[1] | 1 | package agents.Jama;
|
---|
| 2 |
|
---|
| 3 | /** LU Decomposition.
|
---|
| 4 | <P>
|
---|
| 5 | For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
|
---|
| 6 | unit lower triangular matrix L, an n-by-n upper triangular matrix U,
|
---|
| 7 | and a permutation vector piv of length m so that A(piv,:) = L*U.
|
---|
| 8 | If m < n, then L is m-by-m and U is m-by-n.
|
---|
| 9 | <P>
|
---|
| 10 | The LU decompostion with pivoting always exists, even if the matrix is
|
---|
| 11 | singular, so the constructor will never fail. The primary use of the
|
---|
| 12 | LU decomposition is in the solution of square systems of simultaneous
|
---|
| 13 | linear equations. This will fail if isNonsingular() returns false.
|
---|
| 14 | */
|
---|
| 15 |
|
---|
| 16 | public class LUDecomposition implements java.io.Serializable {
|
---|
| 17 |
|
---|
| 18 | /* ------------------------
|
---|
| 19 | Class variables
|
---|
| 20 | * ------------------------ */
|
---|
| 21 |
|
---|
| 22 | /** Array for internal storage of decomposition.
|
---|
| 23 | @serial internal array storage.
|
---|
| 24 | */
|
---|
| 25 | private double[][] LU;
|
---|
| 26 |
|
---|
| 27 | /** Row and column dimensions, and pivot sign.
|
---|
| 28 | @serial column dimension.
|
---|
| 29 | @serial row dimension.
|
---|
| 30 | @serial pivot sign.
|
---|
| 31 | */
|
---|
| 32 | private int m, n, pivsign;
|
---|
| 33 |
|
---|
| 34 | /** Internal storage of pivot vector.
|
---|
| 35 | @serial pivot vector.
|
---|
| 36 | */
|
---|
| 37 | private int[] piv;
|
---|
| 38 |
|
---|
| 39 | /* ------------------------
|
---|
| 40 | Constructor
|
---|
| 41 | * ------------------------ */
|
---|
| 42 |
|
---|
| 43 | /** LU Decomposition
|
---|
| 44 | Structure to access L, U and piv.
|
---|
| 45 | @param A Rectangular matrix
|
---|
| 46 | */
|
---|
| 47 |
|
---|
| 48 | public LUDecomposition (Matrix A) {
|
---|
| 49 |
|
---|
| 50 | // Use a "left-looking", dot-product, Crout/Doolittle algorithm.
|
---|
| 51 |
|
---|
| 52 | LU = A.getArrayCopy();
|
---|
| 53 | m = A.getRowDimension();
|
---|
| 54 | n = A.getColumnDimension();
|
---|
| 55 | piv = new int[m];
|
---|
| 56 | for (int i = 0; i < m; i++) {
|
---|
| 57 | piv[i] = i;
|
---|
| 58 | }
|
---|
| 59 | pivsign = 1;
|
---|
| 60 | double[] LUrowi;
|
---|
| 61 | double[] LUcolj = new double[m];
|
---|
| 62 |
|
---|
| 63 | // Outer loop.
|
---|
| 64 |
|
---|
| 65 | for (int j = 0; j < n; j++) {
|
---|
| 66 |
|
---|
| 67 | // Make a copy of the j-th column to localize references.
|
---|
| 68 |
|
---|
| 69 | for (int i = 0; i < m; i++) {
|
---|
| 70 | LUcolj[i] = LU[i][j];
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | // Apply previous transformations.
|
---|
| 74 |
|
---|
| 75 | for (int i = 0; i < m; i++) {
|
---|
| 76 | LUrowi = LU[i];
|
---|
| 77 |
|
---|
| 78 | // Most of the time is spent in the following dot product.
|
---|
| 79 |
|
---|
| 80 | int kmax = Math.min(i,j);
|
---|
| 81 | double s = 0.0;
|
---|
| 82 | for (int k = 0; k < kmax; k++) {
|
---|
| 83 | s += LUrowi[k]*LUcolj[k];
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | LUrowi[j] = LUcolj[i] -= s;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | // Find pivot and exchange if necessary.
|
---|
| 90 |
|
---|
| 91 | int p = j;
|
---|
| 92 | for (int i = j+1; i < m; i++) {
|
---|
| 93 | if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) {
|
---|
| 94 | p = i;
|
---|
| 95 | }
|
---|
| 96 | }
|
---|
| 97 | if (p != j) {
|
---|
| 98 | for (int k = 0; k < n; k++) {
|
---|
| 99 | double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t;
|
---|
| 100 | }
|
---|
| 101 | int k = piv[p]; piv[p] = piv[j]; piv[j] = k;
|
---|
| 102 | pivsign = -pivsign;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | // Compute multipliers.
|
---|
| 106 |
|
---|
| 107 | if (j < m & LU[j][j] != 0.0) {
|
---|
| 108 | for (int i = j+1; i < m; i++) {
|
---|
| 109 | LU[i][j] /= LU[j][j];
|
---|
| 110 | }
|
---|
| 111 | }
|
---|
| 112 | }
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | /* ------------------------
|
---|
| 116 | Temporary, experimental code.
|
---|
| 117 | ------------------------ *\
|
---|
| 118 |
|
---|
| 119 | \** LU Decomposition, computed by Gaussian elimination.
|
---|
| 120 | <P>
|
---|
| 121 | This constructor computes L and U with the "daxpy"-based elimination
|
---|
| 122 | algorithm used in LINPACK and MATLAB. In Java, we suspect the dot-product,
|
---|
| 123 | Crout algorithm will be faster. We have temporarily included this
|
---|
| 124 | constructor until timing experiments confirm this suspicion.
|
---|
| 125 | <P>
|
---|
| 126 | @param A Rectangular matrix
|
---|
| 127 | @param linpackflag Use Gaussian elimination. Actual value ignored.
|
---|
| 128 | @return Structure to access L, U and piv.
|
---|
| 129 | *\
|
---|
| 130 |
|
---|
| 131 | public LUDecomposition (Matrix A, int linpackflag) {
|
---|
| 132 | // Initialize.
|
---|
| 133 | LU = A.getArrayCopy();
|
---|
| 134 | m = A.getRowDimension();
|
---|
| 135 | n = A.getColumnDimension();
|
---|
| 136 | piv = new int[m];
|
---|
| 137 | for (int i = 0; i < m; i++) {
|
---|
| 138 | piv[i] = i;
|
---|
| 139 | }
|
---|
| 140 | pivsign = 1;
|
---|
| 141 | // Main loop.
|
---|
| 142 | for (int k = 0; k < n; k++) {
|
---|
| 143 | // Find pivot.
|
---|
| 144 | int p = k;
|
---|
| 145 | for (int i = k+1; i < m; i++) {
|
---|
| 146 | if (Math.abs(LU[i][k]) > Math.abs(LU[p][k])) {
|
---|
| 147 | p = i;
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | // Exchange if necessary.
|
---|
| 151 | if (p != k) {
|
---|
| 152 | for (int j = 0; j < n; j++) {
|
---|
| 153 | double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;
|
---|
| 154 | }
|
---|
| 155 | int t = piv[p]; piv[p] = piv[k]; piv[k] = t;
|
---|
| 156 | pivsign = -pivsign;
|
---|
| 157 | }
|
---|
| 158 | // Compute multipliers and eliminate k-th column.
|
---|
| 159 | if (LU[k][k] != 0.0) {
|
---|
| 160 | for (int i = k+1; i < m; i++) {
|
---|
| 161 | LU[i][k] /= LU[k][k];
|
---|
| 162 | for (int j = k+1; j < n; j++) {
|
---|
| 163 | LU[i][j] -= LU[i][k]*LU[k][j];
|
---|
| 164 | }
|
---|
| 165 | }
|
---|
| 166 | }
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | \* ------------------------
|
---|
| 171 | End of temporary code.
|
---|
| 172 | * ------------------------ */
|
---|
| 173 |
|
---|
| 174 | /* ------------------------
|
---|
| 175 | Public Methods
|
---|
| 176 | * ------------------------ */
|
---|
| 177 |
|
---|
| 178 | /** Is the matrix nonsingular?
|
---|
| 179 | @return true if U, and hence A, is nonsingular.
|
---|
| 180 | */
|
---|
| 181 |
|
---|
| 182 | public boolean isNonsingular () {
|
---|
| 183 | for (int j = 0; j < n; j++) {
|
---|
| 184 | if (LU[j][j] == 0)
|
---|
| 185 | return false;
|
---|
| 186 | }
|
---|
| 187 | return true;
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | /** Return lower triangular factor
|
---|
| 191 | @return L
|
---|
| 192 | */
|
---|
| 193 |
|
---|
| 194 | public Matrix getL () {
|
---|
| 195 | Matrix X = new Matrix(m,n);
|
---|
| 196 | double[][] L = X.getArray();
|
---|
| 197 | for (int i = 0; i < m; i++) {
|
---|
| 198 | for (int j = 0; j < n; j++) {
|
---|
| 199 | if (i > j) {
|
---|
| 200 | L[i][j] = LU[i][j];
|
---|
| 201 | } else if (i == j) {
|
---|
| 202 | L[i][j] = 1.0;
|
---|
| 203 | } else {
|
---|
| 204 | L[i][j] = 0.0;
|
---|
| 205 | }
|
---|
| 206 | }
|
---|
| 207 | }
|
---|
| 208 | return X;
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | /** Return upper triangular factor
|
---|
| 212 | @return U
|
---|
| 213 | */
|
---|
| 214 |
|
---|
| 215 | public Matrix getU () {
|
---|
| 216 | Matrix X = new Matrix(n,n);
|
---|
| 217 | double[][] U = X.getArray();
|
---|
| 218 | for (int i = 0; i < n; i++) {
|
---|
| 219 | for (int j = 0; j < n; j++) {
|
---|
| 220 | if (i <= j) {
|
---|
| 221 | U[i][j] = LU[i][j];
|
---|
| 222 | } else {
|
---|
| 223 | U[i][j] = 0.0;
|
---|
| 224 | }
|
---|
| 225 | }
|
---|
| 226 | }
|
---|
| 227 | return X;
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 | /** Return pivot permutation vector
|
---|
| 231 | @return piv
|
---|
| 232 | */
|
---|
| 233 |
|
---|
| 234 | public int[] getPivot () {
|
---|
| 235 | int[] p = new int[m];
|
---|
| 236 | for (int i = 0; i < m; i++) {
|
---|
| 237 | p[i] = piv[i];
|
---|
| 238 | }
|
---|
| 239 | return p;
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | /** Return pivot permutation vector as a one-dimensional double array
|
---|
| 243 | @return (double) piv
|
---|
| 244 | */
|
---|
| 245 |
|
---|
| 246 | public double[] getDoublePivot () {
|
---|
| 247 | double[] vals = new double[m];
|
---|
| 248 | for (int i = 0; i < m; i++) {
|
---|
| 249 | vals[i] = (double) piv[i];
|
---|
| 250 | }
|
---|
| 251 | return vals;
|
---|
| 252 | }
|
---|
| 253 |
|
---|
| 254 | /** Determinant
|
---|
| 255 | @return det(A)
|
---|
| 256 | @exception IllegalArgumentException Matrix must be square
|
---|
| 257 | */
|
---|
| 258 |
|
---|
| 259 | public double det () {
|
---|
| 260 | if (m != n) {
|
---|
| 261 | throw new IllegalArgumentException("Matrix must be square.");
|
---|
| 262 | }
|
---|
| 263 | double d = (double) pivsign;
|
---|
| 264 | for (int j = 0; j < n; j++) {
|
---|
| 265 | d *= LU[j][j];
|
---|
| 266 | }
|
---|
| 267 | return d;
|
---|
| 268 | }
|
---|
| 269 |
|
---|
| 270 | /** Solve A*X = B
|
---|
| 271 | @param B A Matrix with as many rows as A and any number of columns.
|
---|
| 272 | @return X so that L*U*X = B(piv,:)
|
---|
| 273 | @exception IllegalArgumentException Matrix row dimensions must agree.
|
---|
| 274 | @exception RuntimeException Matrix is singular.
|
---|
| 275 | */
|
---|
| 276 |
|
---|
| 277 | public Matrix solve (Matrix B) {
|
---|
| 278 | if (B.getRowDimension() != m) {
|
---|
| 279 | throw new IllegalArgumentException("Matrix row dimensions must agree.");
|
---|
| 280 | }
|
---|
| 281 | if (!this.isNonsingular()) {
|
---|
| 282 | throw new RuntimeException("Matrix is singular.");
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | // Copy right hand side with pivoting
|
---|
| 286 | int nx = B.getColumnDimension();
|
---|
| 287 | Matrix Xmat = B.getMatrix(piv,0,nx-1);
|
---|
| 288 | double[][] X = Xmat.getArray();
|
---|
| 289 |
|
---|
| 290 | // Solve L*Y = B(piv,:)
|
---|
| 291 | for (int k = 0; k < n; k++) {
|
---|
| 292 | for (int i = k+1; i < n; i++) {
|
---|
| 293 | for (int j = 0; j < nx; j++) {
|
---|
| 294 | X[i][j] -= X[k][j]*LU[i][k];
|
---|
| 295 | }
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | // Solve U*X = Y;
|
---|
| 299 | for (int k = n-1; k >= 0; k--) {
|
---|
| 300 | for (int j = 0; j < nx; j++) {
|
---|
| 301 | X[k][j] /= LU[k][k];
|
---|
| 302 | }
|
---|
| 303 | for (int i = 0; i < k; i++) {
|
---|
| 304 | for (int j = 0; j < nx; j++) {
|
---|
| 305 | X[i][j] -= X[k][j]*LU[i][k];
|
---|
| 306 | }
|
---|
| 307 | }
|
---|
| 308 | }
|
---|
| 309 | return Xmat;
|
---|
| 310 | }
|
---|
| 311 | private static final long serialVersionUID = 1;
|
---|
| 312 | }
|
---|