[341] | 1 |
|
---|
| 2 | package agents.anac.y2018.fullagent;
|
---|
| 3 |
|
---|
| 4 | import java.util.HashMap;
|
---|
| 5 | import java.util.HashSet;
|
---|
| 6 | import java.util.Map;
|
---|
| 7 | import java.util.Map.Entry;
|
---|
| 8 | import java.util.Set;
|
---|
| 9 |
|
---|
[343] | 10 | import genius.core.Bid;
|
---|
| 11 | import genius.core.bidding.BidDetails;
|
---|
| 12 | import genius.core.boaframework.BOAparameter;
|
---|
| 13 | import genius.core.boaframework.NegotiationSession;
|
---|
| 14 | import genius.core.boaframework.OpponentModel;
|
---|
| 15 | import genius.core.issue.Issue;
|
---|
| 16 | import genius.core.issue.IssueDiscrete;
|
---|
| 17 | import genius.core.issue.Objective;
|
---|
| 18 | import genius.core.issue.ValueDiscrete;
|
---|
| 19 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
| 20 | import genius.core.utility.Evaluator;
|
---|
| 21 | import genius.core.utility.EvaluatorDiscrete;
|
---|
[341] | 22 |
|
---|
| 23 | /**
|
---|
| 24 | * BOA framework implementation of the HardHeaded Frequecy Model. My main
|
---|
| 25 | * contribution to this model is that I fixed a bug in the mainbranch which
|
---|
| 26 | * resulted in an equal preference of each bid in the ANAC 2011 competition.
|
---|
| 27 | * Effectively, the corrupt model resulted in the offering of a random bid in
|
---|
| 28 | * the ANAC 2011.
|
---|
| 29 | *
|
---|
| 30 | * Default: learning coef l = 0.2; learnValueAddition v = 1.0
|
---|
| 31 | *
|
---|
| 32 | * Adapted by Mark Hendrikx to be compatible with the BOA framework.
|
---|
| 33 | *
|
---|
| 34 | * Tim Baarslag, Koen Hindriks, Mark Hendrikx, Alex Dirkzwager and Catholijn M.
|
---|
| 35 | * Jonker. Decoupling Negotiating Agents to Explore the Space of Negotiation
|
---|
| 36 | * Strategies
|
---|
| 37 | *
|
---|
| 38 | *
|
---|
| 39 | */
|
---|
| 40 | public class OpponentModel_lgsmi extends OpponentModel {
|
---|
| 41 |
|
---|
| 42 |
|
---|
| 43 | // the learning coefficient is the weight that is added each turn to the
|
---|
| 44 | // issue weights
|
---|
| 45 | // which changed. It's a trade-off between concession speed and accuracy.
|
---|
| 46 |
|
---|
| 47 | /*********** can be reduced over time for giving less importance to later bids *******/
|
---|
| 48 | private double learnCoef;
|
---|
| 49 | // value which is added to a value if it is found. Determines how fast
|
---|
| 50 | // the value weights converge.
|
---|
| 51 | /*********************** can be reduced over time for giving less importance to later bids *********************/
|
---|
| 52 | private int learnValueAddition;
|
---|
| 53 |
|
---|
| 54 | private int amountOfIssues;
|
---|
| 55 |
|
---|
| 56 | /**
|
---|
| 57 | * Initializes the utility space of the opponent such that all value issue
|
---|
| 58 | * weights are equal.
|
---|
| 59 | */
|
---|
| 60 | @Override
|
---|
| 61 | public void init(NegotiationSession negotiationSession, Map<String, Double> parameters) {
|
---|
| 62 | super.init(negotiationSession, parameters);
|
---|
| 63 | this.negotiationSession = negotiationSession;
|
---|
| 64 | if (parameters != null && parameters.get("l") != null) {
|
---|
| 65 | learnCoef = parameters.get("l");
|
---|
| 66 | } else {
|
---|
| 67 | learnCoef = 0.2;
|
---|
| 68 | }
|
---|
| 69 | learnValueAddition = 1;
|
---|
| 70 | initializeModel();
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | private void initializeModel() {
|
---|
| 74 | opponentUtilitySpace = new AdditiveUtilitySpace(negotiationSession.getDomain());
|
---|
| 75 | amountOfIssues = opponentUtilitySpace.getDomain().getIssues().size();
|
---|
| 76 | double commonWeight = 1D / (double) amountOfIssues;
|
---|
| 77 |
|
---|
| 78 | // initialize the weights
|
---|
| 79 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace.getEvaluators()) {
|
---|
| 80 | // set the issue weights
|
---|
| 81 | opponentUtilitySpace.unlock(e.getKey());
|
---|
| 82 | e.getValue().setWeight(commonWeight);
|
---|
| 83 | try {
|
---|
| 84 | // set all value weights to one (they are normalized when
|
---|
| 85 | // calculating the utility)
|
---|
| 86 | for (ValueDiscrete vd : ((IssueDiscrete) e.getKey()).getValues())
|
---|
| 87 | ((EvaluatorDiscrete) e.getValue()).setEvaluation(vd, 1);
|
---|
| 88 | } catch (Exception ex) {
|
---|
| 89 | ex.printStackTrace();
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | /**
|
---|
| 95 | * Determines the difference between bids. For each issue, it is determined
|
---|
| 96 | * if the value changed. If this is the case, a 1 is stored in a hashmap for
|
---|
| 97 | * that issue, else a 0.
|
---|
| 98 | *
|
---|
| 99 | * @param first
|
---|
| 100 | * bid of the opponent
|
---|
| 101 | * @param second
|
---|
| 102 | * bid
|
---|
| 103 | * @return
|
---|
| 104 | */
|
---|
| 105 | private HashMap<Integer, Integer> determineDifference(BidDetails first, BidDetails second) {
|
---|
| 106 |
|
---|
| 107 | HashMap<Integer, Integer> diff = new HashMap<Integer, Integer>();
|
---|
| 108 | try {
|
---|
| 109 | for (Issue i : opponentUtilitySpace.getDomain().getIssues()) {
|
---|
| 110 | diff.put(i.getNumber(), (((ValueDiscrete) first.getBid().getValue(i.getNumber()))
|
---|
| 111 | .equals((ValueDiscrete) second.getBid().getValue(i.getNumber()))) ? 0 : 1);
|
---|
| 112 | }
|
---|
| 113 | } catch (Exception ex) {
|
---|
| 114 | ex.printStackTrace();
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | return diff;
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | /**
|
---|
| 121 | * Updates the opponent model given a bid.
|
---|
| 122 | */
|
---|
| 123 | @Override
|
---|
| 124 | public void updateModel(Bid opponentBid, double time) {
|
---|
| 125 | if (negotiationSession.getOpponentBidHistory().size() < 2) {
|
---|
| 126 | return;
|
---|
| 127 | }
|
---|
| 128 | int numberOfUnchanged = 0;
|
---|
| 129 | BidDetails oppBid = negotiationSession.getOpponentBidHistory().getHistory()
|
---|
| 130 | .get(negotiationSession.getOpponentBidHistory().size() - 1);
|
---|
| 131 | BidDetails prevOppBid = negotiationSession.getOpponentBidHistory().getHistory()
|
---|
| 132 | .get(negotiationSession.getOpponentBidHistory().size() - 2);
|
---|
| 133 | HashMap<Integer, Integer> lastDiffSet = determineDifference(prevOppBid, oppBid);
|
---|
| 134 |
|
---|
| 135 | // count the number of changes in value
|
---|
| 136 | for (Integer i : lastDiffSet.keySet()) {
|
---|
| 137 | if (lastDiffSet.get(i) == 0)
|
---|
| 138 | numberOfUnchanged++;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | // This is the value to be added to weights of unchanged issues before
|
---|
| 142 | // normalization.
|
---|
| 143 | // Also the value that is taken as the minimum possible weight,
|
---|
| 144 | // (therefore defining the maximum possible also).
|
---|
| 145 |
|
---|
| 146 | // the proportion given to last bid
|
---|
| 147 | double goldenValue = learnCoef / (double) amountOfIssues;
|
---|
| 148 | // The total sum of weights before normalization.
|
---|
| 149 | double totalSum = 1D + goldenValue * (double) numberOfUnchanged;
|
---|
| 150 | // The maximum possible weight
|
---|
| 151 | double maximumWeight = 1D - ((double) amountOfIssues) * goldenValue / totalSum;
|
---|
| 152 |
|
---|
| 153 | // re-weighing issues while making sure that the sum remains 1
|
---|
| 154 | for (Integer i : lastDiffSet.keySet()) {
|
---|
| 155 |
|
---|
| 156 | //if issue's value unchanged and the weight of the issue is smaller then maximumWeight
|
---|
| 157 | if (lastDiffSet.get(i) == 0 && opponentUtilitySpace.getWeight(i) < maximumWeight)
|
---|
| 158 | //if the new weight is legal, set the weight for this issue
|
---|
| 159 | opponentUtilitySpace.setWeight(opponentUtilitySpace.getDomain().getObjectives().get(i),
|
---|
| 160 | (opponentUtilitySpace.getWeight(i) + goldenValue) / totalSum);
|
---|
| 161 | else
|
---|
| 162 | // the assumption is that values that have been changed are values that the
|
---|
| 163 | // opponent is willing to compromise on them, so we reduce their weight
|
---|
| 164 | opponentUtilitySpace.setWeight(opponentUtilitySpace.getDomain().getObjectives().get(i),
|
---|
| 165 | opponentUtilitySpace.getWeight(i) / totalSum);
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | // Then for each issue's value that has been offered last time, a constant
|
---|
| 169 |
|
---|
| 170 | // value is added to its corresponding ValueDiscrete.
|
---|
| 171 | try {
|
---|
| 172 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace.getEvaluators()) {
|
---|
| 173 | // cast issue to discrete and retrieve value. Next, add constant
|
---|
| 174 | // learnValueAddition to the current preference of the value to
|
---|
| 175 |
|
---|
| 176 | // make it more important
|
---|
| 177 |
|
---|
| 178 | ((EvaluatorDiscrete) e.getValue()).setEvaluation(
|
---|
| 179 | oppBid.getBid().getValue(((IssueDiscrete) e.getKey()).getNumber()),
|
---|
| 180 | (learnValueAddition + ((EvaluatorDiscrete) e.getValue()).getEvaluationNotNormalized(
|
---|
| 181 | ((ValueDiscrete) oppBid.getBid().getValue(((IssueDiscrete) e.getKey()).getNumber())))));
|
---|
| 182 | }
|
---|
| 183 | } catch (Exception ex) {
|
---|
| 184 | ex.printStackTrace();
|
---|
| 185 | }
|
---|
| 186 | }
|
---|
| 187 |
|
---|
| 188 | @Override
|
---|
| 189 | public double getBidEvaluation(Bid bid) {
|
---|
| 190 | double result = 0;
|
---|
| 191 | try {
|
---|
| 192 | result = opponentUtilitySpace.getUtility(bid);
|
---|
| 193 | } catch (Exception e) {
|
---|
| 194 | e.printStackTrace();
|
---|
| 195 | }
|
---|
| 196 | return result;
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | @Override
|
---|
| 200 | public String getName() {
|
---|
| 201 |
|
---|
| 202 | return "OpponentModel_lgsmi";
|
---|
| 203 |
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | @Override
|
---|
| 207 | public Set<BOAparameter> getParameterSpec() {
|
---|
| 208 | Set<BOAparameter> set = new HashSet<BOAparameter>();
|
---|
| 209 | set.add(new BOAparameter("l", 0.2,
|
---|
| 210 | "The learning coefficient determines how quickly the issue weights are learned"));
|
---|
| 211 | return set;
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 |
|
---|
| 215 | public Map<String, Double> getParameters() {
|
---|
| 216 | Map<String, Double> map = new HashMap<String, Double>();
|
---|
| 217 | //The learning coefficient determines how quickly the issue weights are learned
|
---|
| 218 | map.put("l", 0.2);
|
---|
| 219 | return map;
|
---|
| 220 | }
|
---|
| 221 |
|
---|
| 222 | }
|
---|