package agents.anac.y2015.Phoenix.GP;/* This file is part of the jgpml Project.
* http://github.com/renzodenardi/jgpml
*
* Copyright (c) 2011 Renzo De Nardi and Hugo Gravato-Marques
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
import agents.Jama.Matrix;
/** Composes a covariance function as the sum of other covariance
* functions. This function doesn't actually compute very much on its own, it
* merely calls other covariance functions with the right parameters.
*/
public class CovSum implements CovarianceFunction{
CovarianceFunction[] f;
int[] idx;
private int D;
/**
* Create a new PhoenixAlpha.CovarianceFunction
as sum of the
* PhoenixAlpha.CovarianceFunction
s passed as input.
*
* @param inputDimensions input dimension of the dataset
* @param f array of PhoenixAlpha.CovarianceFunction
*
* @see CovarianceFunction
*/
public CovSum(int inputDimensions, CovarianceFunction... f){
this.D = inputDimensions;
this.f=f;
idx=new int[f.length+1];
for(int i=0; iPhoenixAlpha.CovarianceFunction
* @return number of hyperparameters
*/
public int numParameters() {
return idx[f.length];
}
/**
* Compute covariance matrix of a dataset X
* @param loghyper column Matrix
of hyperparameters
* @param X input dataset
* @return K covariance Matrix
*/
public Matrix compute(Matrix loghyper, Matrix X){
Matrix K = new Matrix(X.getRowDimension(),X.getRowDimension());
for(int i=0; iMatrix of hyperparameters
* @param X input dataset
* @param Xstar test set
* @return [K(Xstar,Xstar) K(X,Xstar)]
*/
public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar){
Matrix A = new Matrix(Xstar.getRowDimension(),1);
Matrix B = new Matrix(X.getRowDimension(),Xstar.getRowDimension());
for(int i=0; iPhoenixAlpha.CovarianceFunction with respect
* to the hyperparameter with index idx
*
* @param loghyper hyperparameters
* @param X input dataset
* @param index hyperparameter index
* @return Matrix
of derivatives
*/
public Matrix computeDerivatives(Matrix loghyper, Matrix X, int index){
if(index>numParameters()-1)
throw new IllegalArgumentException("Wrong hyperparameters index "+index+" it should be smaller or equal to "+(numParameters()-1));
int whichf=0;
while(index>(idx[whichf+1]-1)) whichf++; // find in which of the covariance this parameter is
Matrix loghyperi = loghyper.getMatrix(idx[whichf],idx[whichf+1]-1,0,0);
index-=idx[whichf];
return f[whichf].computeDerivatives(loghyperi,X, index);
}
}