1 | library (foreign)
|
---|
2 | library (ggplot2)
|
---|
3 | library (nlme)
|
---|
4 | library (lattice)
|
---|
5 | library (MASS)
|
---|
6 | library (Matrix)
|
---|
7 | library (lme4)
|
---|
8 | library (multilevel)
|
---|
9 | library (psy)
|
---|
10 | library(ordinal)
|
---|
11 | library(pspearman)
|
---|
12 | library(readxl)
|
---|
13 | library(car)
|
---|
14 |
|
---|
15 |
|
---|
16 | #REGION CRONBACH ALPHA ALLIANCE
|
---|
17 |
|
---|
18 | data_alliLSHM <- read_excel("PATH/Alliance dataLSHM.xlsx")
|
---|
19 | View(data_alliLSHM)
|
---|
20 | cronbach(data_alliLSHM)
|
---|
21 |
|
---|
22 | data_alliHSHM <- read_excel("PATH/Alliance dataHSHM.xlsx")
|
---|
23 | View(data_alliHSHM)
|
---|
24 | cronbach(data_alliHSHM)
|
---|
25 |
|
---|
26 | data_alliLSMM <- read_excel("PATH/Alliance dataLSMM.xlsx")
|
---|
27 | View(data_alliLSMM)
|
---|
28 | cronbach(data_alliLSMM)
|
---|
29 |
|
---|
30 | data_alliMSMM <- read_excel("PATH/Alliance dataMSMM.xlsx")
|
---|
31 | View(data_alliMSMM)
|
---|
32 | cronbach(data_alliMSMM)
|
---|
33 |
|
---|
34 | data_alliHSMM <- read_excel("PATH/Alliance dataHSMM.xlsx")
|
---|
35 | View(data_alliHSMM)
|
---|
36 | cronbach(data_alliHSMM)
|
---|
37 |
|
---|
38 | data_alliLSLM <- read_excel("PATH/Alliance dataLSLM.xlsx")
|
---|
39 | View(data_alliLSLM)
|
---|
40 | cronbach(data_alliLSLM)
|
---|
41 |
|
---|
42 | data_alliMSLM <- read_excel("PATH/Alliance dataMSLM.xlsx")
|
---|
43 | View(data_alliMSLM)
|
---|
44 | cronbach(data_alliMSLM)
|
---|
45 |
|
---|
46 | data_alliMSHM <- read_excel("PATH/Alliance dataMSHM.xlsx")
|
---|
47 | View(data_alliMSHM)
|
---|
48 | cronbach(data_alliMSHM)
|
---|
49 |
|
---|
50 | data_alliHSLM <- read_excel("PATH/Alliance dataHSLM.xlsx")
|
---|
51 | View(data_alliHSLM)
|
---|
52 | cronbach(data_alliHSLM)
|
---|
53 |
|
---|
54 |
|
---|
55 |
|
---|
56 | #Region Data analysis & Descriptive outcomes
|
---|
57 |
|
---|
58 | data <- read_excel("PATH/Datatable.xlsx")
|
---|
59 |
|
---|
60 | #Specify levels of MatchSys as 0 or 1
|
---|
61 | data$MatchSys = factor(data$MatchSys,levels=c(0,1))
|
---|
62 | #Specify levels for Route as Motiv, Accept or Refer
|
---|
63 | data$Route = factor(data$Route,levels=c("motivate","accept","refer"))
|
---|
64 |
|
---|
65 | #Specify levels for SubSev as Low, Med, High
|
---|
66 | data$SubSev = factor(data$SubSev,levels=c("Low","Med","High"))
|
---|
67 | data$SubSev <- ordered(data$SubSev)
|
---|
68 | #Specify levels of SubMoti as Low, Med, High
|
---|
69 | data$SubMoti = factor(data$SubMoti,levels=c("Low","Med","High"))
|
---|
70 | data$SubMoti <- ordered(data$SubMoti)
|
---|
71 |
|
---|
72 | #Specify levels for ScenSev as Low, Med, High
|
---|
73 | data$ScenSev = factor(data$ScenSev,levels=c("Low","Med","High"))
|
---|
74 | data$ScenSev <- ordered(data$ScenSev)
|
---|
75 | #Specify levels of ScenMoti as Low, Med, High
|
---|
76 | data$ScenMoti = factor(data$ScenMoti,levels=c("Low","Med","High"))
|
---|
77 | data$ScenMoti <- ordered(data$ScenMoti)
|
---|
78 |
|
---|
79 |
|
---|
80 | data$ScenSit = factor(data$ScenSit,levels=c("LsLm","MsLm","HsLm","LsMm","MsMm","HsMm","LsHm","MsHm","HsHm"))
|
---|
81 | data$SubSit = factor(data$SubSit,levels=c("LsLm","MsLm","HsLm","LsMm","MsMm","HsMm","LsHm","MsHm","HsHm"))
|
---|
82 |
|
---|
83 | data$WhyTxt = factor(data$WhyTxt,levels=c("Mon","Stig","Time"))
|
---|
84 |
|
---|
85 | data$ppCode = factor(data$ppCode)
|
---|
86 |
|
---|
87 | #Display data
|
---|
88 | View(data)
|
---|
89 |
|
---|
90 |
|
---|
91 | #EXPLORATION Graphs
|
---|
92 | ### data exploration
|
---|
93 | stem(data$FBH)
|
---|
94 | hist(data$FBH)
|
---|
95 |
|
---|
96 | ggplot(data, aes(x=Help, fill=MatchSys)) + geom_density(alpha = 0.3)
|
---|
97 | ggplot(data, aes(x=Help, fill=Route)) + geom_density(alpha = 0.3)
|
---|
98 |
|
---|
99 | ggplot(data, aes(x=Return, fill=MatchSys)) + geom_density(alpha = 0.3)
|
---|
100 | ggplot(data, aes(x=Return, fill=Route)) + geom_density(alpha = 0.3)
|
---|
101 |
|
---|
102 | ggplot(data, aes(x=FBH, fill=MatchSys)) + geom_density(alpha = 0.3)
|
---|
103 | ggplot(data, aes(x=FBH, fill=Route)) + geom_density(alpha = 0.3)
|
---|
104 | ggplot(data, aes(x=FBH, fill=Gen)) + geom_density(alpha = 0.3)
|
---|
105 |
|
---|
106 | #MEAN, 0 Modell revealing deviation from 0 & moti + severity added to check if these have an overall effect.
|
---|
107 | mean(data$Help)
|
---|
108 | sd(data$Help)
|
---|
109 | Model_null_h <- lme(fixed = Help~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
110 | summary(Model_null_h)
|
---|
111 | anova(Model_null_h)
|
---|
112 | Model_scen_h <- lme(fixed = Help~ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
113 | anova(Model_null_h,Model_scen_h)
|
---|
114 | anova(Model_scen_h)
|
---|
115 |
|
---|
116 |
|
---|
117 | mean(data$Return)
|
---|
118 | sd(data$Return)
|
---|
119 | Model_null_r <- lme(fixed = Return~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
120 |
|
---|
121 | anova(Model_null_r)
|
---|
122 | Model_scen_r <- lme(fixed = Return~ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
123 | anova(Model_null_r,Model_scen_r)
|
---|
124 | anova(Model_scen_r)
|
---|
125 |
|
---|
126 | mean(data$FBH)
|
---|
127 | sd(data$FBH)
|
---|
128 | Model_null_a <- lme(fixed = FBH~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
129 | anova(Model_null_a)
|
---|
130 | Model_scen_a <- lme(fixed = FBH~ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
131 | summary(Model_scen_a)
|
---|
132 | anova(Model_null_a,Model_scen_a)
|
---|
133 |
|
---|
134 |
|
---|
135 | #REGION COMPARE ScenJECTIVE - SCENE SITUATION
|
---|
136 | fmodelSnull <- clmm2(ScenSev~1,random = ppCode,data=data,Hess=TRUE,nAGQ = 10)
|
---|
137 | summary(fmodelSnull)
|
---|
138 |
|
---|
139 | fmodelS <- clmm2(ScenSev ~ SubSev, random = ppCode, data=data, Hess=TRUE,nAGQ = 10)
|
---|
140 | summary(fmodelS)
|
---|
141 | anova(fmodelSnull,fmodelS)
|
---|
142 |
|
---|
143 | ( McF.pR2 <- 1 - fmodelS$logLik/fmodelSnull$logLik )
|
---|
144 |
|
---|
145 |
|
---|
146 | fmodelMnull <- clmm2(ScenMoti~1,random = ppCode,data=data,Hess=TRUE,nAGQ = 10)
|
---|
147 | summary(fmodelMnull)
|
---|
148 | fmodelM <- clmm2(SubMoti ~ ScenMoti , random = ppCode,data=data,Hess=TRUE,nAGQ = 10)
|
---|
149 | summary(fmodelM)
|
---|
150 | anova(fmodelMnull,fmodelM)
|
---|
151 |
|
---|
152 | ( McF.pR2 <- 1 - fmodelM$logLik/fmodelMnull$logLik )
|
---|
153 |
|
---|
154 |
|
---|
155 |
|
---|
156 |
|
---|
157 |
|
---|
158 |
|
---|
159 | #Covariate checks
|
---|
160 | Model_age_h <- lme(fixed = Help~Age, random = ~1 | ppCode, data = data, method = "ML")
|
---|
161 | anova(Model_null_h,Model_age_h)
|
---|
162 | Model_age_r <- lme(fixed = Return~Age, random = ~1 | ppCode, data = data, method = "ML")
|
---|
163 | anova(Model_null_r,Model_age_r)
|
---|
164 | Model_age_a <- lme(fixed = FBH~Age, random = ~1 | ppCode, data = data, method = "ML")
|
---|
165 | anova(Model_null_a,Model_age_a)
|
---|
166 |
|
---|
167 | Model_gen_h <- lme(fixed = Help~Gen, random = ~1 | ppCode, data = data, method = "ML")
|
---|
168 | anova(Model_null_h,Model_gen_h)
|
---|
169 | Model_gen_r <- lme(fixed = Return~Gen, random = ~1 | ppCode, data = data, method = "ML")
|
---|
170 | anova(Model_null_r,Model_gen_r)
|
---|
171 | Model_gen_a <- lme(fixed = FBH~Gen, random = ~1 | ppCode, data = data, method = "ML")
|
---|
172 | summary(Model_gen_a)
|
---|
173 | anova(Model_null_a,Model_gen_a)
|
---|
174 | anova(Model_gen_a)
|
---|
175 |
|
---|
176 | Model_isi_h <- lme(fixed = Help~ISITot, random = ~1 | ppCode, data = data, method = "ML")
|
---|
177 | anova(Model_null_h,Model_isi_h)
|
---|
178 | Model_isi_r <- lme(fixed = Return~ISITot, random = ~1 | ppCode, data = data, method = "ML")
|
---|
179 | anova(Model_null_r,Model_isi_r)
|
---|
180 | Model_isi_a <- lme(fixed = FBH~ISITot, random = ~1 | ppCode, data = data, method = "ML")
|
---|
181 | anova(Model_null_a,Model_isi_a)
|
---|
182 |
|
---|
183 | Model_why_h <- lme(fixed = Help~WhyTxt, random = ~1 | ppCode, data = data, method = "ML")
|
---|
184 | anova(Model_null_h,Model_why_h)
|
---|
185 | Model_why_r <- lme(fixed = Return~WhyTxt, random = ~1 | ppCode, data = data, method = "ML")
|
---|
186 | anova(Model_null_r,Model_why_r)
|
---|
187 | Model_why_a <- lme(fixed = FBH~WhyTxt, random = ~1 | ppCode, data = data, method = "ML")
|
---|
188 | anova(Model_null_a,Model_why_a)
|
---|
189 |
|
---|
190 | #Best Route generally
|
---|
191 | Model_route_h <- lme(fixed = Help~Route, random = ~1 | ppCode, data = data, method = "ML")
|
---|
192 | summary(Model_route_h)
|
---|
193 | anova(Model_null_h,Model_route_h)
|
---|
194 | anova(Model_route_h)
|
---|
195 | Model_route_r <- lme(fixed = Return~Route, random = ~1 | ppCode, data = data, method = "ML")
|
---|
196 | summary(Model_route_r)
|
---|
197 | anova(Model_null_r,Model_route_r)
|
---|
198 | anova(Model_route_r)
|
---|
199 | Model_route_a <- lme(fixed = FBH~Route, random = ~1 | ppCode, data = data, method = "ML")
|
---|
200 | summary(Model_route_a)
|
---|
201 | anova(Model_null_a,Model_route_a)
|
---|
202 | anova(Model_route_a)
|
---|
203 |
|
---|
204 |
|
---|
205 | ggplot(data, aes(x=Route, y=FBH)) + geom_density(alpha = 0.3)
|
---|
206 | qplot(x=Route, y=FBH,data=data, geom="bar")
|
---|
207 |
|
---|
208 |
|
---|
209 | #HYPOTHESIS1
|
---|
210 |
|
---|
211 | data2 <-subset(data, (Route == "accept"| Route == "refer"))
|
---|
212 | View(data2)
|
---|
213 |
|
---|
214 |
|
---|
215 | ModelH1_0 <- lme(fixed = Help~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
216 | summary(ModelH1_0)
|
---|
217 |
|
---|
218 | ModelH1_1 <- lme(fixed = Help~ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
219 | summary(ModelH1_1)
|
---|
220 | anova(ModelH1_0,ModelH1_1)
|
---|
221 |
|
---|
222 | ModelH1_2 <- lme(fixed = Help~Route, random = ~1 | ppCode, data = data, method = "ML")
|
---|
223 | summary(ModelH1_2)
|
---|
224 | anova(ModelH1_0,ModelH1_2)
|
---|
225 |
|
---|
226 | ModelH1_3 <- lme(fixed = Help~Route+ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
227 | ModelH1_4 <- lme(fixed = Help~Route+ScenSit+Route:ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
228 | summary(ModelH1_4)
|
---|
229 | anova(ModelH1_3,ModelH1_4)
|
---|
230 |
|
---|
231 | ModelH1_3 <- lme(fixed = Help~Route+ScenSit, random = ~1 | ppCode, data = data2, method = "ML")
|
---|
232 | ModelH1_4 <- lme(fixed = Help~Route+ScenSit+Route:ScenSit, random = ~1 | ppCode, data = data2, method = "ML")
|
---|
233 | summary(ModelH1_4)
|
---|
234 | anova(ModelH1_3,ModelH1_4)
|
---|
235 |
|
---|
236 |
|
---|
237 | ModelH1_0 <- lme(fixed = Return~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
238 | summary(ModelH1_0)
|
---|
239 |
|
---|
240 | ModelH1_1 <- lme(fixed = Return~ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
241 | summary(ModelH1_1)
|
---|
242 | anova(ModelH1_0,ModelH1_1)
|
---|
243 |
|
---|
244 | ModelH1_2 <- lme(fixed = Return~Route, random = ~1 | ppCode, data = data, method = "ML")
|
---|
245 | summary(ModelH1_2)
|
---|
246 | anova(ModelH1_0,ModelH1_2)
|
---|
247 |
|
---|
248 | ModelH1_3 <- lme(fixed = Return~Route+ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
249 | ModelH1_4 <- lme(fixed = Return~Route+ScenSit+Route:ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
250 | summary(ModelH1_4)
|
---|
251 | anova(ModelH1_3,ModelH1_4)
|
---|
252 |
|
---|
253 | ModelH1_3 <- lme(fixed = Return~Route+ScenSit, random = ~1 | ppCode, data = data2, method = "ML")
|
---|
254 | ModelH1_4 <- lme(fixed = Return~Route+ScenSit+Route:ScenSit, random = ~1 | ppCode, data = data2, method = "ML")
|
---|
255 | summary(ModelH1_4)
|
---|
256 | anova(ModelH1_3,ModelH1_4)
|
---|
257 |
|
---|
258 |
|
---|
259 |
|
---|
260 | ModelH1_0 <- lme(fixed = FBH~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
261 | summary(ModelH1_0)
|
---|
262 |
|
---|
263 | ModelH1_1 <- lme(fixed = FBH~ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
264 | summary(ModelH1_1)
|
---|
265 | anova(ModelH1_0,ModelH1_1)
|
---|
266 |
|
---|
267 | ModelH1_2 <- lme(fixed = FBH~Route, random = ~1 | ppCode, data = data, method = "ML")
|
---|
268 | summary(ModelH1_2)
|
---|
269 | anova(ModelH1_0,ModelH1_2)
|
---|
270 |
|
---|
271 | ModelH1_3 <- lme(fixed = FBH~Route+ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
272 | ModelH1_4 <- lme(fixed = FBH~Route+ScenSit+Route:ScenSit, random = ~1 | ppCode, data = data, method = "ML")
|
---|
273 | summary(ModelH1_4)
|
---|
274 | anova(ModelH1_3,ModelH1_4)
|
---|
275 |
|
---|
276 | ModelH1_3 <- lme(fixed = FBH~Route+ScenSit, random = ~1 | ppCode, data = data2, method = "ML")
|
---|
277 | ModelH1_4 <- lme(fixed = FBH~Route+ScenSit+Route:ScenSit, random = ~1 | ppCode, data = data2, method = "ML")
|
---|
278 | summary(ModelH1_4)
|
---|
279 | anova(ModelH1_3,ModelH1_4)
|
---|
280 |
|
---|
281 |
|
---|
282 | #HYPOTHESIS2
|
---|
283 | dataH2 <- subset(data, (Systemroute == "motivate"))
|
---|
284 | #View(dataH2)
|
---|
285 |
|
---|
286 | ModelH2_0 <- lme(fixed = Help~1, random = ~1 | ppCode, data = dataH2, method = "ML")
|
---|
287 | summary(ModelH2_0)
|
---|
288 |
|
---|
289 | ModelH2_1 <- lme(fixed = Help~Route, random = ~1 | ppCode, data = dataH2, method = "ML")
|
---|
290 | summary(ModelH2_1)
|
---|
291 | anova(ModelH2_0,ModelH2_1)
|
---|
292 |
|
---|
293 | dataH2B <- subset(dataH2, (Route == "motivate" | Route == "refer"))
|
---|
294 |
|
---|
295 | ModelH2_0B <- lme(fixed = Help~1, random = ~1 | ppCode, data = dataH2B, method = "ML")
|
---|
296 | summary(ModelH2_0B)
|
---|
297 |
|
---|
298 | ModelH2_1B <- lme(fixed = Help~Route, random = ~1 | ppCode, data = dataH2B, method = "ML")
|
---|
299 | summary(ModelH2_1B)
|
---|
300 | anova(ModelH2_0B,ModelH2_1B)
|
---|
301 |
|
---|
302 | dataH2C <- subset(dataH2, (Route == "motivate" | Route == "accept"))
|
---|
303 |
|
---|
304 | ModelH2_0C <- lme(fixed = Help~1, random = ~1 | ppCode, data = dataH2C, method = "ML")
|
---|
305 | summary(ModelH2_0C)
|
---|
306 |
|
---|
307 | ModelH2_1C <- lme(fixed = Help~Route, random = ~1 | ppCode, data = dataH2C, method = "ML")
|
---|
308 | summary(ModelH2_1C)
|
---|
309 | anova(ModelH2_0C,ModelH2_1C)
|
---|
310 |
|
---|
311 |
|
---|
312 | #HYPOTHESIS3
|
---|
313 | dataH3 <- subset(data, (Systemroute == "refer" | Route == "refer"))
|
---|
314 |
|
---|
315 | ModelH3_0 <- lme(fixed = Help~1, random = ~1 | ppCode, data = dataH3, method = "ML")
|
---|
316 | summary(ModelH3_0)
|
---|
317 | anova(ModelH3_0)
|
---|
318 |
|
---|
319 | #HYPOTHESIS4
|
---|
320 | dataH4 <- subset(data, (Systemroute == "accept"))
|
---|
321 |
|
---|
322 | ModelH4_0R <- lme(fixed = Return~1, random = ~1 | ppCode, data = dataH4, method = "ML")
|
---|
323 | summary(ModelH4_0R)
|
---|
324 |
|
---|
325 | ModelH4_1R <- lme(fixed = Return~Route, random = ~1 | ppCode, data = dataH4, method = "ML")
|
---|
326 | summary(ModelH4_1R)
|
---|
327 | anova(ModelH4_0R, ModelH4_1R)
|
---|
328 |
|
---|
329 | ModelH4_0A <- lme(fixed = FBH~1, random = ~1 | ppCode, data = dataH4, method = "ML")
|
---|
330 | summary(ModelH4_0A)
|
---|
331 |
|
---|
332 | ModelH4_1A <- lme(fixed = FBH~Route, random = ~1 | ppCode, data = dataH4, method = "ML")
|
---|
333 | summary(ModelH4_1A)
|
---|
334 | anova(ModelH4_0A, ModelH4_1A)
|
---|
335 |
|
---|
336 |
|
---|
337 |
|
---|
338 | dataH4B <- subset(dataH4, (Route == "accept" | Route == "motivate"))
|
---|
339 |
|
---|
340 | View(dataH4B)
|
---|
341 |
|
---|
342 | ModelH4_0RB <- lme(fixed = Return~1, random = ~1 | ppCode, data = dataH4B, method = "ML")
|
---|
343 | summary(ModelH4_0RB)
|
---|
344 |
|
---|
345 | ModelH4_1RB <- lme(fixed = Return~Route, random = ~1 | ppCode, data = dataH4B, method = "ML")
|
---|
346 | summary(ModelH4_1RB)
|
---|
347 | anova(ModelH4_0RB, ModelH4_1RB)
|
---|
348 |
|
---|
349 | ModelH4_0AB <- lme(fixed = FBH~1, random = ~1 | ppCode, data = dataH4B, method = "ML")
|
---|
350 | summary(ModelH4_0AB)
|
---|
351 |
|
---|
352 | ModelH4_1AB <- lme(fixed = FBH~Route, random = ~1 | ppCode, data = dataH4B, method = "ML")
|
---|
353 | summary(ModelH4_1AB)
|
---|
354 | anova(ModelH4_0AB, ModelH4_1AB)
|
---|
355 |
|
---|
356 |
|
---|
357 |
|
---|
358 | dataH4C <- subset(dataH4, (Route == "accept" | Route == "refer"))
|
---|
359 |
|
---|
360 |
|
---|
361 | ModelH4_0RC <- lme(fixed = Return~1, random = ~1 | ppCode, data = dataH4C, method = "ML")
|
---|
362 | summary(ModelH4_0RC)
|
---|
363 |
|
---|
364 | ModelH4_1RC <- lme(fixed = Return~Route, random = ~1 | ppCode, data = dataH4C, method = "ML")
|
---|
365 | summary(ModelH4_1RC)
|
---|
366 | anova(ModelH4_0RC, ModelH4_1RC)
|
---|
367 |
|
---|
368 | ModelH4_0AC <- lme(fixed = FBH~1, random = ~1 | ppCode, data = dataH4C, method = "ML")
|
---|
369 | summary(ModelH4_0AC)
|
---|
370 |
|
---|
371 | ModelH4_1AC <- lme(fixed = FBH~Route, random = ~1 | ppCode, data = dataH4C, method = "ML")
|
---|
372 | summary(ModelH4_1AC)
|
---|
373 | anova(ModelH4_0AC, ModelH4_1AC)
|
---|
374 |
|
---|
375 |
|
---|
376 | #PRIMARY OUTCOMES
|
---|
377 | #Comparison Motivation & System
|
---|
378 |
|
---|
379 | datacon <- read_excel("PATH/Data_conditionsSM.xlsx")
|
---|
380 | #View(datacon)
|
---|
381 |
|
---|
382 | #Specify levels of MatchSys as 0 or 1
|
---|
383 | datacon$MatchSys = factor(datacon$MatchSys,levels=c(0,1))
|
---|
384 | #Specify levels for Route as Motiv, Accept or Refer
|
---|
385 | datacon$Route = factor(datacon$Route,levels=c("motivate","accept","refer"))
|
---|
386 |
|
---|
387 | #Specify levels for SubSev as Low, Med, High
|
---|
388 | datacon$SubSev = factor(datacon$SubSev,levels=c("Low","Med","High"))
|
---|
389 | datacon$SubSev <- ordered(datacon$SubSev)
|
---|
390 | #Specify levels of SubMoti as Low, Med, High
|
---|
391 | datacon$SubMoti = factor(datacon$SubMoti,levels=c("Low","Med","High"))
|
---|
392 | datacon$SubMoti <- ordered(datacon$SubMoti)
|
---|
393 |
|
---|
394 | #Specify levels for ScenSev as Low, Med, High
|
---|
395 | datacon$ScenSev = factor(datacon$ScenSev,levels=c("Low","Med","High"))
|
---|
396 | datacon$ScenSev <- ordered(datacon$ScenSev)
|
---|
397 | #Specify levels of ScenMoti as Low, Med, High
|
---|
398 | datacon$ScenMoti = factor(datacon$ScenMoti,levels=c("Low","Med","High"))
|
---|
399 | datacon$ScenMoti <- ordered(datacon$ScenMoti)
|
---|
400 |
|
---|
401 | datacon$Condition = factor(datacon$Condition,levels=c("motivate","system"))
|
---|
402 | datacon$ppCode = factor(datacon$ppCode)
|
---|
403 |
|
---|
404 | #HELP
|
---|
405 | Modelc_h <- lme(fixed = Help~1, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
406 | summary(Modelc_h)
|
---|
407 |
|
---|
408 | ggplot(datacon, aes(x=Help, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
409 |
|
---|
410 | #Model effect of Condition on Help
|
---|
411 | Modelc_hCon <- lme(fixed = Help~Condition, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
412 | summary(Modelc_hCon)
|
---|
413 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
414 | anova(Modelc_h,Modelc_hCon)
|
---|
415 | anova(Modelc_hCon)
|
---|
416 |
|
---|
417 | #Return
|
---|
418 | Modelc_r <- lme(fixed = Return~1, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
419 | summary(Modelc_r)
|
---|
420 |
|
---|
421 | ggplot(datacon, aes(x=Return, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
422 |
|
---|
423 | #Model effect of Condition on Return
|
---|
424 | Modelc_rCon <- lme(fixed = Return~Condition, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
425 | summary(Modelc_rCon)
|
---|
426 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
427 | anova(Modelc_r,Modelc_rCon)
|
---|
428 | anova(Modelc_rCon)
|
---|
429 |
|
---|
430 | #ALLI
|
---|
431 | Modelc_a <- lme(fixed = FBH~1, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
432 | summary(Modelc_a)
|
---|
433 |
|
---|
434 | ggplot(datacon, aes(x=FBH, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
435 |
|
---|
436 | #Model effect of Condition on FBH
|
---|
437 | Modelc_aCon <- lme(fixed = FBH~Condition, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
438 | summary(Modelc_aCon)
|
---|
439 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
440 | anova(Modelc_a,Modelc_aCon)
|
---|
441 | anova(Modelc_aCon)
|
---|
442 |
|
---|
443 | #Model effect of Condition on FBH
|
---|
444 | Modelc_aConGen <- lme(fixed = FBH~Condition+Gen, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
445 | summary(Modelc_aConGen)
|
---|
446 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
447 | anova(Modelc_aCon,Modelc_aConGen)
|
---|
448 |
|
---|
449 |
|
---|
450 |
|
---|
451 | #Comparison per Accept & Rever route
|
---|
452 | #Accept
|
---|
453 | dataconA <- read_excel("PATH/Data_conditionsSMaccept.xlsx")
|
---|
454 | #View(datacon)
|
---|
455 |
|
---|
456 | #Specify levels of MatchSys as 0 or 1
|
---|
457 | dataconA$MatchSys = factor(dataconA$MatchSys,levels=c(0,1))
|
---|
458 | #Specify levels for Route as Motiv, Accept or Refer
|
---|
459 | dataconA$Route = factor(dataconA$Route,levels=c("motivate","accept","refer"))
|
---|
460 |
|
---|
461 | #Specify levels for SubSev as Low, Med, High
|
---|
462 | dataconA$SubSev = factor(dataconA$SubSev,levels=c("Low","Med","High"))
|
---|
463 | dataconA$SubSev <- ordered(dataconA$SubSev)
|
---|
464 | #Specify levels of SubMoti as Low, Med, High
|
---|
465 | dataconA$SubMoti = factor(dataconA$SubMoti,levels=c("Low","Med","High"))
|
---|
466 | dataconA$SubMoti <- ordered(dataconA$SubMoti)
|
---|
467 |
|
---|
468 | #Specify levels for ScenSev as Low, Med, High
|
---|
469 | dataconA$ScenSev = factor(dataconA$ScenSev,levels=c("Low","Med","High"))
|
---|
470 | dataconA$ScenSev <- ordered(dataconA$ScenSev)
|
---|
471 | #Specify levels of ScenMoti as Low, Med, High
|
---|
472 | dataconA$ScenMoti = factor(dataconA$ScenMoti,levels=c("Low","Med","High"))
|
---|
473 | dataconA$ScenMoti <- ordered(dataconA$ScenMoti)
|
---|
474 |
|
---|
475 | dataconA$Condition = factor(dataconA$Condition,levels=c("motivate","system"))
|
---|
476 | dataconA$ppCode = factor(dataconA$ppCode)
|
---|
477 |
|
---|
478 | #HELP
|
---|
479 | Modelc_hA <- lme(fixed = Help~1, random = ~1 | ppCode, data = dataconA, method = "ML")
|
---|
480 | summary(Modelc_hA)
|
---|
481 |
|
---|
482 | ggplot(dataconA, aes(x=Help, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
483 |
|
---|
484 | #Model effect of Condition on Help
|
---|
485 | Modelc_hConA <- lme(fixed = Help~Condition, random = ~1 | ppCode, data = dataconA, method = "ML")
|
---|
486 | summary(Modelc_hConA)
|
---|
487 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
488 | anova(Modelc_hA,Modelc_hConA)
|
---|
489 | anova(Modelc_hConA)
|
---|
490 |
|
---|
491 | #Return
|
---|
492 | Modelc_rA <- lme(fixed = Return~1, random = ~1 | ppCode, data = dataconA, method = "ML")
|
---|
493 | summary(Modelc_rA)
|
---|
494 |
|
---|
495 | ggplot(dataconA, aes(x=Return, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
496 |
|
---|
497 | #Model effect of Condition on Return
|
---|
498 | Modelc_rConA <- lme(fixed = Return~Condition, random = ~1 | ppCode, data = dataconA, method = "ML")
|
---|
499 | summary(Modelc_rConA)
|
---|
500 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
501 | anova(Modelc_rA,Modelc_rConA)
|
---|
502 | anova(Modelc_rConA)
|
---|
503 |
|
---|
504 | #ALLI
|
---|
505 | Modelc_aA <- lme(fixed = FBH~1, random = ~1 | ppCode, data = dataconA, method = "ML")
|
---|
506 | summary(Modelc_aA)
|
---|
507 |
|
---|
508 | ggplot(dataconA, aes(x=FBH, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
509 |
|
---|
510 | #Model effect of Condition on FBH
|
---|
511 | Modelc_aConA <- lme(fixed = FBH~Condition, random = ~1 | ppCode, data = dataconA, method = "ML")
|
---|
512 | summary(Modelc_aConA)
|
---|
513 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
514 | anova(Modelc_aA,Modelc_aConA)
|
---|
515 | anova(Modelc_aConA)
|
---|
516 |
|
---|
517 |
|
---|
518 | #REFER
|
---|
519 | dataconR <- read_excel("PATH/Data_conditionsSMrefer.xlsx")
|
---|
520 | #View(datacon)
|
---|
521 |
|
---|
522 | #Specify levels of MatchSys as 0 or 1
|
---|
523 | dataconR$MatchSys = factor(dataconR$MatchSys,levels=c(0,1))
|
---|
524 | #Specify levels for Route as Motiv, Accept or Refer
|
---|
525 | dataconR$Route = factor(dataconR$Route,levels=c("motivate","accept","refer"))
|
---|
526 |
|
---|
527 | #Specify levels for SubSev as Low, Med, High
|
---|
528 | dataconR$SubSev = factor(dataconR$SubSev,levels=c("Low","Med","High"))
|
---|
529 | dataconR$SubSev <- ordered(dataconR$SubSev)
|
---|
530 | #Specify levels of SubMoti as Low, Med, High
|
---|
531 | dataconR$SubMoti = factor(dataconR$SubMoti,levels=c("Low","Med","High"))
|
---|
532 | dataconR$SubMoti <- ordered(dataconR$SubMoti)
|
---|
533 |
|
---|
534 | #Specify levels for ScenSev as Low, Med, High
|
---|
535 | dataconR$ScenSev = factor(dataconR$ScenSev,levels=c("Low","Med","High"))
|
---|
536 | dataconR$ScenSev <- ordered(dataconR$ScenSev)
|
---|
537 | #Specify levels of ScenMoti as Low, Med, High
|
---|
538 | dataconR$ScenMoti = factor(dataconR$ScenMoti,levels=c("Low","Med","High"))
|
---|
539 | dataconR$ScenMoti <- ordered(dataconR$ScenMoti)
|
---|
540 |
|
---|
541 | dataconR$Condition = factor(dataconR$Condition,levels=c("motivate","system"))
|
---|
542 | dataconR$ppCode = factor(dataconR$ppCode)
|
---|
543 |
|
---|
544 | #HELP
|
---|
545 | Modelc_hR <- lme(fixed = Help~1, random = ~1 | ppCode, data = dataconR, method = "ML")
|
---|
546 | summary(Modelc_hR)
|
---|
547 |
|
---|
548 | ggplot(dataconR, aes(x=Help, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
549 |
|
---|
550 | #Model effect of Condition on Help
|
---|
551 | Modelc_hConR <- lme(fixed = Help~Condition, random = ~1 | ppCode, data = dataconR, method = "ML")
|
---|
552 | summary(Modelc_hConR)
|
---|
553 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
554 | anova(Modelc_hR,Modelc_hConR)
|
---|
555 | anova(Modelc_hConR)
|
---|
556 |
|
---|
557 | #Return
|
---|
558 | Modelc_rR <- lme(fixed = Return~1, random = ~1 | ppCode, data = dataconR, method = "ML")
|
---|
559 | summary(Modelc_rR)
|
---|
560 |
|
---|
561 | ggplot(dataconR, aes(x=Return, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
562 |
|
---|
563 | #Model effect of Condition on Return
|
---|
564 | Modelc_rConR <- lme(fixed = Return~Condition, random = ~1 | ppCode, data = dataconR, method = "ML")
|
---|
565 | summary(Modelc_rConR)
|
---|
566 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
567 | anova(Modelc_rR,Modelc_rConR)
|
---|
568 | anova(Modelc_rConR)
|
---|
569 |
|
---|
570 | #ALLI
|
---|
571 | Modelc_aR <- lme(fixed = FBH~1, random = ~1 | ppCode, data = dataconR, method = "ML")
|
---|
572 | summary(Modelc_aR)
|
---|
573 |
|
---|
574 | ggplot(dataconR, aes(x=FBH, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
575 |
|
---|
576 | #Model effect of Condition on FBH
|
---|
577 | Modelc_aConR <- lme(fixed = FBH~Condition, random = ~1 | ppCode, data = dataconR, method = "ML")
|
---|
578 | summary(Modelc_aConR)
|
---|
579 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
580 | anova(Modelc_aR,Modelc_aConR)
|
---|
581 | anova(Modelc_aConR)
|
---|
582 |
|
---|
583 |
|
---|
584 |
|
---|
585 |
|
---|
586 |
|
---|
587 |
|
---|
588 |
|
---|
589 |
|
---|
590 |
|
---|
591 |
|
---|
592 | #REGION WHY NOT
|
---|
593 | ggplot(data, aes(x=Help, fill=WhyTxt)) + geom_density(alpha = 0.3)
|
---|
594 | ggplot(data, aes(x=FBH, fill=WhyTxt)) + geom_density(alpha = 0.3)
|
---|
595 | ggplot(data, aes(x=Return, fill=WhyTxt)) + geom_density(alpha = 0.3)
|
---|
596 |
|
---|
597 | Model_null_h <- lme(fixed = Help~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
598 | summary(Model_null_h)
|
---|
599 | Model_W_h<- lme(fixed = Help~WhyTxt, random = ~1 | ppCode, data = data, method = "ML")
|
---|
600 | summary(Model_W_h)
|
---|
601 | anova(Model_null_h,Model_W_h)
|
---|
602 |
|
---|
603 | Model_null_a <- lme(fixed = FBH~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
604 | summary(Model_null_a)
|
---|
605 | Model_W_a<- lme(fixed = FBH~WhyTxt, random = ~1 | ppCode, data = data, method = "ML")
|
---|
606 | summary(Model_W_a)
|
---|
607 | anova(Model_null_a,Model_W_a)
|
---|
608 |
|
---|
609 | Model_null_r <- lme(fixed = Return~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
610 | summary(Model_null_r)
|
---|
611 | Model_W_r<- lme(fixed = Return~WhyTxt, random = ~1 | ppCode, data = data, method = "ML")
|
---|
612 | summary(Model_W_r)
|
---|
613 | anova(Model_null_r,Model_W_r)
|
---|
614 |
|
---|
615 |
|
---|
616 |
|
---|
617 |
|
---|
618 | #REGION ISI + age Stats
|
---|
619 | mean(data$ISITot)
|
---|
620 | sd(data$ISITot)
|
---|
621 |
|
---|
622 | mean(data$Age)
|
---|
623 | sd(data$Age)
|
---|
624 |
|
---|
625 | #Correlations ISI&Gender + ISI & Age
|
---|
626 | datapp <- read_excel("PATH/ppData.xlsx")
|
---|
627 | View(datapp)
|
---|
628 | datapp$Gen = factor(datapp$Gen,levels=c("F","M"))
|
---|
629 | spearman.test(datapp$Gen,datapp$ISITot)
|
---|
630 | spearman.test(datapp$Age,datapp$ISITot)
|
---|
631 |
|
---|
632 | #Correlation Return & Allia & HELP
|
---|
633 | spearman.test(data$FBH,data$Return)
|
---|
634 | spearman.test(data$Help,data$Return)
|
---|
635 | spearman.test(data$FBH,data$Help)
|
---|
636 |
|
---|
637 |
|
---|
638 |
|
---|
639 |
|
---|
640 |
|
---|
641 | #REGION ALLIANCE
|
---|
642 |
|
---|
643 | #Null model for Agent Attitude
|
---|
644 | Model_null_aa <- lme(fixed = FBH~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
645 | summary(Model_null_aa)
|
---|
646 |
|
---|
647 | Model_ISI_aa<- lme(fixed = FBH~Age, random = ~1 | ppCode, data = data, method = "ML")
|
---|
648 | summary(Model_ISI_aa)
|
---|
649 |
|
---|
650 | anova(Model_null_aa,Model_ISI_aa)
|
---|
651 |
|
---|
652 | #Model effect of MatchSys on Agent Attitude
|
---|
653 | Model_MatchSys_aa <- lme(fixed = FBH~MatchSys, random = ~1 | ppCode, data = data, method = "ML")
|
---|
654 | summary(Model_MatchSys_aa)
|
---|
655 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
656 | anova(Model_null_aa,Model_MatchSys_aa)
|
---|
657 |
|
---|
658 | #Model effect of Route on Agent Attitude
|
---|
659 | Model_route_aa <- lme(fixed = FBH~Route, random = ~1 | ppCode, data = data, method = "ML")
|
---|
660 | summary(Model_route_aa)
|
---|
661 | #Vergelijk of model route_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
662 | anova(Model_null_aa,Model_route_aa)
|
---|
663 |
|
---|
664 | #Model effect of Route & MatchSys on Agent Attitude
|
---|
665 | Model_routeMatchSys_aa<- lme(fixed = FBH~Route+MatchSys, random = ~1 | ppCode, data = data, method = "ML")
|
---|
666 | summary(Model_routeMatchSys_aa)
|
---|
667 | #Vergelijk of model routeMatchSys_aa beter 'MatchSys' heeft dan model route. Lagere logLik is betere MatchSys
|
---|
668 | anova(Model_route_aa,Model_routeMatchSys_aa)
|
---|
669 |
|
---|
670 | #Model effect of Route & MatchSys & ScenSev on Agent Attitude
|
---|
671 | Model_routeMatchSyssev_aa<- lme(fixed = FBH~Route+MatchSys+ScenSev, random = ~1 | ppCode, data = data, method = "ML")
|
---|
672 | summary(Model_routeMatchSyssev_aa)
|
---|
673 | #Vergelijk of model routeMatchSyssev_aa beter 'MatchSys' heeft dan model routeMatchSys_aa. Lagere logLik is betere MatchSys
|
---|
674 | anova(Model_routeMatchSys_aa,Model_routeMatchSyssev_aa)
|
---|
675 |
|
---|
676 | #Model effect of Route & MatchSys & ScenSev on Agent Attitude
|
---|
677 | Model_routeMatchSevMoti_aa<- lme(fixed = FBH~Route+MatchSys+ScenSev+ScenMoti, random = ~1 | ppCode, data = data, method = "ML")
|
---|
678 | summary(Model_routeMatchSevMoti_aa)
|
---|
679 | #Vergelijk of model routeMatchSyssev_aa beter 'MatchSys' heeft dan model routeMatchSys_aa. Lagere logLik is betere MatchSys
|
---|
680 | anova(Model_routeMatchSys_aa,Model_routeMatchSevMoti_aa)
|
---|
681 |
|
---|
682 |
|
---|
683 | #InterHelp effects lme (doesn't work...)
|
---|
684 | #Model_interHelp1 <- lme(fixed = FBH~Route:ScenSev:ScenMoti, random = ~1 | ppCode, data = data, method = "ML")
|
---|
685 | #Model_interHelp2 <- lme(fixed = FBH~Route:ScenMoti, random = ~1 | ppCode, data = data, method = "ML")
|
---|
686 |
|
---|
687 | #InterHelp effects lmer (werkt maar met waarschuwing) -
|
---|
688 | Model_interHelp3 <- lmer(FBH~Route:ScenSev:ScenMoti +(1|ppCode), data = data)
|
---|
689 | summary(Model_interHelp3)
|
---|
690 |
|
---|
691 | #Full model Route, MatchSys & ScenSev + interaction effects on Agent Attitude
|
---|
692 | Model_full_aa <- lme(fixed = FBH~Route+ScenSev+ScenMoti+Route:ScenSev+Route:ScenMoti+ScenSev:ScenMoti+Route:ScenSev:ScenMoti, random = ~1 | ppCode, data = data, method = "ML")
|
---|
693 | summary(Model_full_aa)
|
---|
694 |
|
---|
695 |
|
---|
696 |
|
---|
697 | #REGION Help
|
---|
698 |
|
---|
699 | #Null model for Help
|
---|
700 | Model_null_a <- lme(fixed = Help~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
701 | summary(Model_null_a)
|
---|
702 |
|
---|
703 | Model_ISI_h<- lme(fixed = Help~Age, random = ~1 | ppCode, data = data, method = "ML")
|
---|
704 | summary(Model_ISI_h)
|
---|
705 |
|
---|
706 | anova(Model_null_a,Model_ISI_h)
|
---|
707 |
|
---|
708 | #Model effect of MatchSys on Help
|
---|
709 | Model_MatchSys_a <- lme(fixed = Help~MatchSys, random = ~1 | ppCode, data = data, method = "ML")
|
---|
710 | summary(Model_MatchSys_a)
|
---|
711 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
712 | anova(Model_null_a,Model_MatchSys_a)
|
---|
713 |
|
---|
714 | #Model effect of Route on Help
|
---|
715 | Model_route_a <- lme(fixed = Help~Route, random = ~1 | ppCode, data = data, method = "ML")
|
---|
716 | summary(Model_route_a)
|
---|
717 | #Vergelijk of model route_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
718 | anova(Model_null_a,Model_route_a)
|
---|
719 |
|
---|
720 | #Model effect of Route & MatchSys on Help
|
---|
721 | Model_routeMatchSys_a<- lme(fixed = Help~Route+MatchSys, random = ~1 | ppCode, data = data, method = "ML")
|
---|
722 | summary(Model_routeMatchSys_a)
|
---|
723 | #Vergelijk of model routeMatchSys_a beter 'MatchSys' heeft dan model route. Lagere logLik is betere MatchSys
|
---|
724 | anova(Model_route_a,Model_routeMatchSys_a)
|
---|
725 |
|
---|
726 | #Model effect of Route & MatchSys & ScenSevon Help
|
---|
727 | Model_routeMatchSyssev_a<- lme(fixed = Help~Route+MatchSys+ScenSev, random = ~1 | ppCode, data = data, method = "ML")
|
---|
728 | summary(Model_routeMatchSyssev_a)
|
---|
729 | #Vergelijk of model routeMatchSyssev_a beter 'MatchSys' heeft dan model routeMatchSys_a. Lagere logLik is betere MatchSys
|
---|
730 | anova(Model_routeMatchSys_a,Model_routeMatchSyssev_a)
|
---|
731 |
|
---|
732 | #Model effect of Route & MatchSys & ScenSevon Help
|
---|
733 | Model_routeMatchSevMoti_a<- lme(fixed = Help~Route+MatchSys+ScenSev+ScenMoti, random = ~1 | ppCode, data = data, method = "ML")
|
---|
734 | summary(Model_routeMatchSevMoti_a)
|
---|
735 | #Vergelijk of model routeMatchSyssev_a beter 'MatchSys' heeft dan model routeMatchSys_a. Lagere logLik is betere MatchSys
|
---|
736 | anova(Model_routeMatchSys_a,Model_routeMatchSevMoti_a)
|
---|
737 |
|
---|
738 | #InterHelp effects lme (doesn't work...)
|
---|
739 | #Model_interHelp1 <- lme(fixed = Help~Route:ScenSev:ScenMoti, random = ~1 | ppCode, data = data, method = "ML")
|
---|
740 | #Model_interHelp2 <- lme(fixed = Help~Route:ScenMoti, random = ~1 | ppCode, data = data, method = "ML")
|
---|
741 |
|
---|
742 | #InterHelp effects lmer (werkt maar met waarschuwing) -
|
---|
743 | Model_interHelp3 <- lmer(Help~Route:ScenSev:ScenMoti +(1|ppCode), data = data)
|
---|
744 | summary(Model_interHelp3)
|
---|
745 |
|
---|
746 | #Full model Route, MatchSys & ScenSev + interHelp effects on Help
|
---|
747 | Model_full_a <- lme(fixed = Help~Route+ScenSev+ScenMoti+Route:ScenSev+Route:ScenMoti+ScenSev:ScenMoti+Route:ScenSev:ScenMoti, random = ~1 | ppCode, data = data, method = "ML")
|
---|
748 | summary(Model_full_a)
|
---|
749 |
|
---|
750 |
|
---|
751 | #REGION
|
---|
752 | #Null model for Return
|
---|
753 | Model_null_r <- lme(fixed = Return~1, random = ~1 | ppCode, data = data, method = "ML")
|
---|
754 | summary(Model_null_r)
|
---|
755 |
|
---|
756 | Model_ISI_r<- lme(fixed = Return~Age, random = ~1 | ppCode, data = data, method = "ML")
|
---|
757 | summary(Model_ISI_r)
|
---|
758 |
|
---|
759 | anova(Model_null_r,Model_ISI_r)
|
---|
760 |
|
---|
761 | #Model effect of MatchSys on Help
|
---|
762 | Model_MatchSys_a <- lme(fixed = Help~MatchSys, random = ~1 | ppCode, data = data, method = "ML")
|
---|
763 | summary(Model_MatchSys_a)
|
---|
764 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
765 | anova(Model_null_a,Model_MatchSys_a)
|
---|
766 |
|
---|
767 |
|
---|
768 |
|
---|
769 |
|
---|
770 |
|
---|
771 | #Conditions SYSTEM VS MOTIVATION
|
---|
772 | datacon <- read_excel("PATH/Data_conditionsSM.xlsx")
|
---|
773 | #View(datacon)
|
---|
774 |
|
---|
775 | #Specify levels of MatchSys as 0 or 1
|
---|
776 | datacon$MatchSys = factor(datacon$MatchSys,levels=c(0,1))
|
---|
777 | #Specify levels for Route as Motiv, Accept or Refer
|
---|
778 | datacon$Route = factor(datacon$Route,levels=c("motivate","accept","refer"))
|
---|
779 |
|
---|
780 | #Specify levels for SubSev as Low, Med, High
|
---|
781 | datacon$SubSev = factor(datacon$SubSev,levels=c("Low","Med","High"))
|
---|
782 | datacon$SubSev <- ordered(datacon$SubSev)
|
---|
783 | #Specify levels of SubMoti as Low, Med, High
|
---|
784 | datacon$SubMoti = factor(datacon$SubMoti,levels=c("Low","Med","High"))
|
---|
785 | datacon$SubMoti <- ordered(datacon$SubMoti)
|
---|
786 |
|
---|
787 | #Specify levels for ScenSev as Low, Med, High
|
---|
788 | datacon$ScenSev = factor(datacon$ScenSev,levels=c("Low","Med","High"))
|
---|
789 | datacon$ScenSev <- ordered(datacon$ScenSev)
|
---|
790 | #Specify levels of ScenMoti as Low, Med, High
|
---|
791 | datacon$ScenMoti = factor(datacon$ScenMoti,levels=c("Low","Med","High"))
|
---|
792 | datacon$ScenMoti <- ordered(datacon$ScenMoti)
|
---|
793 |
|
---|
794 | datacon$Condition = factor(datacon$Condition,levels=c("motivate","system"))
|
---|
795 | datacon$ppCode = factor(datacon$ppCode)
|
---|
796 |
|
---|
797 |
|
---|
798 | #HELP
|
---|
799 |
|
---|
800 | #Null
|
---|
801 | Model_h <- lme(fixed = Help~1, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
802 | summary(Model_h)
|
---|
803 |
|
---|
804 | ggplot(datacon, aes(x=Help, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
805 |
|
---|
806 | #Model effect of Condition on Help
|
---|
807 | Model_hCon <- lme(fixed = Help~Condition, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
808 | summary(Model_hCon)
|
---|
809 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
810 | anova(Model_h,Model_hCon)
|
---|
811 |
|
---|
812 | #Model effect of Condition on Help
|
---|
813 | Model_hConISI <- lme(fixed = Help~Condition+Gen, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
814 | summary(Model_hConISI)
|
---|
815 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
816 | anova(Model_hCon,Model_hConISI)
|
---|
817 |
|
---|
818 |
|
---|
819 | ggplot(datacon, aes(x=Help, fill=Systemroute)) + geom_density(alpha = 0.3)
|
---|
820 |
|
---|
821 | #Model effect of Condition+route on Help
|
---|
822 | Model_hConSys <- lme(fixed = Help~Condition+Systemroute, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
823 | summary(Model_hConSys)
|
---|
824 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
825 | anova(Model_hCon,Model_hConSys)
|
---|
826 |
|
---|
827 | #Model effect of Condition+route on Help
|
---|
828 | Model_hConSysInt <- lme(fixed = Help~Condition+Systemroute+Condition:Systemroute, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
829 | summary(Model_hConSysInt)
|
---|
830 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
831 | anova(Model_hConSys,Model_hConSysInt)
|
---|
832 |
|
---|
833 | #Model effect of Condition+route on Help
|
---|
834 | Model_hConSysInta <- lmer(Help~ScenMoti:ScenSev:Route+ (1|ppCode), data = data)
|
---|
835 | summary(Model_hConSysInta)
|
---|
836 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
837 | anova(Model_hConSysInta)
|
---|
838 |
|
---|
839 |
|
---|
840 |
|
---|
841 | anova(Model_hConSysInt)
|
---|
842 |
|
---|
843 |
|
---|
844 | #RETURN
|
---|
845 |
|
---|
846 | #Null
|
---|
847 | Model_r <- lme(fixed = Return~1, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
848 | summary(Model_r)
|
---|
849 |
|
---|
850 | ggplot(datacon, aes(x=Return, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
851 |
|
---|
852 | #Model effect of Condition on Help
|
---|
853 | Model_rCon <- lme(fixed = Return~Condition, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
854 | summary(Model_rCon)
|
---|
855 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
856 | anova(Model_r,Model_rCon)
|
---|
857 |
|
---|
858 | #Model effect of Condition on Help
|
---|
859 | Model_rConISI <- lme(fixed = Return~Condition+Gen, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
860 | summary(Model_rConISI)
|
---|
861 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
862 | anova(Model_rCon,Model_rConISI)
|
---|
863 |
|
---|
864 | ggplot(datacon, aes(x=Return, fill=Systemroute)) + geom_density(alpha = 0.3)
|
---|
865 |
|
---|
866 | #Model effect of Condition+route on Help
|
---|
867 | Model_rConSys <- lme(fixed = Return~Condition+Systemroute, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
868 | summary(Model_rConSys)
|
---|
869 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
870 | anova(Model_rCon,Model_rConSys)
|
---|
871 |
|
---|
872 |
|
---|
873 | #ALLIANCE
|
---|
874 |
|
---|
875 | #Null
|
---|
876 | Model_a <- lme(fixed = FBH~1, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
877 | summary(Model_a)
|
---|
878 |
|
---|
879 | ggplot(datacon, aes(x=FBH, fill=Condition)) + geom_density(alpha = 0.3)
|
---|
880 |
|
---|
881 | #Model effect of Condition on Help
|
---|
882 | Model_aCon <- lme(fixed = FBH~Condition, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
883 | summary(Model_aCon)
|
---|
884 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
885 | anova(Model_a,Model_aCon)
|
---|
886 |
|
---|
887 | #Model effect of Condition on Help
|
---|
888 | Model_aConISI <- lme(fixed = FBH~Condition+Gen, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
889 | summary(Model_aConISI)
|
---|
890 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
891 | anova(Model_aCon,Model_aConISI)
|
---|
892 |
|
---|
893 | ggplot(datacon, aes(x=FBH, fill=Systemroute)) + geom_density(alpha = 0.3)
|
---|
894 |
|
---|
895 | #Model effect of Condition+route on Help
|
---|
896 | Model_aConSys <- lme(fixed = FBH~Condition+Systemroute, random = ~1 | ppCode, data = datacon, method = "ML")
|
---|
897 | summary(Model_aConSys)
|
---|
898 | #Vergelijk of model MatchSys_aa beter 'MatchSys' heeft dan model test. Lagere logLik is betere MatchSys
|
---|
899 | anova(Model_aCon,Model_aConSys)
|
---|
900 |
|
---|