source: src/main/java/agents/anac/y2019/harddealer/math3/RealFieldElement.java@ 345

Last change on this file since 345 was 204, checked in by Katsuhide Fujita, 5 years ago

Fixed errors of ANAC2019 agents

  • Property svn:executable set to *
File size: 12.5 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17package agents.anac.y2019.harddealer.math3;
18
19import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
20
21/**
22 * Interface representing a <a href="http://mathworld.wolfram.com/RealNumber.html">real</a>
23 * <a href="http://mathworld.wolfram.com/Field.html">field</a>.
24 * @param <T> the type of the field elements
25 * @see FieldElement
26 * @since 3.2
27 */
28public interface RealFieldElement<T> extends FieldElement<T> {
29
30 /** Get the real value of the number.
31 * @return real value
32 */
33 double getReal();
34
35 /** '+' operator.
36 * @param a right hand side parameter of the operator
37 * @return this+a
38 */
39 T add(double a);
40
41 /** '-' operator.
42 * @param a right hand side parameter of the operator
43 * @return this-a
44 */
45 T subtract(double a);
46
47 /** '&times;' operator.
48 * @param a right hand side parameter of the operator
49 * @return this&times;a
50 */
51 T multiply(double a);
52
53 /** '&divide;' operator.
54 * @param a right hand side parameter of the operator
55 * @return this&divide;a
56 */
57 T divide(double a);
58
59 /** IEEE remainder operator.
60 * @param a right hand side parameter of the operator
61 * @return this - n &times; a where n is the closest integer to this/a
62 * (the even integer is chosen for n if this/a is halfway between two integers)
63 */
64 T remainder(double a);
65
66 /** IEEE remainder operator.
67 * @param a right hand side parameter of the operator
68 * @return this - n &times; a where n is the closest integer to this/a
69 * (the even integer is chosen for n if this/a is halfway between two integers)
70 * @exception DimensionMismatchException if number of free parameters or orders are inconsistent
71 */
72 T remainder(T a)
73 throws DimensionMismatchException;
74
75 /** absolute value.
76 * @return abs(this)
77 */
78 T abs();
79
80 /** Get the smallest whole number larger than instance.
81 * @return ceil(this)
82 */
83 T ceil();
84
85 /** Get the largest whole number smaller than instance.
86 * @return floor(this)
87 */
88 T floor();
89
90 /** Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
91 * @return a double number r such that r is an integer r - 0.5 &le; this &le; r + 0.5
92 */
93 T rint();
94
95 /** Get the closest long to instance value.
96 * @return closest long to {@link #getReal()}
97 */
98 long round();
99
100 /** Compute the signum of the instance.
101 * The signum is -1 for negative numbers, +1 for positive numbers and 0 otherwise
102 * @return -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
103 */
104 T signum();
105
106 /**
107 * Returns the instance with the sign of the argument.
108 * A NaN {@code sign} argument is treated as positive.
109 *
110 * @param sign the sign for the returned value
111 * @return the instance with the same sign as the {@code sign} argument
112 */
113 T copySign(T sign);
114
115 /**
116 * Returns the instance with the sign of the argument.
117 * A NaN {@code sign} argument is treated as positive.
118 *
119 * @param sign the sign for the returned value
120 * @return the instance with the same sign as the {@code sign} argument
121 */
122 T copySign(double sign);
123
124 /**
125 * Multiply the instance by a power of 2.
126 * @param n power of 2
127 * @return this &times; 2<sup>n</sup>
128 */
129 T scalb(int n);
130
131 /**
132 * Returns the hypotenuse of a triangle with sides {@code this} and {@code y}
133 * - sqrt(<i>this</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
134 * avoiding intermediate overflow or underflow.
135 *
136 * <ul>
137 * <li> If either argument is infinite, then the result is positive infinity.</li>
138 * <li> else, if either argument is NaN then the result is NaN.</li>
139 * </ul>
140 *
141 * @param y a value
142 * @return sqrt(<i>this</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
143 * @exception DimensionMismatchException if number of free parameters or orders are inconsistent
144 */
145 T hypot(T y)
146 throws DimensionMismatchException;
147
148 /** {@inheritDoc} */
149 T reciprocal();
150
151 /** Square root.
152 * @return square root of the instance
153 */
154 T sqrt();
155
156 /** Cubic root.
157 * @return cubic root of the instance
158 */
159 T cbrt();
160
161 /** N<sup>th</sup> root.
162 * @param n order of the root
163 * @return n<sup>th</sup> root of the instance
164 */
165 T rootN(int n);
166
167 /** Power operation.
168 * @param p power to apply
169 * @return this<sup>p</sup>
170 */
171 T pow(double p);
172
173 /** Integer power operation.
174 * @param n power to apply
175 * @return this<sup>n</sup>
176 */
177 T pow(int n);
178
179 /** Power operation.
180 * @param e exponent
181 * @return this<sup>e</sup>
182 * @exception DimensionMismatchException if number of free parameters or orders are inconsistent
183 */
184 T pow(T e)
185 throws DimensionMismatchException;
186
187 /** Exponential.
188 * @return exponential of the instance
189 */
190 T exp();
191
192 /** Exponential minus 1.
193 * @return exponential minus one of the instance
194 */
195 T expm1();
196
197 /** Natural logarithm.
198 * @return logarithm of the instance
199 */
200 T log();
201
202 /** Shifted natural logarithm.
203 * @return logarithm of one plus the instance
204 */
205 T log1p();
206
207// TODO: add this method in 4.0, as it is not possible to do it in 3.2
208// due to incompatibility of the return type in the Dfp class
209// /** Base 10 logarithm.
210// * @return base 10 logarithm of the instance
211// */
212// T log10();
213
214 /** Cosine operation.
215 * @return cos(this)
216 */
217 T cos();
218
219 /** Sine operation.
220 * @return sin(this)
221 */
222 T sin();
223
224 /** Tangent operation.
225 * @return tan(this)
226 */
227 T tan();
228
229 /** Arc cosine operation.
230 * @return acos(this)
231 */
232 T acos();
233
234 /** Arc sine operation.
235 * @return asin(this)
236 */
237 T asin();
238
239 /** Arc tangent operation.
240 * @return atan(this)
241 */
242 T atan();
243
244 /** Two arguments arc tangent operation.
245 * @param x second argument of the arc tangent
246 * @return atan2(this, x)
247 * @exception DimensionMismatchException if number of free parameters or orders are inconsistent
248 */
249 T atan2(T x)
250 throws DimensionMismatchException;
251
252 /** Hyperbolic cosine operation.
253 * @return cosh(this)
254 */
255 T cosh();
256
257 /** Hyperbolic sine operation.
258 * @return sinh(this)
259 */
260 T sinh();
261
262 /** Hyperbolic tangent operation.
263 * @return tanh(this)
264 */
265 T tanh();
266
267 /** Inverse hyperbolic cosine operation.
268 * @return acosh(this)
269 */
270 T acosh();
271
272 /** Inverse hyperbolic sine operation.
273 * @return asin(this)
274 */
275 T asinh();
276
277 /** Inverse hyperbolic tangent operation.
278 * @return atanh(this)
279 */
280 T atanh();
281
282 /**
283 * Compute a linear combination.
284 * @param a Factors.
285 * @param b Factors.
286 * @return <code>&Sigma;<sub>i</sub> a<sub>i</sub> b<sub>i</sub></code>.
287 * @throws DimensionMismatchException if arrays dimensions don't match
288 * @since 3.2
289 */
290 T linearCombination(T[] a, T[] b)
291 throws DimensionMismatchException;
292
293 /**
294 * Compute a linear combination.
295 * @param a Factors.
296 * @param b Factors.
297 * @return <code>&Sigma;<sub>i</sub> a<sub>i</sub> b<sub>i</sub></code>.
298 * @throws DimensionMismatchException if arrays dimensions don't match
299 * @since 3.2
300 */
301 T linearCombination(double[] a, T[] b)
302 throws DimensionMismatchException;
303
304 /**
305 * Compute a linear combination.
306 * @param a1 first factor of the first term
307 * @param b1 second factor of the first term
308 * @param a2 first factor of the second term
309 * @param b2 second factor of the second term
310 * @return a<sub>1</sub>&times;b<sub>1</sub> +
311 * a<sub>2</sub>&times;b<sub>2</sub>
312 * @see #linearCombination(Object, Object, Object, Object, Object, Object)
313 * @see #linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)
314 * @since 3.2
315 */
316 T linearCombination(T a1, T b1, T a2, T b2);
317
318 /**
319 * Compute a linear combination.
320 * @param a1 first factor of the first term
321 * @param b1 second factor of the first term
322 * @param a2 first factor of the second term
323 * @param b2 second factor of the second term
324 * @return a<sub>1</sub>&times;b<sub>1</sub> +
325 * a<sub>2</sub>&times;b<sub>2</sub>
326 * @see #linearCombination(double, Object, double, Object, double, Object)
327 * @see #linearCombination(double, Object, double, Object, double, Object, double, Object)
328 * @since 3.2
329 */
330 T linearCombination(double a1, T b1, double a2, T b2);
331
332 /**
333 * Compute a linear combination.
334 * @param a1 first factor of the first term
335 * @param b1 second factor of the first term
336 * @param a2 first factor of the second term
337 * @param b2 second factor of the second term
338 * @param a3 first factor of the third term
339 * @param b3 second factor of the third term
340 * @return a<sub>1</sub>&times;b<sub>1</sub> +
341 * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub>
342 * @see #linearCombination(Object, Object, Object, Object)
343 * @see #linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)
344 * @since 3.2
345 */
346 T linearCombination(T a1, T b1, T a2, T b2, T a3, T b3);
347
348 /**
349 * Compute a linear combination.
350 * @param a1 first factor of the first term
351 * @param b1 second factor of the first term
352 * @param a2 first factor of the second term
353 * @param b2 second factor of the second term
354 * @param a3 first factor of the third term
355 * @param b3 second factor of the third term
356 * @return a<sub>1</sub>&times;b<sub>1</sub> +
357 * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub>
358 * @see #linearCombination(double, Object, double, Object)
359 * @see #linearCombination(double, Object, double, Object, double, Object, double, Object)
360 * @since 3.2
361 */
362 T linearCombination(double a1, T b1, double a2, T b2, double a3, T b3);
363
364 /**
365 * Compute a linear combination.
366 * @param a1 first factor of the first term
367 * @param b1 second factor of the first term
368 * @param a2 first factor of the second term
369 * @param b2 second factor of the second term
370 * @param a3 first factor of the third term
371 * @param b3 second factor of the third term
372 * @param a4 first factor of the third term
373 * @param b4 second factor of the third term
374 * @return a<sub>1</sub>&times;b<sub>1</sub> +
375 * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub> +
376 * a<sub>4</sub>&times;b<sub>4</sub>
377 * @see #linearCombination(Object, Object, Object, Object)
378 * @see #linearCombination(Object, Object, Object, Object, Object, Object)
379 * @since 3.2
380 */
381 T linearCombination(T a1, T b1, T a2, T b2, T a3, T b3, T a4, T b4);
382
383 /**
384 * Compute a linear combination.
385 * @param a1 first factor of the first term
386 * @param b1 second factor of the first term
387 * @param a2 first factor of the second term
388 * @param b2 second factor of the second term
389 * @param a3 first factor of the third term
390 * @param b3 second factor of the third term
391 * @param a4 first factor of the third term
392 * @param b4 second factor of the third term
393 * @return a<sub>1</sub>&times;b<sub>1</sub> +
394 * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub> +
395 * a<sub>4</sub>&times;b<sub>4</sub>
396 * @see #linearCombination(double, Object, double, Object)
397 * @see #linearCombination(double, Object, double, Object, double, Object)
398 * @since 3.2
399 */
400 T linearCombination(double a1, T b1, double a2, T b2, double a3, T b3, double a4, T b4);
401
402}
Note: See TracBrowser for help on using the repository browser.