[201] | 1 | package agents.anac.y2019.agentlarry;
|
---|
| 2 |
|
---|
| 3 | import genius.core.AgentID;
|
---|
| 4 | import genius.core.Bid;
|
---|
| 5 | import genius.core.BidIterator;
|
---|
| 6 | import genius.core.actions.Accept;
|
---|
| 7 | import genius.core.actions.Action;
|
---|
| 8 | import genius.core.actions.EndNegotiation;
|
---|
| 9 | import genius.core.actions.Offer;
|
---|
| 10 | import genius.core.list.Tuple;
|
---|
| 11 | import genius.core.parties.AbstractNegotiationParty;
|
---|
| 12 | import genius.core.parties.NegotiationInfo;
|
---|
| 13 | import genius.core.persistent.PersistentDataType;
|
---|
| 14 | import genius.core.persistent.StandardInfo;
|
---|
| 15 | import genius.core.persistent.StandardInfoList;
|
---|
| 16 | import genius.core.uncertainty.AdditiveUtilitySpaceFactory;
|
---|
| 17 | import genius.core.utility.AbstractUtilitySpace;
|
---|
| 18 |
|
---|
| 19 | import java.util.ArrayList;
|
---|
| 20 | import java.util.HashMap;
|
---|
| 21 | import java.util.List;
|
---|
| 22 | import java.util.Map;
|
---|
| 23 |
|
---|
| 24 | public class AgentLarry extends AbstractNegotiationParty {
|
---|
| 25 | private final Map<AgentID, BidHistory> agentsBidHistories = new HashMap<>();
|
---|
| 26 | private Bid lastOfferedBid = null;
|
---|
| 27 | private BidHistory initialHistory = new BidHistory();
|
---|
| 28 | private final VectorConverter vectorConverter = new VectorConverter();
|
---|
| 29 |
|
---|
| 30 | private class BidHistory extends ArrayList<Tuple<Bid, Boolean>> {}
|
---|
| 31 |
|
---|
| 32 | @Override
|
---|
| 33 | public void init(NegotiationInfo info) {
|
---|
| 34 | super.init(info);
|
---|
| 35 | if (this.getData().getPersistentDataType() == PersistentDataType.STANDARD) {
|
---|
| 36 | StandardInfoList infoList = (StandardInfoList) info.getPersistentData().get();
|
---|
| 37 | for (StandardInfo sessionInfo : infoList) {
|
---|
| 38 | Bid initialBid = sessionInfo.getAgreement().get1();
|
---|
| 39 | if (initialBid != null) {
|
---|
| 40 | System.out.println(String.format("initial bid: %s", initialBid.toString()));
|
---|
| 41 | initialHistory.add(new Tuple<>(initialBid, true));
|
---|
| 42 | }
|
---|
| 43 | }
|
---|
| 44 | }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | /**
|
---|
| 48 | * Receive message and save it in the bid history
|
---|
| 49 | * If it is accept save the bid the agent accept with true
|
---|
| 50 | * if it is offer save the last bid with false since the agent did not accept and
|
---|
| 51 | * save the bid he made in his offer with true assuming because he offered it he would accept it
|
---|
| 52 | *
|
---|
| 53 | * @param sender The id of the agent who sent the message
|
---|
| 54 | * @param act the action that was sent
|
---|
| 55 | */
|
---|
| 56 | @Override
|
---|
| 57 | public void receiveMessage(AgentID sender, Action act) {
|
---|
| 58 | super.receiveMessage(sender, act);
|
---|
| 59 | if (act instanceof Offer || act instanceof Accept) {
|
---|
| 60 | if (!agentsBidHistories.containsKey(sender)) {
|
---|
| 61 | agentsBidHistories.put(sender, (BidHistory) initialHistory.clone());
|
---|
| 62 | }
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | if (act instanceof Offer) {
|
---|
| 66 | Bid bid = ((Offer) act).getBid();
|
---|
| 67 | this.agentsBidHistories.get(sender).add(new Tuple<>(bid, true));
|
---|
| 68 | if (this.lastOfferedBid != null) {
|
---|
| 69 | this.agentsBidHistories.get(sender).add(new Tuple<>(this.lastOfferedBid, false));
|
---|
| 70 | }
|
---|
| 71 | this.lastOfferedBid = bid;
|
---|
| 72 | } else if (act instanceof Accept) {
|
---|
| 73 | Bid bid = ((Accept) act).getBid();
|
---|
| 74 | this.agentsBidHistories.get(sender).add(new Tuple<>(bid, true));
|
---|
| 75 | }
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | /**
|
---|
| 79 | * Choose if to accept the last offer or make a new offer
|
---|
| 80 | *
|
---|
| 81 | * First we initialize a logistic regression model for each agent (except us) with his bid history
|
---|
| 82 | * and whether he accepted each bid or rejected it
|
---|
| 83 | * We train a new logistic regression each time and not use the same one for the whole session
|
---|
| 84 | * because retrain it each time gives a better results
|
---|
| 85 | * (probably because of the random weight before you start train it)
|
---|
| 86 | *
|
---|
| 87 | * Then for each bid we value the chances each agent will accept it using the logistic regression models
|
---|
| 88 | * and evaluate the bid by multiple them all together with the utility of the bid and choose the bid
|
---|
| 89 | * with the highest evaluation
|
---|
| 90 | *
|
---|
| 91 | * Then if the last offered bid has an higher utility we accept it, otherwise we offer the bid we chose
|
---|
| 92 | *
|
---|
| 93 | * @param list The available actions to do
|
---|
| 94 | * @return The chosen action
|
---|
| 95 | */
|
---|
| 96 | @Override
|
---|
| 97 | public Action chooseAction(List<Class<? extends Action>> list) {
|
---|
| 98 | try {
|
---|
| 99 | System.out.println(getPartyId());
|
---|
| 100 | System.out.println("choosing action");
|
---|
| 101 |
|
---|
| 102 | System.out.println("initializing model");
|
---|
| 103 | List<LogisticRegression> logisticRegressionsModels = this.initializeModels();
|
---|
| 104 | LogisticRegression larryModel = this.initializeLarryModel();
|
---|
| 105 |
|
---|
| 106 | System.out.println("searching for best bid");
|
---|
| 107 | Bid nextBid = this.findNextBid(logisticRegressionsModels, larryModel);
|
---|
| 108 |
|
---|
| 109 | System.out.println("choosing of accepting or offering");
|
---|
| 110 |
|
---|
| 111 | if (list.contains(Accept.class) && shouldAccept(nextBid)) {
|
---|
| 112 | System.out.println("Accepting");
|
---|
| 113 | return new Accept(getPartyId(), lastOfferedBid);
|
---|
| 114 | } else {
|
---|
| 115 | System.out.println("offering");
|
---|
| 116 | this.lastOfferedBid = nextBid;
|
---|
| 117 | return new Offer(this.getPartyId(), nextBid);
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | } catch (Exception e) {
|
---|
| 121 | e.printStackTrace();
|
---|
| 122 | return new EndNegotiation(getPartyId());
|
---|
| 123 | }
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | /**
|
---|
| 127 | * @param nextBid The next bid to offer
|
---|
| 128 | * @return Whether to accept the last bid or offer the nextBid
|
---|
| 129 | */
|
---|
| 130 | private boolean shouldAccept(Bid nextBid) {
|
---|
| 131 | if (lastOfferedBid != null) {
|
---|
| 132 | if (userModel.getBidRanking().getBidOrder().indexOf(lastOfferedBid) >=
|
---|
| 133 | userModel.getBidRanking().getBidOrder().indexOf(nextBid) * this.utilitySpace.getDiscountFactor()) {
|
---|
| 134 | return true;
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 | return false;
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | /**
|
---|
| 141 | * @param logisticRegressionsModels The models of the agents
|
---|
| 142 | * @return The next bid to offer
|
---|
| 143 | */
|
---|
| 144 | private Bid findNextBid(List<LogisticRegression> logisticRegressionsModels, LogisticRegression larryModel) {
|
---|
| 145 | double bestBidEvaluation = 0;
|
---|
| 146 | Bid nextBid = null;
|
---|
| 147 |
|
---|
| 148 | BidIterator bidIterator = new BidIterator(this.utilitySpace.getDomain());
|
---|
| 149 |
|
---|
| 150 | while (bidIterator.hasNext()) {
|
---|
| 151 | Bid bid = bidIterator.next();
|
---|
| 152 | Vector vector = this.vectorConverter.convert(bid);
|
---|
| 153 | double chancesForAcceptance = 1;
|
---|
| 154 | for (LogisticRegression model : logisticRegressionsModels) {
|
---|
| 155 | chancesForAcceptance *= model.classify(vector);
|
---|
| 156 | }
|
---|
| 157 | double bidUtility = larryModel.classify(vector);
|
---|
| 158 | double bidEvaluation = bidUtility + chancesForAcceptance;
|
---|
| 159 |
|
---|
| 160 | if (bidEvaluation >= bestBidEvaluation) {
|
---|
| 161 | nextBid = bid;
|
---|
| 162 | bestBidEvaluation = bidEvaluation;
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 | System.out.println(String.format("next bid evaluation %f", bestBidEvaluation));
|
---|
| 166 | return nextBid;
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | /**
|
---|
| 170 | * Initialize the models of the agents
|
---|
| 171 | * each model gets a bid and returns the chances the agent will accept it
|
---|
| 172 | *
|
---|
| 173 | * @return The logistic models of the agents
|
---|
| 174 | */
|
---|
| 175 | private List<LogisticRegression> initializeModels() {
|
---|
| 176 | List<LogisticRegression> logisticRegressionsModels = new ArrayList<>();
|
---|
| 177 | for (BidHistory bidHistory : this.agentsBidHistories.values()) {
|
---|
| 178 | LogisticRegression logisticRegression = new LogisticRegression(
|
---|
| 179 | this.vectorConverter.getVectorSize(this.utilitySpace.getDomain()));
|
---|
| 180 | for (Tuple<Bid, Boolean> bidToDidAccept : bidHistory) {
|
---|
| 181 | Vector vector = this.vectorConverter.convert(bidToDidAccept.get1());
|
---|
| 182 | double label = bidToDidAccept.get2() ? 1 : 0;
|
---|
| 183 | logisticRegression.train(vector, label);
|
---|
| 184 | }
|
---|
| 185 | logisticRegressionsModels.add(logisticRegression);
|
---|
| 186 | }
|
---|
| 187 | return logisticRegressionsModels;
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | private LogisticRegression initializeLarryModel() {
|
---|
| 191 | LogisticRegression model = new LogisticRegression(this.vectorConverter.getVectorSize(this.utilitySpace.getDomain()));
|
---|
| 192 | List<Bid> bids = userModel.getBidRanking().getBidOrder();
|
---|
| 193 | for (int j = 0; j < 5; j++) {
|
---|
| 194 | for (int i = 0; i < bids.size(); i++) {
|
---|
| 195 | Vector vector = this.vectorConverter.convert(bids.get(i));
|
---|
| 196 | double label = (userModel.getBidRanking().getHighUtility() - userModel.getBidRanking().getLowUtility()) * i / bids.size();
|
---|
| 197 | model.train(vector, label);
|
---|
| 198 | }
|
---|
| 199 | }
|
---|
| 200 | return model;
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 | @Override
|
---|
| 204 | public AbstractUtilitySpace estimateUtilitySpace() {
|
---|
| 205 | return new AdditiveUtilitySpaceFactory(getDomain()).getUtilitySpace();
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | @Override
|
---|
| 209 | public String getDescription() {
|
---|
| 210 | return "ANAC2019 AgentLarry";
|
---|
| 211 | }
|
---|
| 212 | }
|
---|