1 | package agents.anac.y2015.Phoenix.GP;/* This file is part of the jgpml Project.
|
---|
2 | * http://github.com/renzodenardi/jgpml
|
---|
3 | *
|
---|
4 | * Copyright (c) 2011 Renzo De Nardi and Hugo Gravato-Marques
|
---|
5 | *
|
---|
6 | * Permission is hereby granted, free of charge, to any person
|
---|
7 | * obtaining a copy of this software and associated documentation
|
---|
8 | * files (the "Software"), to deal in the Software without
|
---|
9 | * restriction, including without limitation the rights to use,
|
---|
10 | * copy, modify, merge, publish, distribute, sublicense, and/or sell
|
---|
11 | * copies of the Software, and to permit persons to whom the
|
---|
12 | * Software is furnished to do so, subject to the following
|
---|
13 | * conditions:
|
---|
14 | *
|
---|
15 | * The above copyright notice and this permission notice shall be
|
---|
16 | * included in all copies or substantial portions of the Software.
|
---|
17 | *
|
---|
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
---|
19 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
---|
20 | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
---|
21 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
---|
22 | * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
---|
23 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
---|
24 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
---|
25 | * OTHER DEALINGS IN THE SOFTWARE.
|
---|
26 | */
|
---|
27 |
|
---|
28 | import agents.Jama.Matrix;
|
---|
29 |
|
---|
30 | /** Composes a covariance function as the sum of other covariance
|
---|
31 | * functions. This function doesn't actually compute very much on its own, it
|
---|
32 | * merely calls other covariance functions with the right parameters.
|
---|
33 | */
|
---|
34 |
|
---|
35 | public class CovSum implements CovarianceFunction{
|
---|
36 |
|
---|
37 | CovarianceFunction[] f;
|
---|
38 | int[] idx;
|
---|
39 | private int D;
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Create a new <code>PhoenixAlpha.CovarianceFunction</code> as sum of the
|
---|
43 | * <code>PhoenixAlpha.CovarianceFunction</code>s passed as input.
|
---|
44 | *
|
---|
45 | * @param inputDimensions input dimension of the dataset
|
---|
46 | * @param f array of <code>PhoenixAlpha.CovarianceFunction</code>
|
---|
47 | *
|
---|
48 | * @see CovarianceFunction
|
---|
49 | */
|
---|
50 | public CovSum(int inputDimensions, CovarianceFunction... f){
|
---|
51 | this.D = inputDimensions;
|
---|
52 | this.f=f;
|
---|
53 | idx=new int[f.length+1];
|
---|
54 | for(int i=0; i<f.length; i++){
|
---|
55 | idx[i+1]=idx[i]+f[i].numParameters();
|
---|
56 | }
|
---|
57 | }
|
---|
58 |
|
---|
59 | /**
|
---|
60 | * Returns the number of hyperparameters of this<code>PhoenixAlpha.CovarianceFunction</code>
|
---|
61 | * @return number of hyperparameters
|
---|
62 | */
|
---|
63 | public int numParameters() {
|
---|
64 | return idx[f.length];
|
---|
65 | }
|
---|
66 |
|
---|
67 | /**
|
---|
68 | * Compute covariance matrix of a dataset X
|
---|
69 | * @param loghyper column <code>Matrix</code> of hyperparameters
|
---|
70 | * @param X input dataset
|
---|
71 | * @return K covariance <code>Matrix</code>
|
---|
72 | */
|
---|
73 | public Matrix compute(Matrix loghyper, Matrix X){
|
---|
74 |
|
---|
75 | Matrix K = new Matrix(X.getRowDimension(),X.getRowDimension());
|
---|
76 |
|
---|
77 | for(int i=0; i<f.length; i++){
|
---|
78 | Matrix loghyperi = loghyper.getMatrix(idx[i],idx[i+1]-1,0,0);
|
---|
79 | K.plusEquals(f[i].compute(loghyperi,X));
|
---|
80 | }
|
---|
81 | return K;
|
---|
82 | }
|
---|
83 |
|
---|
84 | /**
|
---|
85 | * Compute compute test set covariances
|
---|
86 | * @param loghyper column <code>Matrix</code> of hyperparameters
|
---|
87 | * @param X input dataset
|
---|
88 | * @param Xstar test set
|
---|
89 | * @return [K(Xstar,Xstar) K(X,Xstar)]
|
---|
90 | */
|
---|
91 | public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar){
|
---|
92 |
|
---|
93 | Matrix A = new Matrix(Xstar.getRowDimension(),1);
|
---|
94 | Matrix B = new Matrix(X.getRowDimension(),Xstar.getRowDimension());
|
---|
95 |
|
---|
96 | for(int i=0; i<f.length; i++){
|
---|
97 | Matrix loghyperi = loghyper.getMatrix(idx[i],idx[i+1]-1,0,0);
|
---|
98 | Matrix[] K = f[i].compute(loghyperi,X,Xstar);
|
---|
99 | A.plusEquals(K[0]);
|
---|
100 | B.plusEquals(K[1]);
|
---|
101 | }
|
---|
102 | return new Matrix[]{A,B};
|
---|
103 | }
|
---|
104 |
|
---|
105 | /**
|
---|
106 | * Coompute the derivatives of this <code>PhoenixAlpha.CovarianceFunction</code> with respect
|
---|
107 | * to the hyperparameter with index <code>idx</code>
|
---|
108 | *
|
---|
109 | * @param loghyper hyperparameters
|
---|
110 | * @param X input dataset
|
---|
111 | * @param index hyperparameter index
|
---|
112 | * @return <code>Matrix</code> of derivatives
|
---|
113 | */
|
---|
114 | public Matrix computeDerivatives(Matrix loghyper, Matrix X, int index){
|
---|
115 |
|
---|
116 |
|
---|
117 | if(index>numParameters()-1)
|
---|
118 | throw new IllegalArgumentException("Wrong hyperparameters index "+index+" it should be smaller or equal to "+(numParameters()-1));
|
---|
119 |
|
---|
120 | int whichf=0;
|
---|
121 | while(index>(idx[whichf+1]-1)) whichf++; // find in which of the covariance this parameter is
|
---|
122 |
|
---|
123 | Matrix loghyperi = loghyper.getMatrix(idx[whichf],idx[whichf+1]-1,0,0);
|
---|
124 | index-=idx[whichf];
|
---|
125 | return f[whichf].computeDerivatives(loghyperi,X, index);
|
---|
126 | }
|
---|
127 |
|
---|
128 |
|
---|
129 | }
|
---|