1 |
|
---|
2 | package agents.anac.y2018.fullagent;
|
---|
3 |
|
---|
4 | import java.util.HashMap;
|
---|
5 | import java.util.HashSet;
|
---|
6 | import java.util.Map;
|
---|
7 | import java.util.Map.Entry;
|
---|
8 | import java.util.Set;
|
---|
9 |
|
---|
10 |
|
---|
11 | import com.sun.xml.internal.bind.api.impl.NameConverter;
|
---|
12 | import flanagan.math.Matrix;
|
---|
13 |
|
---|
14 | import negotiator.Bid;
|
---|
15 | import negotiator.bidding.BidDetails;
|
---|
16 | import negotiator.boaframework.BOAparameter;
|
---|
17 | import negotiator.boaframework.NegotiationSession;
|
---|
18 | import negotiator.boaframework.OpponentModel;
|
---|
19 | import negotiator.issue.Issue;
|
---|
20 | import negotiator.issue.IssueDiscrete;
|
---|
21 | import negotiator.issue.Objective;
|
---|
22 | import negotiator.issue.ValueDiscrete;
|
---|
23 |
|
---|
24 |
|
---|
25 | import negotiator.persistent.DefaultStandardInfo;
|
---|
26 | import negotiator.persistent.StandardInfo;
|
---|
27 |
|
---|
28 | import negotiator.utility.AdditiveUtilitySpace;
|
---|
29 | import negotiator.utility.Evaluator;
|
---|
30 | import negotiator.utility.EvaluatorDiscrete;
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * BOA framework implementation of the HardHeaded Frequecy Model. My main
|
---|
34 | * contribution to this model is that I fixed a bug in the mainbranch which
|
---|
35 | * resulted in an equal preference of each bid in the ANAC 2011 competition.
|
---|
36 | * Effectively, the corrupt model resulted in the offering of a random bid in
|
---|
37 | * the ANAC 2011.
|
---|
38 | *
|
---|
39 | * Default: learning coef l = 0.2; learnValueAddition v = 1.0
|
---|
40 | *
|
---|
41 | * Adapted by Mark Hendrikx to be compatible with the BOA framework.
|
---|
42 | *
|
---|
43 | * Tim Baarslag, Koen Hindriks, Mark Hendrikx, Alex Dirkzwager and Catholijn M.
|
---|
44 | * Jonker. Decoupling Negotiating Agents to Explore the Space of Negotiation
|
---|
45 | * Strategies
|
---|
46 | *
|
---|
47 | *
|
---|
48 | */
|
---|
49 | public class OpponentModel_lgsmi extends OpponentModel {
|
---|
50 |
|
---|
51 |
|
---|
52 | // the learning coefficient is the weight that is added each turn to the
|
---|
53 | // issue weights
|
---|
54 | // which changed. It's a trade-off between concession speed and accuracy.
|
---|
55 |
|
---|
56 | /*********** can be reduced over time for giving less importance to later bids *******/
|
---|
57 | private double learnCoef;
|
---|
58 | // value which is added to a value if it is found. Determines how fast
|
---|
59 | // the value weights converge.
|
---|
60 | /*********************** can be reduced over time for giving less importance to later bids *********************/
|
---|
61 | private int learnValueAddition;
|
---|
62 |
|
---|
63 | private int amountOfIssues;
|
---|
64 |
|
---|
65 | /**
|
---|
66 | * Initializes the utility space of the opponent such that all value issue
|
---|
67 | * weights are equal.
|
---|
68 | */
|
---|
69 | @Override
|
---|
70 | public void init(NegotiationSession negotiationSession, Map<String, Double> parameters) {
|
---|
71 | super.init(negotiationSession, parameters);
|
---|
72 | this.negotiationSession = negotiationSession;
|
---|
73 | if (parameters != null && parameters.get("l") != null) {
|
---|
74 | learnCoef = parameters.get("l");
|
---|
75 | } else {
|
---|
76 | learnCoef = 0.2;
|
---|
77 | }
|
---|
78 | learnValueAddition = 1;
|
---|
79 | initializeModel();
|
---|
80 | }
|
---|
81 |
|
---|
82 | private void initializeModel() {
|
---|
83 | opponentUtilitySpace = new AdditiveUtilitySpace(negotiationSession.getDomain());
|
---|
84 | amountOfIssues = opponentUtilitySpace.getDomain().getIssues().size();
|
---|
85 | double commonWeight = 1D / (double) amountOfIssues;
|
---|
86 |
|
---|
87 | // initialize the weights
|
---|
88 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace.getEvaluators()) {
|
---|
89 | // set the issue weights
|
---|
90 | opponentUtilitySpace.unlock(e.getKey());
|
---|
91 | e.getValue().setWeight(commonWeight);
|
---|
92 | try {
|
---|
93 | // set all value weights to one (they are normalized when
|
---|
94 | // calculating the utility)
|
---|
95 | for (ValueDiscrete vd : ((IssueDiscrete) e.getKey()).getValues())
|
---|
96 | ((EvaluatorDiscrete) e.getValue()).setEvaluation(vd, 1);
|
---|
97 | } catch (Exception ex) {
|
---|
98 | ex.printStackTrace();
|
---|
99 | }
|
---|
100 | }
|
---|
101 | }
|
---|
102 |
|
---|
103 | /**
|
---|
104 | * Determines the difference between bids. For each issue, it is determined
|
---|
105 | * if the value changed. If this is the case, a 1 is stored in a hashmap for
|
---|
106 | * that issue, else a 0.
|
---|
107 | *
|
---|
108 | * @param first
|
---|
109 | * bid of the opponent
|
---|
110 | * @param second
|
---|
111 | * bid
|
---|
112 | * @return
|
---|
113 | */
|
---|
114 | private HashMap<Integer, Integer> determineDifference(BidDetails first, BidDetails second) {
|
---|
115 |
|
---|
116 | HashMap<Integer, Integer> diff = new HashMap<Integer, Integer>();
|
---|
117 | try {
|
---|
118 | for (Issue i : opponentUtilitySpace.getDomain().getIssues()) {
|
---|
119 | diff.put(i.getNumber(), (((ValueDiscrete) first.getBid().getValue(i.getNumber()))
|
---|
120 | .equals((ValueDiscrete) second.getBid().getValue(i.getNumber()))) ? 0 : 1);
|
---|
121 | }
|
---|
122 | } catch (Exception ex) {
|
---|
123 | ex.printStackTrace();
|
---|
124 | }
|
---|
125 |
|
---|
126 | return diff;
|
---|
127 | }
|
---|
128 |
|
---|
129 | /**
|
---|
130 | * Updates the opponent model given a bid.
|
---|
131 | */
|
---|
132 | @Override
|
---|
133 | public void updateModel(Bid opponentBid, double time) {
|
---|
134 | if (negotiationSession.getOpponentBidHistory().size() < 2) {
|
---|
135 | return;
|
---|
136 | }
|
---|
137 | int numberOfUnchanged = 0;
|
---|
138 | BidDetails oppBid = negotiationSession.getOpponentBidHistory().getHistory()
|
---|
139 | .get(negotiationSession.getOpponentBidHistory().size() - 1);
|
---|
140 | BidDetails prevOppBid = negotiationSession.getOpponentBidHistory().getHistory()
|
---|
141 | .get(negotiationSession.getOpponentBidHistory().size() - 2);
|
---|
142 | HashMap<Integer, Integer> lastDiffSet = determineDifference(prevOppBid, oppBid);
|
---|
143 |
|
---|
144 | // count the number of changes in value
|
---|
145 | for (Integer i : lastDiffSet.keySet()) {
|
---|
146 | if (lastDiffSet.get(i) == 0)
|
---|
147 | numberOfUnchanged++;
|
---|
148 | }
|
---|
149 |
|
---|
150 | // This is the value to be added to weights of unchanged issues before
|
---|
151 | // normalization.
|
---|
152 | // Also the value that is taken as the minimum possible weight,
|
---|
153 | // (therefore defining the maximum possible also).
|
---|
154 |
|
---|
155 | // the proportion given to last bid
|
---|
156 | double goldenValue = learnCoef / (double) amountOfIssues;
|
---|
157 | // The total sum of weights before normalization.
|
---|
158 | double totalSum = 1D + goldenValue * (double) numberOfUnchanged;
|
---|
159 | // The maximum possible weight
|
---|
160 | double maximumWeight = 1D - ((double) amountOfIssues) * goldenValue / totalSum;
|
---|
161 |
|
---|
162 | // re-weighing issues while making sure that the sum remains 1
|
---|
163 | for (Integer i : lastDiffSet.keySet()) {
|
---|
164 |
|
---|
165 | //if issue's value unchanged and the weight of the issue is smaller then maximumWeight
|
---|
166 | if (lastDiffSet.get(i) == 0 && opponentUtilitySpace.getWeight(i) < maximumWeight)
|
---|
167 | //if the new weight is legal, set the weight for this issue
|
---|
168 | opponentUtilitySpace.setWeight(opponentUtilitySpace.getDomain().getObjectives().get(i),
|
---|
169 | (opponentUtilitySpace.getWeight(i) + goldenValue) / totalSum);
|
---|
170 | else
|
---|
171 | // the assumption is that values that have been changed are values that the
|
---|
172 | // opponent is willing to compromise on them, so we reduce their weight
|
---|
173 | opponentUtilitySpace.setWeight(opponentUtilitySpace.getDomain().getObjectives().get(i),
|
---|
174 | opponentUtilitySpace.getWeight(i) / totalSum);
|
---|
175 | }
|
---|
176 |
|
---|
177 | // Then for each issue's value that has been offered last time, a constant
|
---|
178 |
|
---|
179 | // value is added to its corresponding ValueDiscrete.
|
---|
180 | try {
|
---|
181 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace.getEvaluators()) {
|
---|
182 | // cast issue to discrete and retrieve value. Next, add constant
|
---|
183 | // learnValueAddition to the current preference of the value to
|
---|
184 |
|
---|
185 | // make it more important
|
---|
186 |
|
---|
187 | ((EvaluatorDiscrete) e.getValue()).setEvaluation(
|
---|
188 | oppBid.getBid().getValue(((IssueDiscrete) e.getKey()).getNumber()),
|
---|
189 | (learnValueAddition + ((EvaluatorDiscrete) e.getValue()).getEvaluationNotNormalized(
|
---|
190 | ((ValueDiscrete) oppBid.getBid().getValue(((IssueDiscrete) e.getKey()).getNumber())))));
|
---|
191 | }
|
---|
192 | } catch (Exception ex) {
|
---|
193 | ex.printStackTrace();
|
---|
194 | }
|
---|
195 | }
|
---|
196 |
|
---|
197 | @Override
|
---|
198 | public double getBidEvaluation(Bid bid) {
|
---|
199 | double result = 0;
|
---|
200 | try {
|
---|
201 | result = opponentUtilitySpace.getUtility(bid);
|
---|
202 | } catch (Exception e) {
|
---|
203 | e.printStackTrace();
|
---|
204 | }
|
---|
205 | return result;
|
---|
206 | }
|
---|
207 |
|
---|
208 | @Override
|
---|
209 | public String getName() {
|
---|
210 |
|
---|
211 | return "OpponentModel_lgsmi";
|
---|
212 |
|
---|
213 | }
|
---|
214 |
|
---|
215 | @Override
|
---|
216 | public Set<BOAparameter> getParameterSpec() {
|
---|
217 | Set<BOAparameter> set = new HashSet<BOAparameter>();
|
---|
218 | set.add(new BOAparameter("l", 0.2,
|
---|
219 | "The learning coefficient determines how quickly the issue weights are learned"));
|
---|
220 | return set;
|
---|
221 | }
|
---|
222 |
|
---|
223 |
|
---|
224 | public Map<String, Double> getParameters() {
|
---|
225 | Map<String, Double> map = new HashMap<String, Double>();
|
---|
226 | //The learning coefficient determines how quickly the issue weights are learned
|
---|
227 | map.put("l", 0.2);
|
---|
228 | return map;
|
---|
229 | }
|
---|
230 |
|
---|
231 | }
|
---|