package agents.anac.y2015.Phoenix.GP;/* This file is part of the jgpml Project. * http://github.com/renzodenardi/jgpml * * Copyright (c) 2011 Renzo De Nardi and Hugo Gravato-Marques * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ import agents.Jama.Matrix; /** Composes a covariance function as the sum of other covariance * functions. This function doesn't actually compute very much on its own, it * merely calls other covariance functions with the right parameters. */ public class CovSum implements CovarianceFunction{ CovarianceFunction[] f; int[] idx; private int D; /** * Create a new PhoenixAlpha.CovarianceFunction as sum of the * PhoenixAlpha.CovarianceFunctions passed as input. * * @param inputDimensions input dimension of the dataset * @param f array of PhoenixAlpha.CovarianceFunction * * @see CovarianceFunction */ public CovSum(int inputDimensions, CovarianceFunction... f){ this.D = inputDimensions; this.f=f; idx=new int[f.length+1]; for(int i=0; iPhoenixAlpha.CovarianceFunction * @return number of hyperparameters */ public int numParameters() { return idx[f.length]; } /** * Compute covariance matrix of a dataset X * @param loghyper column Matrix of hyperparameters * @param X input dataset * @return K covariance Matrix */ public Matrix compute(Matrix loghyper, Matrix X){ Matrix K = new Matrix(X.getRowDimension(),X.getRowDimension()); for(int i=0; iMatrix of hyperparameters * @param X input dataset * @param Xstar test set * @return [K(Xstar,Xstar) K(X,Xstar)] */ public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar){ Matrix A = new Matrix(Xstar.getRowDimension(),1); Matrix B = new Matrix(X.getRowDimension(),Xstar.getRowDimension()); for(int i=0; iPhoenixAlpha.CovarianceFunction with respect * to the hyperparameter with index idx * * @param loghyper hyperparameters * @param X input dataset * @param index hyperparameter index * @return Matrix of derivatives */ public Matrix computeDerivatives(Matrix loghyper, Matrix X, int index){ if(index>numParameters()-1) throw new IllegalArgumentException("Wrong hyperparameters index "+index+" it should be smaller or equal to "+(numParameters()-1)); int whichf=0; while(index>(idx[whichf+1]-1)) whichf++; // find in which of the covariance this parameter is Matrix loghyperi = loghyper.getMatrix(idx[whichf],idx[whichf+1]-1,0,0); index-=idx[whichf]; return f[whichf].computeDerivatives(loghyperi,X, index); } }