[1] | 1 | package agents.Jama;
|
---|
| 2 |
|
---|
| 3 | /** Cholesky Decomposition.
|
---|
| 4 | <P>
|
---|
| 5 | For a symmetric, positive definite matrix A, the Cholesky decomposition
|
---|
| 6 | is an lower triangular matrix L so that A = L*L'.
|
---|
| 7 | <P>
|
---|
| 8 | If the matrix is not symmetric or positive definite, the constructor
|
---|
| 9 | returns a partial decomposition and sets an internal flag that may
|
---|
| 10 | be queried by the isSPD() method.
|
---|
| 11 | */
|
---|
| 12 |
|
---|
| 13 | public class CholeskyDecomposition implements java.io.Serializable {
|
---|
| 14 |
|
---|
| 15 | /* ------------------------
|
---|
| 16 | Class variables
|
---|
| 17 | * ------------------------ */
|
---|
| 18 |
|
---|
| 19 | /** Array for internal storage of decomposition.
|
---|
| 20 | @serial internal array storage.
|
---|
| 21 | */
|
---|
| 22 | private double[][] L;
|
---|
| 23 |
|
---|
| 24 | /** Row and column dimension (square matrix).
|
---|
| 25 | @serial matrix dimension.
|
---|
| 26 | */
|
---|
| 27 | private int n;
|
---|
| 28 |
|
---|
| 29 | /** Symmetric and positive definite flag.
|
---|
| 30 | @serial is symmetric and positive definite flag.
|
---|
| 31 | */
|
---|
| 32 | private boolean isspd;
|
---|
| 33 |
|
---|
| 34 | /* ------------------------
|
---|
| 35 | Constructor
|
---|
| 36 | * ------------------------ */
|
---|
| 37 |
|
---|
| 38 | /** Cholesky algorithm for symmetric and positive definite matrix.
|
---|
| 39 | Structure to access L and isspd flag.
|
---|
| 40 | @param Arg Square, symmetric matrix.
|
---|
| 41 | */
|
---|
| 42 |
|
---|
| 43 | public CholeskyDecomposition (Matrix Arg) {
|
---|
| 44 |
|
---|
| 45 |
|
---|
| 46 | // Initialize.
|
---|
| 47 | double[][] A = Arg.getArray();
|
---|
| 48 | n = Arg.getRowDimension();
|
---|
| 49 | L = new double[n][n];
|
---|
| 50 | isspd = (Arg.getColumnDimension() == n);
|
---|
| 51 | // Main loop.
|
---|
| 52 | for (int j = 0; j < n; j++) {
|
---|
| 53 | double[] Lrowj = L[j];
|
---|
| 54 | double d = 0.0;
|
---|
| 55 | for (int k = 0; k < j; k++) {
|
---|
| 56 | double[] Lrowk = L[k];
|
---|
| 57 | double s = 0.0;
|
---|
| 58 | for (int i = 0; i < k; i++) {
|
---|
| 59 | s += Lrowk[i]*Lrowj[i];
|
---|
| 60 | }
|
---|
| 61 | Lrowj[k] = s = (A[j][k] - s)/L[k][k];
|
---|
| 62 | d = d + s*s;
|
---|
| 63 | isspd = isspd & (A[k][j] == A[j][k]);
|
---|
| 64 | }
|
---|
| 65 | d = A[j][j] - d;
|
---|
| 66 | isspd = isspd & (d > 0.0);
|
---|
| 67 | L[j][j] = Math.sqrt(Math.max(d,0.0));
|
---|
| 68 | for (int k = j+1; k < n; k++) {
|
---|
| 69 | L[j][k] = 0.0;
|
---|
| 70 | }
|
---|
| 71 | }
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | /* ------------------------
|
---|
| 75 | Temporary, experimental code.
|
---|
| 76 | * ------------------------ *\
|
---|
| 77 |
|
---|
| 78 | \** Right Triangular Cholesky Decomposition.
|
---|
| 79 | <P>
|
---|
| 80 | For a symmetric, positive definite matrix A, the Right Cholesky
|
---|
| 81 | decomposition is an upper triangular matrix R so that A = R'*R.
|
---|
| 82 | This constructor computes R with the Fortran inspired column oriented
|
---|
| 83 | algorithm used in LINPACK and MATLAB. In Java, we suspect a row oriented,
|
---|
| 84 | lower triangular decomposition is faster. We have temporarily included
|
---|
| 85 | this constructor here until timing experiments confirm this suspicion.
|
---|
| 86 | *\
|
---|
| 87 |
|
---|
| 88 | \** Array for internal storage of right triangular decomposition. **\
|
---|
| 89 | private transient double[][] R;
|
---|
| 90 |
|
---|
| 91 | \** Cholesky algorithm for symmetric and positive definite matrix.
|
---|
| 92 | @param A Square, symmetric matrix.
|
---|
| 93 | @param rightflag Actual value ignored.
|
---|
| 94 | @return Structure to access R and isspd flag.
|
---|
| 95 | *\
|
---|
| 96 |
|
---|
| 97 | public CholeskyDecomposition (Matrix Arg, int rightflag) {
|
---|
| 98 | // Initialize.
|
---|
| 99 | double[][] A = Arg.getArray();
|
---|
| 100 | n = Arg.getColumnDimension();
|
---|
| 101 | R = new double[n][n];
|
---|
| 102 | isspd = (Arg.getColumnDimension() == n);
|
---|
| 103 | // Main loop.
|
---|
| 104 | for (int j = 0; j < n; j++) {
|
---|
| 105 | double d = 0.0;
|
---|
| 106 | for (int k = 0; k < j; k++) {
|
---|
| 107 | double s = A[k][j];
|
---|
| 108 | for (int i = 0; i < k; i++) {
|
---|
| 109 | s = s - R[i][k]*R[i][j];
|
---|
| 110 | }
|
---|
| 111 | R[k][j] = s = s/R[k][k];
|
---|
| 112 | d = d + s*s;
|
---|
| 113 | isspd = isspd & (A[k][j] == A[j][k]);
|
---|
| 114 | }
|
---|
| 115 | d = A[j][j] - d;
|
---|
| 116 | isspd = isspd & (d > 0.0);
|
---|
| 117 | R[j][j] = Math.sqrt(Math.max(d,0.0));
|
---|
| 118 | for (int k = j+1; k < n; k++) {
|
---|
| 119 | R[k][j] = 0.0;
|
---|
| 120 | }
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | \** Return upper triangular factor.
|
---|
| 125 | @return R
|
---|
| 126 | *\
|
---|
| 127 |
|
---|
| 128 | public Matrix getR () {
|
---|
| 129 | return new Matrix(R,n,n);
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | \* ------------------------
|
---|
| 133 | End of temporary code.
|
---|
| 134 | * ------------------------ */
|
---|
| 135 |
|
---|
| 136 | /* ------------------------
|
---|
| 137 | Public Methods
|
---|
| 138 | * ------------------------ */
|
---|
| 139 |
|
---|
| 140 | /** Is the matrix symmetric and positive definite?
|
---|
| 141 | @return true if A is symmetric and positive definite.
|
---|
| 142 | */
|
---|
| 143 |
|
---|
| 144 | public boolean isSPD () {
|
---|
| 145 | return isspd;
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 | /** Return triangular factor.
|
---|
| 149 | @return L
|
---|
| 150 | */
|
---|
| 151 |
|
---|
| 152 | public Matrix getL () {
|
---|
| 153 | return new Matrix(L,n,n);
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | /** Solve A*X = B
|
---|
| 157 | @param B A Matrix with as many rows as A and any number of columns.
|
---|
| 158 | @return X so that L*L'*X = B
|
---|
| 159 | @exception IllegalArgumentException Matrix row dimensions must agree.
|
---|
| 160 | @exception RuntimeException Matrix is not symmetric positive definite.
|
---|
| 161 | */
|
---|
| 162 |
|
---|
| 163 | public Matrix solve (Matrix B) {
|
---|
| 164 | if (B.getRowDimension() != n) {
|
---|
| 165 | throw new IllegalArgumentException("Matrix row dimensions must agree.");
|
---|
| 166 | }
|
---|
| 167 | if (!isspd) {
|
---|
| 168 | throw new RuntimeException("Matrix is not symmetric positive definite.");
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | // Copy right hand side.
|
---|
| 172 | double[][] X = B.getArrayCopy();
|
---|
| 173 | int nx = B.getColumnDimension();
|
---|
| 174 |
|
---|
| 175 | // Solve L*Y = B;
|
---|
| 176 | for (int k = 0; k < n; k++) {
|
---|
| 177 | for (int j = 0; j < nx; j++) {
|
---|
| 178 | for (int i = 0; i < k ; i++) {
|
---|
| 179 | X[k][j] -= X[i][j]*L[k][i];
|
---|
| 180 | }
|
---|
| 181 | X[k][j] /= L[k][k];
|
---|
| 182 | }
|
---|
| 183 | }
|
---|
| 184 |
|
---|
| 185 | // Solve L'*X = Y;
|
---|
| 186 | for (int k = n-1; k >= 0; k--) {
|
---|
| 187 | for (int j = 0; j < nx; j++) {
|
---|
| 188 | for (int i = k+1; i < n ; i++) {
|
---|
| 189 | X[k][j] -= X[i][j]*L[i][k];
|
---|
| 190 | }
|
---|
| 191 | X[k][j] /= L[k][k];
|
---|
| 192 | }
|
---|
| 193 | }
|
---|
| 194 |
|
---|
| 195 |
|
---|
| 196 | return new Matrix(X,n,nx);
|
---|
| 197 | }
|
---|
| 198 | private static final long serialVersionUID = 1;
|
---|
| 199 |
|
---|
| 200 | }
|
---|
| 201 |
|
---|