
---|
356 | fUS, lBid, issues.get(i)
|
---|
357 | .getNumber())),
|
---|
358 | fPreviousBidUtility);
|
---|
359 | }
|
---|
360 | // 2. receiveMessage probabilities
|
---|
361 | for (int j = 0; j < fEvaluatorHyps.get(i).size(); j++) {
|
---|
362 | EvaluatorHypothesis lHyp = fEvaluatorHyps.get(i).get(j);
|
---|
363 | lEvaluatorHyps
|
---|
364 | .get(i)
|
---|
365 | .get(j)
|
---|
366 | .setProbability(
|
---|
367 | lHyp.getProbability()
|
---|
368 | * conditionalDistribution(
|
---|
369 | getPartialUtility(lBid, i)
|
---|
370 | + getExpectedWeight(i)
|
---|
371 | * (lHyp.getEvaluator()
|
---|
372 | .getEvaluation(
|
---|
373 | fUS,
|
---|
374 | lBid,
|
---|
375 | issues.get(
|
---|
376 | i)
|
---|
377 | .getNumber())),
|
---|
378 | fPreviousBidUtility) / lN);
|
---|
379 | }
|
---|
380 | }
|
---|
381 | fEvaluatorHyps = lEvaluatorHyps;
|
---|
382 | // }
|
---|
383 | printEvalsDistribution();
|
---|
384 | }
|
---|
385 |
|
---|
386 | public boolean haveSeenBefore(Bid pBid) {
|
---|
387 | for (Bid tmpBid : fBiddingHistory) {
|
---|
388 | if (pBid.equals(tmpBid))
|
---|
389 | return true;
|
---|
390 | }
|
---|
391 | return false;
|
---|
392 | }
|
---|
393 |
|
---|
394 | public void updateBeliefs(Bid pBid) throws Exception {
|
---|
395 | if (!isCrashed()) {
|
---|
396 | if (haveSeenBefore(pBid))
|
---|
397 | return;
|
---|
398 | fBiddingHistory.add(pBid);
|
---|
399 |
|
---|
400 | // do not receiveMessage the bids if it is the first bid
|
---|
401 | if (fBiddingHistory.size() > 1) {
|
---|
402 |
|
---|
403 | // receiveMessage the weights
|
---|
404 | updateWeights();
|
---|
405 | // receiveMessage evaluation functions
|
---|
406 | updateEvaluationFns();
|
---|
407 | } else {
|
---|
408 | // do not receiveMessage the weights
|
---|
409 | // receiveMessage evaluation functions
|
---|
410 | updateEvaluationFns();
|
---|
411 | } // if
|
---|
412 |
|
---|
413 | // System.out.println(getMaxHyp().toString());
|
---|
414 | // calculate utility of the next partner's bid according to the
|
---|
415 | // concession functions
|
---|
416 | fPreviousBidUtility = fPreviousBidUtility - 0.003;
|
---|
417 | for (int i = 0; i < fExpectedWeights.length; i++) {
|
---|
418 | fExpectedWeights[i] = getExpectedWeight(i);
|
---|
419 | }
|
---|
420 | findMinMaxUtility();
|
---|
421 | // printBestHyp();
|
---|
422 | }
|
---|
423 | }
|
---|
424 |
|
---|
425 | /**
|
---|
426 | * Plan: cache the results for pBid in a Hash table. empty the hash table
|
---|
427 | * whenever updateWeights or updateEvaluationFns is called.
|
---|
428 | *
|
---|
429 | * @param pBid
|
---|
430 | * @return weeighted utility where weights represent likelihood of each
|
---|
431 | * hypothesis
|
---|
432 | * @throws Exception
|
---|
433 | */
|
---|
434 | public double getExpectedUtility(Bid pBid) throws Exception {
|
---|
435 | // calculate expected utility
|
---|
436 | double u = 0;
|
---|
437 | for (int j = 0; j < fDomain.getIssues().size(); j++) {
|
---|
438 | // calculate expected weight of the issue
|
---|
439 | double w = fExpectedWeights[j];
|
---|
440 | /*
|
---|
441 | * for(int k=0;k<fWeightHyps.get(j).size();k++) w +=
|
---|
442 | * fWeightHyps.get(
|
---|
443 | * j).get(k).getProbability()*fWeightHyps.get(j).get(
|
---|
444 | * k).getWeight();(
|
---|
445 | */
|
---|
446 | u = u + w * getExpectedEvaluationValue(pBid, j);
|
---|
447 | }
|
---|
448 |
|
---|
449 | return u;
|
---|
450 | }
|
---|
451 |
|
---|
452 | private void printBestHyp() {
|
---|
453 | double[] lBestWeights = new double[fUS.getDomain().getIssues().size()];
|
---|
454 | EvaluatorHypothesis[] lBestEvals = new EvaluatorHypothesis[fUS
|
---|
455 | .getDomain().getIssues().size()];
|
---|
456 | for (int i = 0; i < fUS.getDomain().getIssues().size(); i++) {
|
---|
457 | // find best weight
|
---|
458 | double lMaxWeightProb = -1;
|
---|
459 | for (int j = 0; j < fWeightHyps.get(i).size(); j++) {
|
---|
460 | if (fWeightHyps.get(i).get(j).getProbability() > lMaxWeightProb) {
|
---|
461 | lMaxWeightProb = fWeightHyps.get(i).get(j).getProbability();
|
---|
462 | lBestWeights[i] = fWeightHyps.get(i).get(j).getWeight();
|
---|
463 | }
|
---|
464 | }
|
---|
465 | // find best evaluation fn
|
---|
466 | double lMaxEvalProb = -1;
|
---|
467 | for (int j = 0; j < fEvaluatorHyps.get(i).size(); j++) {
|
---|
468 | if (fEvaluatorHyps.get(i).get(j).getProbability() > lMaxEvalProb) {
|
---|
469 | lMaxEvalProb = fEvaluatorHyps.get(i).get(j)
|
---|
470 | .getProbability();
|
---|
471 | lBestEvals[i] = fEvaluatorHyps.get(i).get(j);
|
---|
472 | }
|
---|
473 | }
|
---|
474 |
|
---|
475 | }
|
---|
476 | /*
|
---|
477 | * //print all weights for(int
|
---|
478 | * i=0;i<fUS.getDomain().getIssues().size();i++) {
|
---|
479 | * System.out.print(String.format("%1.2f", getExpectedWeight(i))+";"); }
|
---|
480 | * //print all Evaluators for(int
|
---|
481 | * i=0;i<fUS.getDomain().getIssues().size();i++) {
|
---|
482 | * System.out.print(lBestEvals[i].getDesc()+";"); }
|
---|
483 | * System.out.println();
|
---|
484 | */
|
---|
485 | }
|
---|
486 |
|
---|
487 | void printEvalsDistribution() {
|
---|
488 | /*
|
---|
489 | * for(int i=0;i<fUS.getDomain().getIssues().size();i++) { for(int
|
---|
490 | * j=0;j<fEvaluatorHyps.get(i).size();j++)
|
---|
491 | * System.out.print(String.format("%1.2f",
|
---|
492 | * fEvaluatorHyps.get(i).get(j).getProbability())+";");
|
---|
493 | * System.out.println(); }
|
---|
494 | */
|
---|
495 |
|
---|
496 | }
|
---|
497 |
|
---|
498 | public double getNormalizedWeight(Issue i, int startingNumber) {
|
---|
499 | double sum = 0;
|
---|
500 | for (Issue issue : fDomain.getIssues()) {
|
---|
501 | sum += getExpectedWeight(issue.getNumber() - startingNumber);
|
---|
502 | }
|
---|
503 | return (getExpectedWeight(i.getNumber() - startingNumber)) / sum;
|
---|
504 | }
|
---|
505 |
|
---|
506 | }
|
---|