package shineagent; import java.io.IOException; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Random; import java.util.logging.Level; import geniusweb.actions.Accept; import geniusweb.actions.Action; import geniusweb.actions.Comparison; import geniusweb.actions.ElicitComparison; import geniusweb.actions.Offer; import geniusweb.actions.PartyId; import geniusweb.bidspace.AllBidsList; import geniusweb.inform.ActionDone; import geniusweb.inform.Finished; import geniusweb.inform.Inform; import geniusweb.inform.Settings; import geniusweb.inform.YourTurn; import geniusweb.issuevalue.Bid; import geniusweb.issuevalue.NumberValue; import geniusweb.issuevalue.Value; import geniusweb.issuevalue.ValueSet; import geniusweb.party.Capabilities; import geniusweb.party.DefaultParty; import geniusweb.profile.Profile; import geniusweb.profileconnection.ProfileConnectionFactory; import geniusweb.profileconnection.ProfileInterface; import geniusweb.progress.Progress; import geniusweb.progress.ProgressRounds; import tudelft.utilities.logging.Reporter; /** * Shine Agent Main Class */ public class ShineParty extends DefaultParty { private static final double acceptQualityThreshold = 0.85; private static final double acceptQualityThresholdMin = 0.55; private static final double acceptDistanceThreshold = 0.15; private static final double newOfferDistanceThreshold = 0.15; private static final int numberOfTurnsToElicit = 1; private Bid lastReceivedBid = null; // we ignore all others private PartyId me; private final Random random = new Random(); protected ProfileInterface profileint; private Progress progress; private SimpleLinearOrdering myEstimatedProfile = null; private SimpleLinearOrdering opponentEstimatedProfile = null; // private IssueCounter opponentIssueCounter = null; private Bid reservationBid = null; private int turnsWithElicitPassed = 0; public ShineParty() { } public ShineParty(Reporter reporter) { super(reporter); // for debugging } @Override public void notifyChange(Inform info) { try { if (info instanceof Settings) { Settings settings = (Settings) info; this.profileint = ProfileConnectionFactory.create(settings.getProfile().getURI(), getReporter()); this.me = settings.getID(); this.progress = settings.getProgress(); } else if (info instanceof ActionDone) { Action otheract = ((ActionDone) info).getAction(); if (otheract instanceof Offer) { lastReceivedBid = ((Offer) otheract).getBid(); } else if (otheract instanceof Comparison) { myEstimatedProfile = myEstimatedProfile.with(((Comparison) otheract).getBid(), ((Comparison) otheract).getWorse()); myTurn(); } } else if (info instanceof YourTurn) { myTurn(); } else if (info instanceof Finished) { getReporter().log(Level.INFO, "Final ourcome:" + info); } } catch (Exception e) { throw new RuntimeException("Failed to handle info", e); } } @Override public Capabilities getCapabilities() { return new Capabilities(new HashSet<>(Arrays.asList("SHAOP")), Collections.singleton(Profile.class)); } @Override public String getDescription() { return "Shine Agent :)"; } /** * Called when it's (still) our turn and we should take some action. Also * Updates the progress if necessary. */ private void myTurn() throws IOException { Action action = null; if (myEstimatedProfile == null) { myEstimatedProfile = new SimpleLinearOrdering(profileint.getProfile()); reservationBid = profileint.getProfile().getReservationBid(); } if (lastReceivedBid != null) { processOpponentBid(lastReceivedBid); double lastBidQuality = getBidQuality(lastReceivedBid, myEstimatedProfile); // then we do the action now, no need to ask user if (myEstimatedProfile.contains(lastReceivedBid)) { if (lastBidQuality >= getBidQuality(reservationBid, myEstimatedProfile) && lastBidQuality >= getCurrentThreshold(acceptQualityThreshold, acceptQualityThresholdMin)) action = new Accept(me, lastReceivedBid); } else { // we did not yet assess the received bid Bid closestBid = getClosestBid(myEstimatedProfile, lastReceivedBid); if (hammingDistance(closestBid, lastReceivedBid) < acceptDistanceThreshold) { if (getBidQuality(closestBid, myEstimatedProfile) >= getCurrentThreshold(acceptQualityThreshold, acceptQualityThresholdMin)) action = new Accept(me, lastReceivedBid); else { action = newOffer(); } } else { if (turnsWithElicitPassed >= numberOfTurnsToElicit) { action = new ElicitComparison(me, lastReceivedBid, myEstimatedProfile.getBids()); turnsWithElicitPassed = 0; } else { ++turnsWithElicitPassed; action = newOffer(); } } } if (progress instanceof ProgressRounds) { progress = ((ProgressRounds) progress).advance(); } } if (action == null) action = newOffer(); getConnection().send(action); } private void processOpponentBid(Bid inputBid) throws IOException { if (opponentEstimatedProfile == null) { List oneBidList = new ArrayList<>(); oneBidList.add(inputBid); opponentEstimatedProfile = new SimpleLinearOrdering(profileint.getProfile().getDomain(), oneBidList); } /* * if(opponentIssueCounter == null) opponentIssueCounter = new * IssueCounter(profileint.getProfile().getDomain()); */ // Insert new bid to opponent profile & Counter. This assumes all previous bids // are worst, as the opponent learning it's own preferences as well. opponentEstimatedProfile = opponentEstimatedProfile.with(inputBid, opponentEstimatedProfile.getBids()); // opponentIssueCounter.addElement(inputBid); } private Bid getClosestBid(SimpleLinearOrdering profile, Bid inputBid) throws IOException { Bid closestBid = null; double closestDist = 1.1; for (Bid currBid : profile.getBids()) { if (closestDist > hammingDistance(currBid, inputBid)) { closestBid = currBid; closestDist = hammingDistance(currBid, inputBid); } } return closestBid; } private Offer randomBid() throws IOException { AllBidsList bidspace = new AllBidsList(profileint.getProfile().getDomain()); long i = random.nextInt(bidspace.size().intValue()); Bid bid = bidspace.get(BigInteger.valueOf(i)); return new Offer(me, bid); } private Offer newOffer() throws IOException { Bid selectedBid = null; double myBidQuality = 0.0; double opponentBidQuality = 0.0; double myBidDistanceToOpponent = 1.0; double myBidScore = 0.0; RandomCollection weightedBids = new RandomCollection<>(); for (Bid currBid : myEstimatedProfile.getBids()) { myBidQuality = getBidQuality(currBid, myEstimatedProfile); // Drop bad offers if (myBidQuality < getBidQuality(reservationBid, myEstimatedProfile) || myBidQuality < getCurrentThreshold(acceptQualityThreshold, acceptQualityThresholdMin)) continue; if (opponentEstimatedProfile != null) { // Calculate bid score using the opponent profile for (Bid currOpponentBid : opponentEstimatedProfile.getBids()) { myBidDistanceToOpponent = hammingDistance(currBid, currOpponentBid); opponentBidQuality = getBidQuality(currOpponentBid, opponentEstimatedProfile); // Drop not similar bids if (myBidDistanceToOpponent > newOfferDistanceThreshold) continue; // Weight by opponent quality & distance myBidScore += (1 - myBidDistanceToOpponent) * opponentBidQuality; } } // Add a default score good bids with no information in opponent profile if (myBidScore <= 0.0) myBidScore = 0.1; // Weight by quality for the party myBidScore = myBidScore * myBidQuality; weightedBids.add(myBidScore, currBid); myBidScore = 0.0; } if (weightedBids.isEmpty()) { return new Offer(me, myEstimatedProfile.getBids().get(0)); } Bid weightedBid = weightedBids.next(); AllBidsList allBids = new AllBidsList(myEstimatedProfile.getDomain()); List similarBids = new ArrayList(); for (Bid bid : allBids) { if (hammingDistance(bid, weightedBid) >= 0.1) continue; similarBids.add(bid); } return new Offer(me, similarBids.get(random.nextInt(similarBids.size()))); } /** * Calculate an index stating how good is this bid to this profile, between 0 * (worst) to 1 (best) * * @param bid * @param profile * @return */ private double getBidQuality(Bid bid, SimpleLinearOrdering profile) { // TODO: Implement by threshold if (bid == null) return 0.0; return profile.getUtility(bid).doubleValue(); } private double getMinMaxDistance(String issue) throws IOException { ValueSet vs1 = profileint.getProfile().getDomain().getValues(issue); NumberValue minValue = (NumberValue) vs1.get(0); NumberValue maxValue = (NumberValue) vs1.get(1); return (maxValue.getValue().doubleValue() - minValue.getValue().doubleValue()); } /** * Returns a score between 0 to 1 that determine how much the bids are similar 0 * - identical, 1 - totally different * * @param bid1 * @param bid2 * @return * @throws IOException */ private double hammingDistance(Bid bid1, Bid bid2) throws IOException { double similarityIndex = 0.0; for (Map.Entry valueEntry1 : bid1.getIssueValues().entrySet()) { Value value1 = valueEntry1.getValue(); Value value2 = bid2.getValue(valueEntry1.getKey()); // Find out the type of bid value (range or discrete) if (value1 instanceof NumberValue) { double valueDist = Math.abs((((NumberValue) value1).getValue().doubleValue() - ((NumberValue) value2).getValue().doubleValue())); similarityIndex += (valueDist / getMinMaxDistance(valueEntry1.getKey())); } else { if (!valueEntry1.getValue().equals(value2)) { similarityIndex++; } } } return (similarityIndex / bid1.getIssueValues().entrySet().size()); } private double getCurrentThreshold(double threshold, double minValue) { if (!(progress instanceof ProgressRounds)) return threshold; int currentRound = ((ProgressRounds) progress).getCurrentRound(); int totalRounds = ((ProgressRounds) progress).getTotalRounds(); if (totalRounds == 0) totalRounds++; return (1 - currentRound / totalRounds) * (threshold - minValue) + minValue; } }