1 | package agents.Jama;
|
---|
2 |
|
---|
3 | /** LU Decomposition.
|
---|
4 | <P>
|
---|
5 | For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
|
---|
6 | unit lower triangular matrix L, an n-by-n upper triangular matrix U,
|
---|
7 | and a permutation vector piv of length m so that A(piv,:) = L*U.
|
---|
8 | If m < n, then L is m-by-m and U is m-by-n.
|
---|
9 | <P>
|
---|
10 | The LU decompostion with pivoting always exists, even if the matrix is
|
---|
11 | singular, so the constructor will never fail. The primary use of the
|
---|
12 | LU decomposition is in the solution of square systems of simultaneous
|
---|
13 | linear equations. This will fail if isNonsingular() returns false.
|
---|
14 | */
|
---|
15 |
|
---|
16 | public class LUDecomposition implements java.io.Serializable {
|
---|
17 |
|
---|
18 | /* ------------------------
|
---|
19 | Class variables
|
---|
20 | * ------------------------ */
|
---|
21 |
|
---|
22 | /** Array for internal storage of decomposition.
|
---|
23 | @serial internal array storage.
|
---|
24 | */
|
---|
25 | private double[][] LU;
|
---|
26 |
|
---|
27 | /** Row and column dimensions, and pivot sign.
|
---|
28 | @serial column dimension.
|
---|
29 | @serial row dimension.
|
---|
30 | @serial pivot sign.
|
---|
31 | */
|
---|
32 | private int m, n, pivsign;
|
---|
33 |
|
---|
34 | /** Internal storage of pivot vector.
|
---|
35 | @serial pivot vector.
|
---|
36 | */
|
---|
37 | private int[] piv;
|
---|
38 |
|
---|
39 | /* ------------------------
|
---|
40 | Constructor
|
---|
41 | * ------------------------ */
|
---|
42 |
|
---|
43 | /** LU Decomposition
|
---|
44 | Structure to access L, U and piv.
|
---|
45 | @param A Rectangular matrix
|
---|
46 | */
|
---|
47 |
|
---|
48 | public LUDecomposition (Matrix A) {
|
---|
49 |
|
---|
50 | // Use a "left-looking", dot-product, Crout/Doolittle algorithm.
|
---|
51 |
|
---|
52 | LU = A.getArrayCopy();
|
---|
53 | m = A.getRowDimension();
|
---|
54 | n = A.getColumnDimension();
|
---|
55 | piv = new int[m];
|
---|
56 | for (int i = 0; i < m; i++) {
|
---|
57 | piv[i] = i;
|
---|
58 | }
|
---|
59 | pivsign = 1;
|
---|
60 | double[] LUrowi;
|
---|
61 | double[] LUcolj = new double[m];
|
---|
62 |
|
---|
63 | // Outer loop.
|
---|
64 |
|
---|
65 | for (int j = 0; j < n; j++) {
|
---|
66 |
|
---|
67 | // Make a copy of the j-th column to localize references.
|
---|
68 |
|
---|
69 | for (int i = 0; i < m; i++) {
|
---|
70 | LUcolj[i] = LU[i][j];
|
---|
71 | }
|
---|
72 |
|
---|
73 | // Apply previous transformations.
|
---|
74 |
|
---|
75 | for (int i = 0; i < m; i++) {
|
---|
76 | LUrowi = LU[i];
|
---|
77 |
|
---|
78 | // Most of the time is spent in the following dot product.
|
---|
79 |
|
---|
80 | int kmax = Math.min(i,j);
|
---|
81 | double s = 0.0;
|
---|
82 | for (int k = 0; k < kmax; k++) {
|
---|
83 | s += LUrowi[k]*LUcolj[k];
|
---|
84 | }
|
---|
85 |
|
---|
86 | LUrowi[j] = LUcolj[i] -= s;
|
---|
87 | }
|
---|
88 |
|
---|
89 | // Find pivot and exchange if necessary.
|
---|
90 |
|
---|
91 | int p = j;
|
---|
92 | for (int i = j+1; i < m; i++) {
|
---|
93 | if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) {
|
---|
94 | p = i;
|
---|
95 | }
|
---|
96 | }
|
---|
97 | if (p != j) {
|
---|
98 | for (int k = 0; k < n; k++) {
|
---|
99 | double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t;
|
---|
100 | }
|
---|
101 | int k = piv[p]; piv[p] = piv[j]; piv[j] = k;
|
---|
102 | pivsign = -pivsign;
|
---|
103 | }
|
---|
104 |
|
---|
105 | // Compute multipliers.
|
---|
106 |
|
---|
107 | if (j < m & LU[j][j] != 0.0) {
|
---|
108 | for (int i = j+1; i < m; i++) {
|
---|
109 | LU[i][j] /= LU[j][j];
|
---|
110 | }
|
---|
111 | }
|
---|
112 | }
|
---|
113 | }
|
---|
114 |
|
---|
115 | /* ------------------------
|
---|
116 | Temporary, experimental code.
|
---|
117 | ------------------------ *\
|
---|
118 |
|
---|
119 | \** LU Decomposition, computed by Gaussian elimination.
|
---|
120 | <P>
|
---|
121 | This constructor computes L and U with the "daxpy"-based elimination
|
---|
122 | algorithm used in LINPACK and MATLAB. In Java, we suspect the dot-product,
|
---|
123 | Crout algorithm will be faster. We have temporarily included this
|
---|
124 | constructor until timing experiments confirm this suspicion.
|
---|
125 | <P>
|
---|
126 | @param A Rectangular matrix
|
---|
127 | @param linpackflag Use Gaussian elimination. Actual value ignored.
|
---|
128 | @return Structure to access L, U and piv.
|
---|
129 | *\
|
---|
130 |
|
---|
131 | public LUDecomposition (Matrix A, int linpackflag) {
|
---|
132 | // Initialize.
|
---|
133 | LU = A.getArrayCopy();
|
---|
134 | m = A.getRowDimension();
|
---|
135 | n = A.getColumnDimension();
|
---|
136 | piv = new int[m];
|
---|
137 | for (int i = 0; i < m; i++) {
|
---|
138 | piv[i] = i;
|
---|
139 | }
|
---|
140 | pivsign = 1;
|
---|
141 | // Main loop.
|
---|
142 | for (int k = 0; k < n; k++) {
|
---|
143 | // Find pivot.
|
---|
144 | int p = k;
|
---|
145 | for (int i = k+1; i < m; i++) {
|
---|
146 | if (Math.abs(LU[i][k]) > Math.abs(LU[p][k])) {
|
---|
147 | p = i;
|
---|
148 | }
|
---|
149 | }
|
---|
150 | // Exchange if necessary.
|
---|
151 | if (p != k) {
|
---|
152 | for (int j = 0; j < n; j++) {
|
---|
153 | double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;
|
---|
154 | }
|
---|
155 | int t = piv[p]; piv[p] = piv[k]; piv[k] = t;
|
---|
156 | pivsign = -pivsign;
|
---|
157 | }
|
---|
158 | // Compute multipliers and eliminate k-th column.
|
---|
159 | if (LU[k][k] != 0.0) {
|
---|
160 | for (int i = k+1; i < m; i++) {
|
---|
161 | LU[i][k] /= LU[k][k];
|
---|
162 | for (int j = k+1; j < n; j++) {
|
---|
163 | LU[i][j] -= LU[i][k]*LU[k][j];
|
---|
164 | }
|
---|
165 | }
|
---|
166 | }
|
---|
167 | }
|
---|
168 | }
|
---|
169 |
|
---|
170 | \* ------------------------
|
---|
171 | End of temporary code.
|
---|
172 | * ------------------------ */
|
---|
173 |
|
---|
174 | /* ------------------------
|
---|
175 | Public Methods
|
---|
176 | * ------------------------ */
|
---|
177 |
|
---|
178 | /** Is the matrix nonsingular?
|
---|
179 | @return true if U, and hence A, is nonsingular.
|
---|
180 | */
|
---|
181 |
|
---|
182 | public boolean isNonsingular () {
|
---|
183 | for (int j = 0; j < n; j++) {
|
---|
184 | if (LU[j][j] == 0)
|
---|
185 | return false;
|
---|
186 | }
|
---|
187 | return true;
|
---|
188 | }
|
---|
189 |
|
---|
190 | /** Return lower triangular factor
|
---|
191 | @return L
|
---|
192 | */
|
---|
193 |
|
---|
194 | public Matrix getL () {
|
---|
195 | Matrix X = new Matrix(m,n);
|
---|
196 | double[][] L = X.getArray();
|
---|
197 | for (int i = 0; i < m; i++) {
|
---|
198 | for (int j = 0; j < n; j++) {
|
---|
199 | if (i > j) {
|
---|
200 | L[i][j] = LU[i][j];
|
---|
201 | } else if (i == j) {
|
---|
202 | L[i][j] = 1.0;
|
---|
203 | } else {
|
---|
204 | L[i][j] = 0.0;
|
---|
205 | }
|
---|
206 | }
|
---|
207 | }
|
---|
208 | return X;
|
---|
209 | }
|
---|
210 |
|
---|
211 | /** Return upper triangular factor
|
---|
212 | @return U
|
---|
213 | */
|
---|
214 |
|
---|
215 | public Matrix getU () {
|
---|
216 | Matrix X = new Matrix(n,n);
|
---|
217 | double[][] U = X.getArray();
|
---|
218 | for (int i = 0; i < n; i++) {
|
---|
219 | for (int j = 0; j < n; j++) {
|
---|
220 | if (i <= j) {
|
---|
221 | U[i][j] = LU[i][j];
|
---|
222 | } else {
|
---|
223 | U[i][j] = 0.0;
|
---|
224 | }
|
---|
225 | }
|
---|
226 | }
|
---|
227 | return X;
|
---|
228 | }
|
---|
229 |
|
---|
230 | /** Return pivot permutation vector
|
---|
231 | @return piv
|
---|
232 | */
|
---|
233 |
|
---|
234 | public int[] getPivot () {
|
---|
235 | int[] p = new int[m];
|
---|
236 | for (int i = 0; i < m; i++) {
|
---|
237 | p[i] = piv[i];
|
---|
238 | }
|
---|
239 | return p;
|
---|
240 | }
|
---|
241 |
|
---|
242 | /** Return pivot permutation vector as a one-dimensional double array
|
---|
243 | @return (double) piv
|
---|
244 | */
|
---|
245 |
|
---|
246 | public double[] getDoublePivot () {
|
---|
247 | double[] vals = new double[m];
|
---|
248 | for (int i = 0; i < m; i++) {
|
---|
249 | vals[i] = (double) piv[i];
|
---|
250 | }
|
---|
251 | return vals;
|
---|
252 | }
|
---|
253 |
|
---|
254 | /** Determinant
|
---|
255 | @return det(A)
|
---|
256 | @exception IllegalArgumentException Matrix must be square
|
---|
257 | */
|
---|
258 |
|
---|
259 | public double det () {
|
---|
260 | if (m != n) {
|
---|
261 | throw new IllegalArgumentException("Matrix must be square.");
|
---|
262 | }
|
---|
263 | double d = (double) pivsign;
|
---|
264 | for (int j = 0; j < n; j++) {
|
---|
265 | d *= LU[j][j];
|
---|
266 | }
|
---|
267 | return d;
|
---|
268 | }
|
---|
269 |
|
---|
270 | /** Solve A*X = B
|
---|
271 | @param B A Matrix with as many rows as A and any number of columns.
|
---|
272 | @return X so that L*U*X = B(piv,:)
|
---|
273 | @exception IllegalArgumentException Matrix row dimensions must agree.
|
---|
274 | @exception RuntimeException Matrix is singular.
|
---|
275 | */
|
---|
276 |
|
---|
277 | public Matrix solve (Matrix B) {
|
---|
278 | if (B.getRowDimension() != m) {
|
---|
279 | throw new IllegalArgumentException("Matrix row dimensions must agree.");
|
---|
280 | }
|
---|
281 | if (!this.isNonsingular()) {
|
---|
282 | throw new RuntimeException("Matrix is singular.");
|
---|
283 | }
|
---|
284 |
|
---|
285 | // Copy right hand side with pivoting
|
---|
286 | int nx = B.getColumnDimension();
|
---|
287 | Matrix Xmat = B.getMatrix(piv,0,nx-1);
|
---|
288 | double[][] X = Xmat.getArray();
|
---|
289 |
|
---|
290 | // Solve L*Y = B(piv,:)
|
---|
291 | for (int k = 0; k < n; k++) {
|
---|
292 | for (int i = k+1; i < n; i++) {
|
---|
293 | for (int j = 0; j < nx; j++) {
|
---|
294 | X[i][j] -= X[k][j]*LU[i][k];
|
---|
295 | }
|
---|
296 | }
|
---|
297 | }
|
---|
298 | // Solve U*X = Y;
|
---|
299 | for (int k = n-1; k >= 0; k--) {
|
---|
300 | for (int j = 0; j < nx; j++) {
|
---|
301 | X[k][j] /= LU[k][k];
|
---|
302 | }
|
---|
303 | for (int i = 0; i < k; i++) {
|
---|
304 | for (int j = 0; j < nx; j++) {
|
---|
305 | X[i][j] -= X[k][j]*LU[i][k];
|
---|
306 | }
|
---|
307 | }
|
---|
308 | }
|
---|
309 | return Xmat;
|
---|
310 | }
|
---|
311 | private static final long serialVersionUID = 1;
|
---|
312 | }
|
---|