1 | package agents.bayesianopponentmodel;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 | import java.util.List;
|
---|
5 |
|
---|
6 | import genius.core.Bid;
|
---|
7 | import genius.core.issue.Issue;
|
---|
8 | import genius.core.issue.IssueDiscrete;
|
---|
9 | import genius.core.issue.IssueReal;
|
---|
10 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
11 | import genius.core.utility.EVALFUNCTYPE;
|
---|
12 | import genius.core.utility.EvaluatorDiscrete;
|
---|
13 | import genius.core.utility.EvaluatorReal;
|
---|
14 |
|
---|
15 | /**
|
---|
16 | * Implementation of the unscalable Bayesian Model. Only working with
|
---|
17 | * {@link AdditiveUtilitySpace}
|
---|
18 | *
|
---|
19 | * Opponent Modelling in Automated Multi-Issue Negotiation Using Bayesian
|
---|
20 | * Learning by K. Hindriks, D. Tykhonov
|
---|
21 | */
|
---|
22 | public class BayesianOpponentModel extends OpponentModel {
|
---|
23 |
|
---|
24 | private AdditiveUtilitySpace fUS;
|
---|
25 | private WeightHypothesis[] fWeightHyps;
|
---|
26 | private ArrayList<ArrayList<EvaluatorHypothesis>> fEvaluatorHyps;
|
---|
27 | private ArrayList<EvaluatorHypothesis[]> fEvalHyps;
|
---|
28 | private ArrayList<UtilitySpaceHypothesis> fUSHyps;
|
---|
29 | private boolean fUseMostProbableHypsOnly = false;
|
---|
30 | private ArrayList<UtilitySpaceHypothesis> fMostProbableUSHyps;
|
---|
31 | private double fPreviousBidUtility;
|
---|
32 | private double EXPECTED_CONCESSION_STEP = 0.035;
|
---|
33 | private double SIGMA = 0.25;
|
---|
34 | private boolean USE_DOMAIN_KNOWLEDGE = false;
|
---|
35 | List<Issue> issues;
|
---|
36 |
|
---|
37 | public BayesianOpponentModel(AdditiveUtilitySpace pUtilitySpace) {
|
---|
38 | if (pUtilitySpace == null)
|
---|
39 | throw new NullPointerException("pUtilitySpace=null");
|
---|
40 | fDomain = pUtilitySpace.getDomain();
|
---|
41 | fPreviousBidUtility = 1;
|
---|
42 | fUS = pUtilitySpace;
|
---|
43 | fBiddingHistory = new ArrayList<Bid>();
|
---|
44 | issues = fDomain.getIssues();
|
---|
45 | int lNumberOfHyps = factorial(issues.size());
|
---|
46 | fWeightHyps = new WeightHypothesis[lNumberOfHyps/* +1 */];
|
---|
47 | // generate all possible ordering combinations of the weights
|
---|
48 | int index = 0;
|
---|
49 | double[] P = new double[issues.size()];
|
---|
50 | // take care of weights normalization
|
---|
51 | for (int i = 0; i < issues.size(); i++)
|
---|
52 | P[i] = (i + 1)
|
---|
53 | / ((double) ((issues.size() * (fDomain.getIssues().size() + 1)) / 2.0));
|
---|
54 | // build all possible orderings of the weights from P
|
---|
55 | antilex(new Integer(index), fWeightHyps, P,
|
---|
56 | fDomain.getIssues().size() - 1);
|
---|
57 | // add the all equal hyp
|
---|
58 | /*
|
---|
59 | * WeightHypothesis allEqual = new WeightHypothesis(fDomain); for(int
|
---|
60 | * i=0;i< issues.size();i++) allEqual.setWeight(i,
|
---|
61 | * 1./((double)(issues.size()))); //set uniform probability distribution
|
---|
62 | * to the weights hyps fWeightHyps[fWeightHyps.length-1] = allEqual;
|
---|
63 | */
|
---|
64 | for (int i = 0; i < fWeightHyps.length; i++)
|
---|
65 | fWeightHyps[i].setProbability(1. / fWeightHyps.length);
|
---|
66 | // generate all possible hyps of evaluation functions (arraylist with
|
---|
67 | // length issues with an arraylist of length values for each issue)
|
---|
68 | fEvaluatorHyps = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
69 | int lTotalTriangularFns = 1;
|
---|
70 | for (int i = 0; i < fUS.getNrOfEvaluators(); i++) {
|
---|
71 | ArrayList<EvaluatorHypothesis> lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
72 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
73 | fEvaluatorHyps.add(lEvalHyps);
|
---|
74 | switch (fUS.getEvaluator(issues.get(i).getNumber()).getType()) {
|
---|
75 |
|
---|
76 | case REAL:
|
---|
77 | // EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
78 | IssueReal lIssue = (IssueReal) (fDomain.getIssues().get(i));
|
---|
79 | EvaluatorReal lHypEval = new EvaluatorReal();
|
---|
80 | EvaluatorHypothesis lEvaluatorHypothesis;
|
---|
81 | if (USE_DOMAIN_KNOWLEDGE) {
|
---|
82 | // uphill
|
---|
83 | lHypEval = new EvaluatorReal();
|
---|
84 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
85 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
86 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
87 | lHypEval.addParam(1,
|
---|
88 | 1. / (lHypEval.getUpperBound() - lHypEval
|
---|
89 | .getLowerBound()));
|
---|
90 | lHypEval.addParam(
|
---|
91 | 0,
|
---|
92 | -lHypEval.getLowerBound()
|
---|
93 | / (lHypEval.getUpperBound() - lHypEval
|
---|
94 | .getLowerBound()));
|
---|
95 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
96 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
97 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
98 |
|
---|
99 | } else {
|
---|
100 | // uphill
|
---|
101 | lHypEval = new EvaluatorReal();
|
---|
102 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
103 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
104 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
105 | lHypEval.addParam(1,
|
---|
106 | 1. / (lHypEval.getUpperBound() - lHypEval
|
---|
107 | .getLowerBound()));
|
---|
108 | lHypEval.addParam(
|
---|
109 | 0,
|
---|
110 | -lHypEval.getLowerBound()
|
---|
111 | / (lHypEval.getUpperBound() - lHypEval
|
---|
112 | .getLowerBound()));
|
---|
113 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
114 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
115 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
116 | // downhill
|
---|
117 | lHypEval = new EvaluatorReal();
|
---|
118 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
119 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
120 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
121 | lHypEval.addParam(
|
---|
122 | 1,
|
---|
123 | -1.0
|
---|
124 | / (lHypEval.getUpperBound() - lHypEval
|
---|
125 | .getLowerBound()));
|
---|
126 | lHypEval.addParam(
|
---|
127 | 0,
|
---|
128 | 1.0
|
---|
129 | + lHypEval.getLowerBound()
|
---|
130 | / (lHypEval.getUpperBound() - lHypEval
|
---|
131 | .getLowerBound()));
|
---|
132 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
133 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
134 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
135 | // triangular
|
---|
136 | for (int k = 1; k <= lTotalTriangularFns; k++) {
|
---|
137 | // triangular
|
---|
138 | lHypEval = new EvaluatorReal();
|
---|
139 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
140 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
141 | lHypEval.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
142 | lHypEval.addParam(0, lHypEval.getLowerBound());
|
---|
143 | lHypEval.addParam(1, lHypEval.getUpperBound());
|
---|
144 | lHypEval.addParam(
|
---|
145 | 2,
|
---|
146 | lHypEval.getLowerBound()
|
---|
147 | + (double) k
|
---|
148 | * (lHypEval.getUpperBound() - lHypEval
|
---|
149 | .getLowerBound())
|
---|
150 | / (lTotalTriangularFns + 1));
|
---|
151 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
152 | lEvaluatorHypothesis.setProbability((double) 1 / 3);
|
---|
153 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
154 | lEvaluatorHypothesis.setDesc("triangular");
|
---|
155 | }
|
---|
156 | }
|
---|
157 | for (int k = 0; k < lEvalHyps.size(); k++) {
|
---|
158 | lEvalHyps.get(k).setProbability(
|
---|
159 | (double) 1 / lEvalHyps.size());
|
---|
160 | }
|
---|
161 |
|
---|
162 | break;
|
---|
163 | // for each issue three possible hypothesis are generated
|
---|
164 | case DISCRETE:
|
---|
165 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
166 | fEvaluatorHyps.add(lEvalHyps);
|
---|
167 | // EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
168 | IssueDiscrete lDiscIssue = (IssueDiscrete) (fDomain.getIssues()
|
---|
169 | .get(i));
|
---|
170 | if (USE_DOMAIN_KNOWLEDGE) {
|
---|
171 | // uphill
|
---|
172 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
173 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
174 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
175 | 1000 * j);
|
---|
176 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
177 | lDiscreteEval);
|
---|
178 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
179 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
180 |
|
---|
181 | } else {
|
---|
182 | // uphill (from 1 to 1000 * valueCount + 1)
|
---|
183 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
184 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
185 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
186 | 1000 * j + 1);
|
---|
187 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
188 | lDiscreteEval);
|
---|
189 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
190 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
191 | // downhill
|
---|
192 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
193 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
194 | lDiscreteEval
|
---|
195 | .addEvaluation(lDiscIssue.getValue(j),
|
---|
196 | 1000 * (lDiscIssue.getNumberOfValues()
|
---|
197 | - j - 1) + 1);
|
---|
198 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
199 | lDiscreteEval);
|
---|
200 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
201 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
202 | // triangular
|
---|
203 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
204 | int halfway = lDiscIssue.getNumberOfValues() / 2;
|
---|
205 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
206 | if (j < halfway)
|
---|
207 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
208 | 1000 * j + 1);
|
---|
209 | // (double)j/(((double)(lDiscIssue.getNumberOfValues()-2))/2));
|
---|
210 | else
|
---|
211 | lDiscreteEval
|
---|
212 | .addEvaluation(
|
---|
213 | lDiscIssue.getValue(j),
|
---|
214 | 1000 * (lDiscIssue
|
---|
215 | .getNumberOfValues() - j - 1) + 1);
|
---|
216 | // 1.0-(j-((double)(lDiscIssue.getNumberOfValues())-1)/2)/(((double)(lDiscIssue.getNumberOfValues())-1)-((double)(lDiscIssue.getNumberOfValues())-1)/2));
|
---|
217 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
218 | lDiscreteEval);
|
---|
219 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
220 | lEvaluatorHypothesis.setDesc("triangular");
|
---|
221 | }
|
---|
222 | break;
|
---|
223 |
|
---|
224 | }
|
---|
225 | }
|
---|
226 | // each issue is estimated by a uphill, downhill, or triangular function
|
---|
227 | // an hypothesis about the space, is therefore a choice for uphill,
|
---|
228 | // downhill, or triangular for each issue.
|
---|
229 | // For example; if there are 6 issues, then there are 3^6 possible
|
---|
230 | // combinations for the issues alone!
|
---|
231 | buildEvaluationHyps();
|
---|
232 | // createFrom all hypothesis, all combinations of weights hypothesis and
|
---|
233 | // evaluations.
|
---|
234 | // For example, if there are 6 issues, then there are 6! possible weight
|
---|
235 | // orderings, which
|
---|
236 | // with all 3^6 evaluation hypothesis leads to 6! * 3^6 combinations.
|
---|
237 | buildUniformHyps();
|
---|
238 | }
|
---|
239 |
|
---|
240 | private void buildUniformHyps() {
|
---|
241 | fUSHyps = new ArrayList<UtilitySpaceHypothesis>();
|
---|
242 | for (int i = 0; i < fWeightHyps.length; i++) {
|
---|
243 | // EvaluatorHypothesis[] lEvalHyps = new
|
---|
244 | // EvaluatorHypothesis[fUS.getNrOfEvaluators()];
|
---|
245 | for (int j = 0; j < fEvalHyps.size(); j++) {
|
---|
246 | UtilitySpaceHypothesis lUSHyp = new UtilitySpaceHypothesis(
|
---|
247 | fDomain, fUS, fWeightHyps[i], fEvalHyps.get(j));
|
---|
248 | fUSHyps.add(lUSHyp);
|
---|
249 | }
|
---|
250 | }
|
---|
251 | // normalize intial utilities
|
---|
252 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
253 | fUSHyps.get(i).setProbability(1 / (double) (fUSHyps.size()));
|
---|
254 | }
|
---|
255 | }
|
---|
256 |
|
---|
257 | private void reverse(double[] P, int m) {
|
---|
258 | int i = 0, j = m;
|
---|
259 | while (i < j) {
|
---|
260 | // swap elements i and j
|
---|
261 | double lTmp = P[i];
|
---|
262 | P[i] = P[j];
|
---|
263 | P[j] = lTmp;
|
---|
264 | ++i;
|
---|
265 | --j;
|
---|
266 | }
|
---|
267 | }
|
---|
268 |
|
---|
269 | private Integer antilex(Integer index, WeightHypothesis[] hyps, double[] P,
|
---|
270 | int m) {
|
---|
271 | if (m == 0) {
|
---|
272 | WeightHypothesis lWH = new WeightHypothesis(fDomain);
|
---|
273 | for (int i = 0; i < P.length; i++)
|
---|
274 | lWH.setWeight(i, P[i]);
|
---|
275 | hyps[index] = lWH;
|
---|
276 | index++;
|
---|
277 | } else {
|
---|
278 | for (int i = 0; i <= m; i++) {
|
---|
279 | index = antilex(index, hyps, P, m - 1);
|
---|
280 | if (i < m) {
|
---|
281 | // swap elements i and m
|
---|
282 | double lTmp = P[i];
|
---|
283 | P[i] = P[m];
|
---|
284 | P[m] = lTmp;
|
---|
285 | reverse(P, m - 1);
|
---|
286 | } // if
|
---|
287 | }
|
---|
288 | }
|
---|
289 | return index;
|
---|
290 | }
|
---|
291 |
|
---|
292 | private double conditionalDistribution(double pUtility,
|
---|
293 | double pPreviousBidUtility) {
|
---|
294 | // TODO: check this conditionb
|
---|
295 | if (pPreviousBidUtility < pUtility)
|
---|
296 | return 0;
|
---|
297 | else {
|
---|
298 |
|
---|
299 | double x = (pPreviousBidUtility - pUtility) / pPreviousBidUtility;
|
---|
300 | double lResult = 1 / (SIGMA * Math.sqrt(2 * Math.PI))
|
---|
301 | * Math.exp(-(x * x) / (2 * SIGMA * SIGMA));
|
---|
302 | return lResult;
|
---|
303 | }
|
---|
304 | }
|
---|
305 |
|
---|
306 | public void updateBeliefs(Bid pBid) throws Exception {
|
---|
307 | fBiddingHistory.add(pBid);
|
---|
308 | if (haveSeenBefore(pBid))
|
---|
309 | return;
|
---|
310 | // calculate full probability for the given bid
|
---|
311 | double lFullProb = 0;
|
---|
312 | double lMaxProb = 0;
|
---|
313 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
314 | UtilitySpaceHypothesis hyp = fUSHyps.get(i);
|
---|
315 | double condDistrib = hyp.getProbability()
|
---|
316 | * conditionalDistribution(fUSHyps.get(i).getUtility(pBid),
|
---|
317 | fPreviousBidUtility);
|
---|
318 | lFullProb += condDistrib;
|
---|
319 | if (condDistrib > lMaxProb)
|
---|
320 | lMaxProb = condDistrib;
|
---|
321 | hyp.setProbability(condDistrib);
|
---|
322 | }
|
---|
323 | if (fUseMostProbableHypsOnly)
|
---|
324 | fMostProbableUSHyps = new ArrayList<UtilitySpaceHypothesis>();
|
---|
325 | // receiveMessage the weights hyps and evaluators hyps
|
---|
326 | double lMostProbableHypFullProb = 0;
|
---|
327 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
328 | UtilitySpaceHypothesis hyp = fUSHyps.get(i);
|
---|
329 | double normalizedProbability = hyp.getProbability() / lFullProb;
|
---|
330 | hyp.setProbability(normalizedProbability);
|
---|
331 | if (fUseMostProbableHypsOnly)
|
---|
332 | if (normalizedProbability > lMaxProb * 0.99 / lFullProb) {
|
---|
333 | fMostProbableUSHyps.add(hyp);
|
---|
334 | lMostProbableHypFullProb += normalizedProbability;
|
---|
335 | }
|
---|
336 | }
|
---|
337 | if (fUseMostProbableHypsOnly) {
|
---|
338 | for (int i = 0; i < fMostProbableUSHyps.size(); i++) {
|
---|
339 | UtilitySpaceHypothesis hyp = fMostProbableUSHyps.get(i);
|
---|
340 | double normalizedProbability = hyp.getProbability()
|
---|
341 | / lMostProbableHypFullProb;
|
---|
342 | hyp.setProbability(normalizedProbability);
|
---|
343 | }
|
---|
344 | }
|
---|
345 |
|
---|
346 | /*
|
---|
347 | * sortHyps(); for(int i=0;i<10;i++) {
|
---|
348 | * System.out.println(fUSHyps.get(i).toString()); }
|
---|
349 | */
|
---|
350 | System.out.println("BA: Using "
|
---|
351 | + String.valueOf(fMostProbableUSHyps.size()) + " out of "
|
---|
352 | + String.valueOf(fUSHyps.size()) + "hyps");
|
---|
353 | System.out.println(getMaxHyp().toString());
|
---|
354 | // calculate utility of the next partner's bid according to the
|
---|
355 | // concession functions
|
---|
356 | fPreviousBidUtility = fPreviousBidUtility - EXPECTED_CONCESSION_STEP;
|
---|
357 | // findMinMaxUtility();
|
---|
358 | }
|
---|
359 |
|
---|
360 | private void buildEvaluationHypsRecursive(
|
---|
361 | ArrayList<EvaluatorHypothesis[]> pHyps,
|
---|
362 | EvaluatorHypothesis[] pEval, int m) {
|
---|
363 | if (m == 0) {
|
---|
364 | ArrayList<EvaluatorHypothesis> lEvalHyps = fEvaluatorHyps.get(fUS
|
---|
365 | .getNrOfEvaluators() - 1);
|
---|
366 | for (int i = 0; i < lEvalHyps.size(); i++) {
|
---|
367 | pEval[fUS.getNrOfEvaluators() - 1] = lEvalHyps.get(i);
|
---|
368 | EvaluatorHypothesis[] lTmp = new EvaluatorHypothesis[fUS
|
---|
369 | .getNrOfEvaluators()];
|
---|
370 | // copy to temp array
|
---|
371 | for (int j = 0; j < lTmp.length; j++)
|
---|
372 | lTmp[j] = pEval[j];
|
---|
373 | pHyps.add(lTmp);
|
---|
374 | }
|
---|
375 | } else {
|
---|
376 | ArrayList<EvaluatorHypothesis> lEvalHyps = fEvaluatorHyps.get(fUS
|
---|
377 | .getNrOfEvaluators() - m - 1);
|
---|
378 | for (int i = 0; i < lEvalHyps.size(); i++) {
|
---|
379 | pEval[fUS.getNrOfEvaluators() - m - 1] = lEvalHyps.get(i);
|
---|
380 | buildEvaluationHypsRecursive(pHyps, pEval, m - 1);
|
---|
381 | }
|
---|
382 | }
|
---|
383 | }
|
---|
384 |
|
---|
385 | private void buildEvaluationHyps() {
|
---|
386 | fEvalHyps = new ArrayList<EvaluatorHypothesis[]>();
|
---|
387 | EvaluatorHypothesis[] lTmp = new EvaluatorHypothesis[fUS
|
---|
388 | .getNrOfEvaluators()];
|
---|
389 | buildEvaluationHypsRecursive(fEvalHyps, lTmp,
|
---|
390 | fUS.getNrOfEvaluators() - 1);
|
---|
391 | }
|
---|
392 |
|
---|
393 | public double getExpectedUtility(Bid pBid) throws Exception {
|
---|
394 | double lExpectedUtility = 0;
|
---|
395 | if (fUseMostProbableHypsOnly && (fMostProbableUSHyps != null)) {
|
---|
396 | for (int i = 0; i < fMostProbableUSHyps.size(); i++) {
|
---|
397 | UtilitySpaceHypothesis lUSHyp = fMostProbableUSHyps.get(i);
|
---|
398 | double p = lUSHyp.getProbability();
|
---|
399 | double u = lUSHyp.getUtility(pBid);
|
---|
400 | lExpectedUtility += p * u;
|
---|
401 | }
|
---|
402 | } else {
|
---|
403 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
404 | UtilitySpaceHypothesis lUSHyp = fUSHyps.get(i);
|
---|
405 | double p = lUSHyp.getProbability();
|
---|
406 | double u = lUSHyp.getUtility(pBid);
|
---|
407 | lExpectedUtility += p * u;
|
---|
408 | }
|
---|
409 | }
|
---|
410 | return lExpectedUtility;
|
---|
411 | }
|
---|
412 |
|
---|
413 | public double getExpectedWeight(int pIssueNumber) {
|
---|
414 | double lExpectedWeight = 0;
|
---|
415 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
416 | UtilitySpaceHypothesis lUSHyp = fUSHyps.get(i);
|
---|
417 | double p = lUSHyp.getProbability();
|
---|
418 | double u = lUSHyp.getHeightHyp().getWeight(pIssueNumber);
|
---|
419 | lExpectedWeight += p * u;
|
---|
420 | }
|
---|
421 | return lExpectedWeight;
|
---|
422 | }
|
---|
423 |
|
---|
424 | public double getNormalizedWeight(Issue i, int startingNumber) {
|
---|
425 | double sum = 0;
|
---|
426 | for (Issue issue : fDomain.getIssues()) {
|
---|
427 | sum += getExpectedWeight(issue.getNumber() - startingNumber);
|
---|
428 | }
|
---|
429 | return (getExpectedWeight(i.getNumber() - startingNumber)) / sum;
|
---|
430 | }
|
---|
431 |
|
---|
432 | private UtilitySpaceHypothesis getMaxHyp() {
|
---|
433 | UtilitySpaceHypothesis lHyp = fUSHyps.get(0);
|
---|
434 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
435 | if (lHyp.getProbability() < fUSHyps.get(i).getProbability())
|
---|
436 | lHyp = fUSHyps.get(i);
|
---|
437 | }
|
---|
438 | return lHyp;
|
---|
439 | }
|
---|
440 |
|
---|
441 | /*
|
---|
442 | * public double getExpectedUtility(Bid pBid) { double lExpectedUtility = 0;
|
---|
443 | * for(int i=0;i<fWeightHyps.length;i++) { WeightHypothesis lWeightHyp =
|
---|
444 | * fWeightHyps[i]; double p = lWeightHyp.getProbability(); double u = 0;
|
---|
445 | * for(int j=0;j<fEvalHyps.size();j++) { EvaluatorHypothesis[] lHyp =
|
---|
446 | * fEvalHyps.get(j); //calculate evaluation value and probability for(int
|
---|
447 | * k=0;k<lHyp.length;k++) { p = p*lHyp[k].getProbability(); u = u +
|
---|
448 | * lWeightHyp
|
---|
449 | * .getWeight(k)*(Double)(lHyp[k].getEvaluator().getEvaluation(fUS, pBid,
|
---|
450 | * k)); } lExpectedUtility = lExpectedUtility+ p*u; } } return 0; }
|
---|
451 | */
|
---|
452 | // Evaluate n!
|
---|
453 | private int factorial(int n) {
|
---|
454 | if (n <= 1) // base case
|
---|
455 | return 1;
|
---|
456 | else
|
---|
457 | return n * factorial(n - 1);
|
---|
458 | }
|
---|
459 |
|
---|
460 | public void setMostProbableUSHypsOnly(boolean value) {
|
---|
461 | fUseMostProbableHypsOnly = value;
|
---|
462 | }
|
---|
463 |
|
---|
464 | protected class HypsComparator implements java.util.Comparator {
|
---|
465 | public int compare(Object o1, Object o2) throws ClassCastException {
|
---|
466 | if (!(o1 instanceof UtilitySpaceHypothesis)) {
|
---|
467 | throw new ClassCastException();
|
---|
468 | }
|
---|
469 | if (!(o2 instanceof UtilitySpaceHypothesis)) {
|
---|
470 | throw new ClassCastException();
|
---|
471 | }
|
---|
472 | double d1 = ((UtilitySpaceHypothesis) o1).getProbability();
|
---|
473 | double d2 = ((UtilitySpaceHypothesis) o2).getProbability();
|
---|
474 |
|
---|
475 | if (d1 > d2) {
|
---|
476 | return -1;
|
---|
477 | } else if (d1 < d2) {
|
---|
478 | return 1;
|
---|
479 | } else {
|
---|
480 | return 0;
|
---|
481 | }
|
---|
482 | }
|
---|
483 | }
|
---|
484 |
|
---|
485 | }
|
---|