1 | package agents.Jama;
|
---|
2 |
|
---|
3 | /** Cholesky Decomposition.
|
---|
4 | <P>
|
---|
5 | For a symmetric, positive definite matrix A, the Cholesky decomposition
|
---|
6 | is an lower triangular matrix L so that A = L*L'.
|
---|
7 | <P>
|
---|
8 | If the matrix is not symmetric or positive definite, the constructor
|
---|
9 | returns a partial decomposition and sets an internal flag that may
|
---|
10 | be queried by the isSPD() method.
|
---|
11 | */
|
---|
12 |
|
---|
13 | public class CholeskyDecomposition implements java.io.Serializable {
|
---|
14 |
|
---|
15 | /* ------------------------
|
---|
16 | Class variables
|
---|
17 | * ------------------------ */
|
---|
18 |
|
---|
19 | /** Array for internal storage of decomposition.
|
---|
20 | @serial internal array storage.
|
---|
21 | */
|
---|
22 | private double[][] L;
|
---|
23 |
|
---|
24 | /** Row and column dimension (square matrix).
|
---|
25 | @serial matrix dimension.
|
---|
26 | */
|
---|
27 | private int n;
|
---|
28 |
|
---|
29 | /** Symmetric and positive definite flag.
|
---|
30 | @serial is symmetric and positive definite flag.
|
---|
31 | */
|
---|
32 | private boolean isspd;
|
---|
33 |
|
---|
34 | /* ------------------------
|
---|
35 | Constructor
|
---|
36 | * ------------------------ */
|
---|
37 |
|
---|
38 | /** Cholesky algorithm for symmetric and positive definite matrix.
|
---|
39 | Structure to access L and isspd flag.
|
---|
40 | @param Arg Square, symmetric matrix.
|
---|
41 | */
|
---|
42 |
|
---|
43 | public CholeskyDecomposition (Matrix Arg) {
|
---|
44 |
|
---|
45 |
|
---|
46 | // Initialize.
|
---|
47 | double[][] A = Arg.getArray();
|
---|
48 | n = Arg.getRowDimension();
|
---|
49 | L = new double[n][n];
|
---|
50 | isspd = (Arg.getColumnDimension() == n);
|
---|
51 | // Main loop.
|
---|
52 | for (int j = 0; j < n; j++) {
|
---|
53 | double[] Lrowj = L[j];
|
---|
54 | double d = 0.0;
|
---|
55 | for (int k = 0; k < j; k++) {
|
---|
56 | double[] Lrowk = L[k];
|
---|
57 | double s = 0.0;
|
---|
58 | for (int i = 0; i < k; i++) {
|
---|
59 | s += Lrowk[i]*Lrowj[i];
|
---|
60 | }
|
---|
61 | Lrowj[k] = s = (A[j][k] - s)/L[k][k];
|
---|
62 | d = d + s*s;
|
---|
63 | isspd = isspd & (A[k][j] == A[j][k]);
|
---|
64 | }
|
---|
65 | d = A[j][j] - d;
|
---|
66 | isspd = isspd & (d > 0.0);
|
---|
67 | L[j][j] = Math.sqrt(Math.max(d,0.0));
|
---|
68 | for (int k = j+1; k < n; k++) {
|
---|
69 | L[j][k] = 0.0;
|
---|
70 | }
|
---|
71 | }
|
---|
72 | }
|
---|
73 |
|
---|
74 | /* ------------------------
|
---|
75 | Temporary, experimental code.
|
---|
76 | * ------------------------ *\
|
---|
77 |
|
---|
78 | \** Right Triangular Cholesky Decomposition.
|
---|
79 | <P>
|
---|
80 | For a symmetric, positive definite matrix A, the Right Cholesky
|
---|
81 | decomposition is an upper triangular matrix R so that A = R'*R.
|
---|
82 | This constructor computes R with the Fortran inspired column oriented
|
---|
83 | algorithm used in LINPACK and MATLAB. In Java, we suspect a row oriented,
|
---|
84 | lower triangular decomposition is faster. We have temporarily included
|
---|
85 | this constructor here until timing experiments confirm this suspicion.
|
---|
86 | *\
|
---|
87 |
|
---|
88 | \** Array for internal storage of right triangular decomposition. **\
|
---|
89 | private transient double[][] R;
|
---|
90 |
|
---|
91 | \** Cholesky algorithm for symmetric and positive definite matrix.
|
---|
92 | @param A Square, symmetric matrix.
|
---|
93 | @param rightflag Actual value ignored.
|
---|
94 | @return Structure to access R and isspd flag.
|
---|
95 | *\
|
---|
96 |
|
---|
97 | public CholeskyDecomposition (Matrix Arg, int rightflag) {
|
---|
98 | // Initialize.
|
---|
99 | double[][] A = Arg.getArray();
|
---|
100 | n = Arg.getColumnDimension();
|
---|
101 | R = new double[n][n];
|
---|
102 | isspd = (Arg.getColumnDimension() == n);
|
---|
103 | // Main loop.
|
---|
104 | for (int j = 0; j < n; j++) {
|
---|
105 | double d = 0.0;
|
---|
106 | for (int k = 0; k < j; k++) {
|
---|
107 | double s = A[k][j];
|
---|
108 | for (int i = 0; i < k; i++) {
|
---|
109 | s = s - R[i][k]*R[i][j];
|
---|
110 | }
|
---|
111 | R[k][j] = s = s/R[k][k];
|
---|
112 | d = d + s*s;
|
---|
113 | isspd = isspd & (A[k][j] == A[j][k]);
|
---|
114 | }
|
---|
115 | d = A[j][j] - d;
|
---|
116 | isspd = isspd & (d > 0.0);
|
---|
117 | R[j][j] = Math.sqrt(Math.max(d,0.0));
|
---|
118 | for (int k = j+1; k < n; k++) {
|
---|
119 | R[k][j] = 0.0;
|
---|
120 | }
|
---|
121 | }
|
---|
122 | }
|
---|
123 |
|
---|
124 | \** Return upper triangular factor.
|
---|
125 | @return R
|
---|
126 | *\
|
---|
127 |
|
---|
128 | public Matrix getR () {
|
---|
129 | return new Matrix(R,n,n);
|
---|
130 | }
|
---|
131 |
|
---|
132 | \* ------------------------
|
---|
133 | End of temporary code.
|
---|
134 | * ------------------------ */
|
---|
135 |
|
---|
136 | /* ------------------------
|
---|
137 | Public Methods
|
---|
138 | * ------------------------ */
|
---|
139 |
|
---|
140 | /** Is the matrix symmetric and positive definite?
|
---|
141 | @return true if A is symmetric and positive definite.
|
---|
142 | */
|
---|
143 |
|
---|
144 | public boolean isSPD () {
|
---|
145 | return isspd;
|
---|
146 | }
|
---|
147 |
|
---|
148 | /** Return triangular factor.
|
---|
149 | @return L
|
---|
150 | */
|
---|
151 |
|
---|
152 | public Matrix getL () {
|
---|
153 | return new Matrix(L,n,n);
|
---|
154 | }
|
---|
155 |
|
---|
156 | /** Solve A*X = B
|
---|
157 | @param B A Matrix with as many rows as A and any number of columns.
|
---|
158 | @return X so that L*L'*X = B
|
---|
159 | @exception IllegalArgumentException Matrix row dimensions must agree.
|
---|
160 | @exception RuntimeException Matrix is not symmetric positive definite.
|
---|
161 | */
|
---|
162 |
|
---|
163 | public Matrix solve (Matrix B) {
|
---|
164 | if (B.getRowDimension() != n) {
|
---|
165 | throw new IllegalArgumentException("Matrix row dimensions must agree.");
|
---|
166 | }
|
---|
167 | if (!isspd) {
|
---|
168 | throw new RuntimeException("Matrix is not symmetric positive definite.");
|
---|
169 | }
|
---|
170 |
|
---|
171 | // Copy right hand side.
|
---|
172 | double[][] X = B.getArrayCopy();
|
---|
173 | int nx = B.getColumnDimension();
|
---|
174 |
|
---|
175 | // Solve L*Y = B;
|
---|
176 | for (int k = 0; k < n; k++) {
|
---|
177 | for (int j = 0; j < nx; j++) {
|
---|
178 | for (int i = 0; i < k ; i++) {
|
---|
179 | X[k][j] -= X[i][j]*L[k][i];
|
---|
180 | }
|
---|
181 | X[k][j] /= L[k][k];
|
---|
182 | }
|
---|
183 | }
|
---|
184 |
|
---|
185 | // Solve L'*X = Y;
|
---|
186 | for (int k = n-1; k >= 0; k--) {
|
---|
187 | for (int j = 0; j < nx; j++) {
|
---|
188 | for (int i = k+1; i < n ; i++) {
|
---|
189 | X[k][j] -= X[i][j]*L[i][k];
|
---|
190 | }
|
---|
191 | X[k][j] /= L[k][k];
|
---|
192 | }
|
---|
193 | }
|
---|
194 |
|
---|
195 |
|
---|
196 | return new Matrix(X,n,nx);
|
---|
197 | }
|
---|
198 | private static final long serialVersionUID = 1;
|
---|
199 |
|
---|
200 | }
|
---|
201 |
|
---|