[1] | 1 | package agents.bayesianopponentmodel;
|
---|
| 2 |
|
---|
| 3 | import java.util.ArrayList;
|
---|
| 4 | import java.util.List;
|
---|
| 5 |
|
---|
| 6 | import genius.core.Bid;
|
---|
| 7 | import genius.core.issue.Issue;
|
---|
| 8 | import genius.core.issue.IssueDiscrete;
|
---|
| 9 | import genius.core.issue.IssueReal;
|
---|
| 10 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
| 11 | import genius.core.utility.EVALFUNCTYPE;
|
---|
| 12 | import genius.core.utility.EvaluatorDiscrete;
|
---|
| 13 | import genius.core.utility.EvaluatorReal;
|
---|
| 14 |
|
---|
| 15 | /**
|
---|
| 16 | * Implementation of the unscalable Bayesian Model. Only working with
|
---|
| 17 | * {@link AdditiveUtilitySpace}
|
---|
| 18 | *
|
---|
| 19 | * Opponent Modelling in Automated Multi-Issue Negotiation Using Bayesian
|
---|
| 20 | * Learning by K. Hindriks, D. Tykhonov
|
---|
| 21 | */
|
---|
| 22 | public class BayesianOpponentModel extends OpponentModel {
|
---|
| 23 |
|
---|
| 24 | private AdditiveUtilitySpace fUS;
|
---|
| 25 | private WeightHypothesis[] fWeightHyps;
|
---|
| 26 | private ArrayList<ArrayList<EvaluatorHypothesis>> fEvaluatorHyps;
|
---|
| 27 | private ArrayList<EvaluatorHypothesis[]> fEvalHyps;
|
---|
| 28 | private ArrayList<UtilitySpaceHypothesis> fUSHyps;
|
---|
| 29 | private boolean fUseMostProbableHypsOnly = false;
|
---|
| 30 | private ArrayList<UtilitySpaceHypothesis> fMostProbableUSHyps;
|
---|
| 31 | private double fPreviousBidUtility;
|
---|
| 32 | private double EXPECTED_CONCESSION_STEP = 0.035;
|
---|
| 33 | private double SIGMA = 0.25;
|
---|
| 34 | private boolean USE_DOMAIN_KNOWLEDGE = false;
|
---|
| 35 | List<Issue> issues;
|
---|
| 36 |
|
---|
| 37 | public BayesianOpponentModel(AdditiveUtilitySpace pUtilitySpace) {
|
---|
| 38 | if (pUtilitySpace == null)
|
---|
| 39 | throw new NullPointerException("pUtilitySpace=null");
|
---|
| 40 | fDomain = pUtilitySpace.getDomain();
|
---|
| 41 | fPreviousBidUtility = 1;
|
---|
| 42 | fUS = pUtilitySpace;
|
---|
| 43 | fBiddingHistory = new ArrayList<Bid>();
|
---|
| 44 | issues = fDomain.getIssues();
|
---|
| 45 | int lNumberOfHyps = factorial(issues.size());
|
---|
| 46 | fWeightHyps = new WeightHypothesis[lNumberOfHyps/* +1 */];
|
---|
| 47 | // generate all possible ordering combinations of the weights
|
---|
| 48 | int index = 0;
|
---|
| 49 | double[] P = new double[issues.size()];
|
---|
| 50 | // take care of weights normalization
|
---|
| 51 | for (int i = 0; i < issues.size(); i++)
|
---|
| 52 | P[i] = (i + 1)
|
---|
| 53 | / ((double) ((issues.size() * (fDomain.getIssues().size() + 1)) / 2.0));
|
---|
| 54 | // build all possible orderings of the weights from P
|
---|
| 55 | antilex(new Integer(index), fWeightHyps, P,
|
---|
| 56 | fDomain.getIssues().size() - 1);
|
---|
| 57 | // add the all equal hyp
|
---|
| 58 | /*
|
---|
| 59 | * WeightHypothesis allEqual = new WeightHypothesis(fDomain); for(int
|
---|
| 60 | * i=0;i< issues.size();i++) allEqual.setWeight(i,
|
---|
| 61 | * 1./((double)(issues.size()))); //set uniform probability distribution
|
---|
| 62 | * to the weights hyps fWeightHyps[fWeightHyps.length-1] = allEqual;
|
---|
| 63 | */
|
---|
| 64 | for (int i = 0; i < fWeightHyps.length; i++)
|
---|
| 65 | fWeightHyps[i].setProbability(1. / fWeightHyps.length);
|
---|
| 66 | // generate all possible hyps of evaluation functions (arraylist with
|
---|
| 67 | // length issues with an arraylist of length values for each issue)
|
---|
| 68 | fEvaluatorHyps = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
| 69 | int lTotalTriangularFns = 1;
|
---|
| 70 | for (int i = 0; i < fUS.getNrOfEvaluators(); i++) {
|
---|
| 71 | ArrayList<EvaluatorHypothesis> lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
| 72 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
| 73 | fEvaluatorHyps.add(lEvalHyps);
|
---|
| 74 | switch (fUS.getEvaluator(issues.get(i).getNumber()).getType()) {
|
---|
| 75 |
|
---|
| 76 | case REAL:
|
---|
| 77 | // EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
| 78 | IssueReal lIssue = (IssueReal) (fDomain.getIssues().get(i));
|
---|
| 79 | EvaluatorReal lHypEval = new EvaluatorReal();
|
---|
| 80 | EvaluatorHypothesis lEvaluatorHypothesis;
|
---|
| 81 | if (USE_DOMAIN_KNOWLEDGE) {
|
---|
| 82 | // uphill
|
---|
| 83 | lHypEval = new EvaluatorReal();
|
---|
| 84 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 85 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 86 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
| 87 | lHypEval.addParam(1,
|
---|
| 88 | 1. / (lHypEval.getUpperBound() - lHypEval
|
---|
| 89 | .getLowerBound()));
|
---|
| 90 | lHypEval.addParam(
|
---|
| 91 | 0,
|
---|
| 92 | -lHypEval.getLowerBound()
|
---|
| 93 | / (lHypEval.getUpperBound() - lHypEval
|
---|
| 94 | .getLowerBound()));
|
---|
| 95 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
| 96 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 97 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 98 |
|
---|
| 99 | } else {
|
---|
| 100 | // uphill
|
---|
| 101 | lHypEval = new EvaluatorReal();
|
---|
| 102 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 103 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 104 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
| 105 | lHypEval.addParam(1,
|
---|
| 106 | 1. / (lHypEval.getUpperBound() - lHypEval
|
---|
| 107 | .getLowerBound()));
|
---|
| 108 | lHypEval.addParam(
|
---|
| 109 | 0,
|
---|
| 110 | -lHypEval.getLowerBound()
|
---|
| 111 | / (lHypEval.getUpperBound() - lHypEval
|
---|
| 112 | .getLowerBound()));
|
---|
| 113 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
| 114 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 115 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 116 | // downhill
|
---|
| 117 | lHypEval = new EvaluatorReal();
|
---|
| 118 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 119 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 120 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
| 121 | lHypEval.addParam(
|
---|
| 122 | 1,
|
---|
| 123 | -1.0
|
---|
| 124 | / (lHypEval.getUpperBound() - lHypEval
|
---|
| 125 | .getLowerBound()));
|
---|
| 126 | lHypEval.addParam(
|
---|
| 127 | 0,
|
---|
| 128 | 1.0
|
---|
| 129 | + lHypEval.getLowerBound()
|
---|
| 130 | / (lHypEval.getUpperBound() - lHypEval
|
---|
| 131 | .getLowerBound()));
|
---|
| 132 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
| 133 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 134 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
| 135 | // triangular
|
---|
| 136 | for (int k = 1; k <= lTotalTriangularFns; k++) {
|
---|
| 137 | // triangular
|
---|
| 138 | lHypEval = new EvaluatorReal();
|
---|
| 139 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 140 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 141 | lHypEval.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
| 142 | lHypEval.addParam(0, lHypEval.getLowerBound());
|
---|
| 143 | lHypEval.addParam(1, lHypEval.getUpperBound());
|
---|
| 144 | lHypEval.addParam(
|
---|
| 145 | 2,
|
---|
| 146 | lHypEval.getLowerBound()
|
---|
| 147 | + (double) k
|
---|
| 148 | * (lHypEval.getUpperBound() - lHypEval
|
---|
| 149 | .getLowerBound())
|
---|
| 150 | / (lTotalTriangularFns + 1));
|
---|
| 151 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
| 152 | lEvaluatorHypothesis.setProbability((double) 1 / 3);
|
---|
| 153 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 154 | lEvaluatorHypothesis.setDesc("triangular");
|
---|
| 155 | }
|
---|
| 156 | }
|
---|
| 157 | for (int k = 0; k < lEvalHyps.size(); k++) {
|
---|
| 158 | lEvalHyps.get(k).setProbability(
|
---|
| 159 | (double) 1 / lEvalHyps.size());
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | break;
|
---|
| 163 | // for each issue three possible hypothesis are generated
|
---|
| 164 | case DISCRETE:
|
---|
| 165 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
| 166 | fEvaluatorHyps.add(lEvalHyps);
|
---|
| 167 | // EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
| 168 | IssueDiscrete lDiscIssue = (IssueDiscrete) (fDomain.getIssues()
|
---|
| 169 | .get(i));
|
---|
| 170 | if (USE_DOMAIN_KNOWLEDGE) {
|
---|
| 171 | // uphill
|
---|
| 172 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 173 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
| 174 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
| 175 | 1000 * j);
|
---|
| 176 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 177 | lDiscreteEval);
|
---|
| 178 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 179 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 180 |
|
---|
| 181 | } else {
|
---|
| 182 | // uphill (from 1 to 1000 * valueCount + 1)
|
---|
| 183 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 184 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
| 185 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
| 186 | 1000 * j + 1);
|
---|
| 187 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 188 | lDiscreteEval);
|
---|
| 189 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 190 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 191 | // downhill
|
---|
| 192 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 193 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
| 194 | lDiscreteEval
|
---|
| 195 | .addEvaluation(lDiscIssue.getValue(j),
|
---|
| 196 | 1000 * (lDiscIssue.getNumberOfValues()
|
---|
| 197 | - j - 1) + 1);
|
---|
| 198 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 199 | lDiscreteEval);
|
---|
| 200 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 201 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
| 202 | // triangular
|
---|
| 203 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 204 | int halfway = lDiscIssue.getNumberOfValues() / 2;
|
---|
| 205 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
| 206 | if (j < halfway)
|
---|
| 207 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
| 208 | 1000 * j + 1);
|
---|
| 209 | // (double)j/(((double)(lDiscIssue.getNumberOfValues()-2))/2));
|
---|
| 210 | else
|
---|
| 211 | lDiscreteEval
|
---|
| 212 | .addEvaluation(
|
---|
| 213 | lDiscIssue.getValue(j),
|
---|
| 214 | 1000 * (lDiscIssue
|
---|
| 215 | .getNumberOfValues() - j - 1) + 1);
|
---|
| 216 | // 1.0-(j-((double)(lDiscIssue.getNumberOfValues())-1)/2)/(((double)(lDiscIssue.getNumberOfValues())-1)-((double)(lDiscIssue.getNumberOfValues())-1)/2));
|
---|
| 217 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 218 | lDiscreteEval);
|
---|
| 219 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 220 | lEvaluatorHypothesis.setDesc("triangular");
|
---|
| 221 | }
|
---|
| 222 | break;
|
---|
| 223 |
|
---|
| 224 | }
|
---|
| 225 | }
|
---|
| 226 | // each issue is estimated by a uphill, downhill, or triangular function
|
---|
| 227 | // an hypothesis about the space, is therefore a choice for uphill,
|
---|
| 228 | // downhill, or triangular for each issue.
|
---|
| 229 | // For example; if there are 6 issues, then there are 3^6 possible
|
---|
| 230 | // combinations for the issues alone!
|
---|
| 231 | buildEvaluationHyps();
|
---|
| 232 | // createFrom all hypothesis, all combinations of weights hypothesis and
|
---|
| 233 | // evaluations.
|
---|
| 234 | // For example, if there are 6 issues, then there are 6! possible weight
|
---|
| 235 | // orderings, which
|
---|
| 236 | // with all 3^6 evaluation hypothesis leads to 6! * 3^6 combinations.
|
---|
| 237 | buildUniformHyps();
|
---|
| 238 | }
|
---|
| 239 |
|
---|
| 240 | private void buildUniformHyps() {
|
---|
| 241 | fUSHyps = new ArrayList<UtilitySpaceHypothesis>();
|
---|
| 242 | for (int i = 0; i < fWeightHyps.length; i++) {
|
---|
| 243 | // EvaluatorHypothesis[] lEvalHyps = new
|
---|
| 244 | // EvaluatorHypothesis[fUS.getNrOfEvaluators()];
|
---|
| 245 | for (int j = 0; j < fEvalHyps.size(); j++) {
|
---|
| 246 | UtilitySpaceHypothesis lUSHyp = new UtilitySpaceHypothesis(
|
---|
| 247 | fDomain, fUS, fWeightHyps[i], fEvalHyps.get(j));
|
---|
| 248 | fUSHyps.add(lUSHyp);
|
---|
| 249 | }
|
---|
| 250 | }
|
---|
| 251 | // normalize intial utilities
|
---|
| 252 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 253 | fUSHyps.get(i).setProbability(1 / (double) (fUSHyps.size()));
|
---|
| 254 | }
|
---|
| 255 | }
|
---|
| 256 |
|
---|
| 257 | private void reverse(double[] P, int m) {
|
---|
| 258 | int i = 0, j = m;
|
---|
| 259 | while (i < j) {
|
---|
| 260 | // swap elements i and j
|
---|
| 261 | double lTmp = P[i];
|
---|
| 262 | P[i] = P[j];
|
---|
| 263 | P[j] = lTmp;
|
---|
| 264 | ++i;
|
---|
| 265 | --j;
|
---|
| 266 | }
|
---|
| 267 | }
|
---|
| 268 |
|
---|
| 269 | private Integer antilex(Integer index, WeightHypothesis[] hyps, double[] P,
|
---|
| 270 | int m) {
|
---|
| 271 | if (m == 0) {
|
---|
| 272 | WeightHypothesis lWH = new WeightHypothesis(fDomain);
|
---|
| 273 | for (int i = 0; i < P.length; i++)
|
---|
| 274 | lWH.setWeight(i, P[i]);
|
---|
| 275 | hyps[index] = lWH;
|
---|
| 276 | index++;
|
---|
| 277 | } else {
|
---|
| 278 | for (int i = 0; i <= m; i++) {
|
---|
| 279 | index = antilex(index, hyps, P, m - 1);
|
---|
| 280 | if (i < m) {
|
---|
| 281 | // swap elements i and m
|
---|
| 282 | double lTmp = P[i];
|
---|
| 283 | P[i] = P[m];
|
---|
| 284 | P[m] = lTmp;
|
---|
| 285 | reverse(P, m - 1);
|
---|
| 286 | } // if
|
---|
| 287 | }
|
---|
| 288 | }
|
---|
| 289 | return index;
|
---|
| 290 | }
|
---|
| 291 |
|
---|
| 292 | private double conditionalDistribution(double pUtility,
|
---|
| 293 | double pPreviousBidUtility) {
|
---|
| 294 | // TODO: check this conditionb
|
---|
| 295 | if (pPreviousBidUtility < pUtility)
|
---|
| 296 | return 0;
|
---|
| 297 | else {
|
---|
| 298 |
|
---|
| 299 | double x = (pPreviousBidUtility - pUtility) / pPreviousBidUtility;
|
---|
| 300 | double lResult = 1 / (SIGMA * Math.sqrt(2 * Math.PI))
|
---|
| 301 | * Math.exp(-(x * x) / (2 * SIGMA * SIGMA));
|
---|
| 302 | return lResult;
|
---|
| 303 | }
|
---|
| 304 | }
|
---|
| 305 |
|
---|
| 306 | public void updateBeliefs(Bid pBid) throws Exception {
|
---|
| 307 | fBiddingHistory.add(pBid);
|
---|
| 308 | if (haveSeenBefore(pBid))
|
---|
| 309 | return;
|
---|
| 310 | // calculate full probability for the given bid
|
---|
| 311 | double lFullProb = 0;
|
---|
| 312 | double lMaxProb = 0;
|
---|
| 313 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 314 | UtilitySpaceHypothesis hyp = fUSHyps.get(i);
|
---|
| 315 | double condDistrib = hyp.getProbability()
|
---|
| 316 | * conditionalDistribution(fUSHyps.get(i).getUtility(pBid),
|
---|
| 317 | fPreviousBidUtility);
|
---|
| 318 | lFullProb += condDistrib;
|
---|
| 319 | if (condDistrib > lMaxProb)
|
---|
| 320 | lMaxProb = condDistrib;
|
---|
| 321 | hyp.setProbability(condDistrib);
|
---|
| 322 | }
|
---|
| 323 | if (fUseMostProbableHypsOnly)
|
---|
| 324 | fMostProbableUSHyps = new ArrayList<UtilitySpaceHypothesis>();
|
---|
| 325 | // receiveMessage the weights hyps and evaluators hyps
|
---|
| 326 | double lMostProbableHypFullProb = 0;
|
---|
| 327 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 328 | UtilitySpaceHypothesis hyp = fUSHyps.get(i);
|
---|
| 329 | double normalizedProbability = hyp.getProbability() / lFullProb;
|
---|
| 330 | hyp.setProbability(normalizedProbability);
|
---|
| 331 | if (fUseMostProbableHypsOnly)
|
---|
| 332 | if (normalizedProbability > lMaxProb * 0.99 / lFullProb) {
|
---|
| 333 | fMostProbableUSHyps.add(hyp);
|
---|
| 334 | lMostProbableHypFullProb += normalizedProbability;
|
---|
| 335 | }
|
---|
| 336 | }
|
---|
| 337 | if (fUseMostProbableHypsOnly) {
|
---|
| 338 | for (int i = 0; i < fMostProbableUSHyps.size(); i++) {
|
---|
| 339 | UtilitySpaceHypothesis hyp = fMostProbableUSHyps.get(i);
|
---|
| 340 | double normalizedProbability = hyp.getProbability()
|
---|
| 341 | / lMostProbableHypFullProb;
|
---|
| 342 | hyp.setProbability(normalizedProbability);
|
---|
| 343 | }
|
---|
| 344 | }
|
---|
| 345 |
|
---|
| 346 | /*
|
---|
| 347 | * sortHyps(); for(int i=0;i<10;i++) {
|
---|
| 348 | * System.out.println(fUSHyps.get(i).toString()); }
|
---|
| 349 | */
|
---|
| 350 | System.out.println("BA: Using "
|
---|
| 351 | + String.valueOf(fMostProbableUSHyps.size()) + " out of "
|
---|
| 352 | + String.valueOf(fUSHyps.size()) + "hyps");
|
---|
| 353 | System.out.println(getMaxHyp().toString());
|
---|
| 354 | // calculate utility of the next partner's bid according to the
|
---|
| 355 | // concession functions
|
---|
| 356 | fPreviousBidUtility = fPreviousBidUtility - EXPECTED_CONCESSION_STEP;
|
---|
| 357 | // findMinMaxUtility();
|
---|
| 358 | }
|
---|
| 359 |
|
---|
| 360 | private void buildEvaluationHypsRecursive(
|
---|
| 361 | ArrayList<EvaluatorHypothesis[]> pHyps,
|
---|
| 362 | EvaluatorHypothesis[] pEval, int m) {
|
---|
| 363 | if (m == 0) {
|
---|
| 364 | ArrayList<EvaluatorHypothesis> lEvalHyps = fEvaluatorHyps.get(fUS
|
---|
| 365 | .getNrOfEvaluators() - 1);
|
---|
| 366 | for (int i = 0; i < lEvalHyps.size(); i++) {
|
---|
| 367 | pEval[fUS.getNrOfEvaluators() - 1] = lEvalHyps.get(i);
|
---|
| 368 | EvaluatorHypothesis[] lTmp = new EvaluatorHypothesis[fUS
|
---|
| 369 | .getNrOfEvaluators()];
|
---|
| 370 | // copy to temp array
|
---|
| 371 | for (int j = 0; j < lTmp.length; j++)
|
---|
| 372 | lTmp[j] = pEval[j];
|
---|
| 373 | pHyps.add(lTmp);
|
---|
| 374 | }
|
---|
| 375 | } else {
|
---|
| 376 | ArrayList<EvaluatorHypothesis> lEvalHyps = fEvaluatorHyps.get(fUS
|
---|
| 377 | .getNrOfEvaluators() - m - 1);
|
---|
| 378 | for (int i = 0; i < lEvalHyps.size(); i++) {
|
---|
| 379 | pEval[fUS.getNrOfEvaluators() - m - 1] = lEvalHyps.get(i);
|
---|
| 380 | buildEvaluationHypsRecursive(pHyps, pEval, m - 1);
|
---|
| 381 | }
|
---|
| 382 | }
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 | private void buildEvaluationHyps() {
|
---|
| 386 | fEvalHyps = new ArrayList<EvaluatorHypothesis[]>();
|
---|
| 387 | EvaluatorHypothesis[] lTmp = new EvaluatorHypothesis[fUS
|
---|
| 388 | .getNrOfEvaluators()];
|
---|
| 389 | buildEvaluationHypsRecursive(fEvalHyps, lTmp,
|
---|
| 390 | fUS.getNrOfEvaluators() - 1);
|
---|
| 391 | }
|
---|
| 392 |
|
---|
| 393 | public double getExpectedUtility(Bid pBid) throws Exception {
|
---|
| 394 | double lExpectedUtility = 0;
|
---|
| 395 | if (fUseMostProbableHypsOnly && (fMostProbableUSHyps != null)) {
|
---|
| 396 | for (int i = 0; i < fMostProbableUSHyps.size(); i++) {
|
---|
| 397 | UtilitySpaceHypothesis lUSHyp = fMostProbableUSHyps.get(i);
|
---|
| 398 | double p = lUSHyp.getProbability();
|
---|
| 399 | double u = lUSHyp.getUtility(pBid);
|
---|
| 400 | lExpectedUtility += p * u;
|
---|
| 401 | }
|
---|
| 402 | } else {
|
---|
| 403 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 404 | UtilitySpaceHypothesis lUSHyp = fUSHyps.get(i);
|
---|
| 405 | double p = lUSHyp.getProbability();
|
---|
| 406 | double u = lUSHyp.getUtility(pBid);
|
---|
| 407 | lExpectedUtility += p * u;
|
---|
| 408 | }
|
---|
| 409 | }
|
---|
| 410 | return lExpectedUtility;
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 | public double getExpectedWeight(int pIssueNumber) {
|
---|
| 414 | double lExpectedWeight = 0;
|
---|
| 415 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 416 | UtilitySpaceHypothesis lUSHyp = fUSHyps.get(i);
|
---|
| 417 | double p = lUSHyp.getProbability();
|
---|
| 418 | double u = lUSHyp.getHeightHyp().getWeight(pIssueNumber);
|
---|
| 419 | lExpectedWeight += p * u;
|
---|
| 420 | }
|
---|
| 421 | return lExpectedWeight;
|
---|
| 422 | }
|
---|
| 423 |
|
---|
| 424 | public double getNormalizedWeight(Issue i, int startingNumber) {
|
---|
| 425 | double sum = 0;
|
---|
| 426 | for (Issue issue : fDomain.getIssues()) {
|
---|
| 427 | sum += getExpectedWeight(issue.getNumber() - startingNumber);
|
---|
| 428 | }
|
---|
| 429 | return (getExpectedWeight(i.getNumber() - startingNumber)) / sum;
|
---|
| 430 | }
|
---|
| 431 |
|
---|
| 432 | private UtilitySpaceHypothesis getMaxHyp() {
|
---|
| 433 | UtilitySpaceHypothesis lHyp = fUSHyps.get(0);
|
---|
| 434 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 435 | if (lHyp.getProbability() < fUSHyps.get(i).getProbability())
|
---|
| 436 | lHyp = fUSHyps.get(i);
|
---|
| 437 | }
|
---|
| 438 | return lHyp;
|
---|
| 439 | }
|
---|
| 440 |
|
---|
| 441 | /*
|
---|
| 442 | * public double getExpectedUtility(Bid pBid) { double lExpectedUtility = 0;
|
---|
| 443 | * for(int i=0;i<fWeightHyps.length;i++) { WeightHypothesis lWeightHyp =
|
---|
| 444 | * fWeightHyps[i]; double p = lWeightHyp.getProbability(); double u = 0;
|
---|
| 445 | * for(int j=0;j<fEvalHyps.size();j++) { EvaluatorHypothesis[] lHyp =
|
---|
| 446 | * fEvalHyps.get(j); //calculate evaluation value and probability for(int
|
---|
| 447 | * k=0;k<lHyp.length;k++) { p = p*lHyp[k].getProbability(); u = u +
|
---|
| 448 | * lWeightHyp
|
---|
| 449 | * .getWeight(k)*(Double)(lHyp[k].getEvaluator().getEvaluation(fUS, pBid,
|
---|
| 450 | * k)); } lExpectedUtility = lExpectedUtility+ p*u; } } return 0; }
|
---|
| 451 | */
|
---|
| 452 | // Evaluate n!
|
---|
| 453 | private int factorial(int n) {
|
---|
| 454 | if (n <= 1) // base case
|
---|
| 455 | return 1;
|
---|
| 456 | else
|
---|
| 457 | return n * factorial(n - 1);
|
---|
| 458 | }
|
---|
| 459 |
|
---|
| 460 | public void setMostProbableUSHypsOnly(boolean value) {
|
---|
| 461 | fUseMostProbableHypsOnly = value;
|
---|
| 462 | }
|
---|
| 463 |
|
---|
| 464 | protected class HypsComparator implements java.util.Comparator {
|
---|
| 465 | public int compare(Object o1, Object o2) throws ClassCastException {
|
---|
| 466 | if (!(o1 instanceof UtilitySpaceHypothesis)) {
|
---|
| 467 | throw new ClassCastException();
|
---|
| 468 | }
|
---|
| 469 | if (!(o2 instanceof UtilitySpaceHypothesis)) {
|
---|
| 470 | throw new ClassCastException();
|
---|
| 471 | }
|
---|
| 472 | double d1 = ((UtilitySpaceHypothesis) o1).getProbability();
|
---|
| 473 | double d2 = ((UtilitySpaceHypothesis) o2).getProbability();
|
---|
| 474 |
|
---|
| 475 | if (d1 > d2) {
|
---|
| 476 | return -1;
|
---|
| 477 | } else if (d1 < d2) {
|
---|
| 478 | return 1;
|
---|
| 479 | } else {
|
---|
| 480 | return 0;
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 | }
|
---|
| 484 |
|
---|
| 485 | }
|
---|