source: anac2020/DUOAgent/src/main/java/nego2020/group9/DUOAgent.java@ 29

Last change on this file since 29 was 1, checked in by wouter, 4 years ago

#1910 added anac2020 parties

File size: 13.2 KB
Line 
1package nego2020.group9;
2
3import geniusweb.actions.*;
4
5import geniusweb.issuevalue.*;
6import geniusweb.party.Capabilities;
7import geniusweb.party.DefaultParty;
8import geniusweb.party.inform.*;
9import geniusweb.profileconnection.ProfileConnectionFactory;
10import geniusweb.profileconnection.ProfileInterface;
11import geniusweb.progress.Progress;
12import geniusweb.progress.ProgressRounds;
13import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression;
14import tudelft.utilities.logging.Reporter;
15
16
17import java.io.IOException;
18import java.util.*;
19import java.util.logging.Level;
20
21public class DUOAgent extends DefaultParty{
22
23 private Bid lastReceivedBid = null;
24 private PartyId me;
25 private Random random;
26 private OLSMultipleLinearRegression regression;
27 protected ProfileInterface profileint;
28 private SimpleLinearOrdering estimatedProfile = null;
29 private List<List<String>> allPossibleBids;
30 private List<Bid> sortedPredictedBids;
31 private int turn_count =0;
32 private List<Bid> opponets_bid;
33 private List<Bid> my_bids;
34 private int current_bid;
35 private int total_round;
36 private boolean dont_repeat=true;
37 private int repeating_count=0;
38 private double least_w = Double.MAX_VALUE;
39
40 public DUOAgent(){}
41 public DUOAgent(Reporter reporter) {super(reporter);}
42 @Override
43 public Capabilities getCapabilities() {
44 return new Capabilities(new HashSet<>(Arrays.asList("SHAOP")));
45 }
46
47
48 @Override
49 public String getDescription() { return "DUO AGENT"; }
50
51 @Override
52 public void notifyChange(Inform info) {
53 try {
54 if (info instanceof Settings) {
55 Settings settings = (Settings) info;
56 this.profileint = ProfileConnectionFactory.create(settings.getProfile().getURI(), getReporter());
57 this.me = settings.getID();
58 Progress progress = settings.getProgress();
59 if(progress instanceof ProgressRounds){
60 total_round=((ProgressRounds) progress).getTotalRounds();
61 }
62 this.opponets_bid =new ArrayList<>();
63 this.sortedPredictedBids= new ArrayList<>();
64 this.my_bids= new ArrayList<>();
65 current_bid=0;
66 estimatedProfile = new SimpleLinearOrdering(profileint.getProfile());
67 elicitation();
68 } else if (info instanceof ActionDone) {
69 Action otheract = ((ActionDone) info).getAction();
70 if (otheract instanceof Offer) {
71 lastReceivedBid = ((Offer) otheract).getBid();
72 opponets_bid.add(lastReceivedBid);
73 } else if (otheract instanceof Comparison) {
74
75 estimatedProfile = estimatedProfile.with(
76 ((Comparison) otheract).getBid(),
77 ((Comparison) otheract).getWorse());
78 turn_count++;
79 myTurn();
80 }
81 } else if (info instanceof YourTurn) {
82 turn_count++;
83 myTurn();
84 } else if (info instanceof Finished) {
85 getReporter().log(Level.INFO, "Final outcome:" + info);
86 }
87 } catch (Exception e) {
88 throw new RuntimeException("Failed to handle info", e);
89 }
90
91 }
92
93 public void myTurn() throws Exception{
94
95 Action actiontotake;
96 boolean chec=true;
97 boolean last_turns=false;
98
99 if(total_round-1<opponets_bid.size()/2){
100 actiontotake = new Accept(me, lastReceivedBid);
101 getConnection().send(actiontotake);
102 last_turns = true;
103
104 }
105 if(turn_count>15&&!last_turns){
106 //acceptance
107 if(my_bids.size()>1&&calculate_weight(lastReceivedBid)>=least_w){
108 actiontotake = new Accept(me,lastReceivedBid);
109 getConnection().send(actiontotake);
110 chec=false;
111 }
112
113 }
114 //bidding
115 if(chec&&!last_turns){
116 Bid bid = opponentSituation();
117 my_bids.add(bid);
118 actiontotake = new Offer(me,bid);
119 if(calculate_weight(bid)<least_w) least_w=calculate_weight(bid);
120 current_bid++;
121 getConnection().send(actiontotake);
122 }
123 }
124
125 public Bid opponentSituation() {
126 Map<Bid, Integer> last10round= new HashMap<>();
127 int max_repeated_count=Integer.MIN_VALUE;
128 int bid_count=0;
129 if(opponets_bid.size()>9) {
130 for (int i = opponets_bid.size() - 10; i < opponets_bid.size(); i++) {
131 if (last10round.containsKey(opponets_bid.get(i))) {
132 last10round.replace(opponets_bid.get(i), last10round.get(opponets_bid.get(i)) + 1);
133 if (last10round.get(opponets_bid.get(i)) > max_repeated_count)
134 max_repeated_count = last10round.get(opponets_bid.get(i));
135 } else {
136 last10round.put(opponets_bid.get(i), 1);
137 if (max_repeated_count == Integer.MIN_VALUE) max_repeated_count = 1;
138 bid_count++;
139 }
140 }
141
142 if (max_repeated_count >= 5 && dont_repeat) {
143
144 current_bid = current_bid - max_repeated_count > 0 ? current_bid-max_repeated_count : 0;
145 dont_repeat=false;
146 } else if (bid_count < 5 && dont_repeat) {
147 current_bid =current_bid - (5 - bid_count) >0 ?current_bid-5+bid_count:0;
148 dont_repeat=false;
149 } else {
150 random= new Random();
151 double rr =random.nextDouble();
152 repeating_count++;
153 if(repeating_count>3){
154 dont_repeat=true;
155 repeating_count=0;
156 }
157 if(rr<0.5) current_bid = current_bid-(int) (rr*10)>0?current_bid-(int) (rr*10):current_bid;
158 }
159 }
160
161 return sortedPredictedBids.get(current_bid);
162 }
163
164 public double calculate_weight(Bid x){
165 return 1.0-((double)sortedPredictedBids.indexOf(x)/(double)sortedPredictedBids.size());
166 }
167
168 public static List<List<String>> generateAllPossibleBids(List<List<String>> input, int i) {
169
170 if (i == input.size()) {
171 List<List<String>> result = new ArrayList<>();
172 result.add(new ArrayList<>());
173 return result;
174 }
175
176 List<List<String>> result = new ArrayList<>();
177 List<List<String>> recursive = generateAllPossibleBids(input, i + 1);
178
179 for (int j = 0; j < input.get(i).size(); j++) {
180 for (int k = 0; k < recursive.size(); k++) {
181 List<String> newList = new ArrayList<String>(recursive.get(k));
182 newList.add(input.get(i).get(j));
183 result.add(newList);
184 }
185 }
186 return result;
187 }
188
189 public void elicitation(){
190 int howmanyvalue=0;
191 try {
192
193 List<List<String>> allValues = new ArrayList<>();
194 List<List<Value>> allValuesAsValues = new ArrayList<>();
195 List<String> types = new ArrayList<>();
196 Set<String> issues = profileint.getProfile().getDomain().getIssues();
197
198 for (String s: issues){
199 ArrayList<String> temp= new ArrayList<>();
200 ArrayList<Value> temp_v=new ArrayList<>();
201 ValueSet vs= profileint.getProfile().getDomain().getValues(s);
202 for(Value v: vs){
203 howmanyvalue++;
204 if(v instanceof DiscreteValue) {
205 temp.add(((DiscreteValue) v).getValue());
206 temp_v.add(v);
207 types.add("Discrete");
208 }
209 else if(v instanceof NumberValue) {
210 temp.add(((NumberValue) v).getValue().toString());
211 temp_v.add(v);
212 types.add("Number");
213 }
214 }
215 allValues.add(temp);
216 allValuesAsValues.add(temp_v);
217 }
218 this.allPossibleBids = generateAllPossibleBids(allValues,0);
219 double [][] encodedValues= oneHotEncoder(allPossibleBids,howmanyvalue,allValuesAsValues);
220
221 List<List<String>> givenBids= new ArrayList<>();
222 List<Bid> sb= estimatedProfile.getSortedBids((profileint.getProfile()));
223 for(Bid b: sb){
224 List<String> temp_ls=new ArrayList<>();
225 for(String is: issues){
226 if(b.getValue(is) instanceof DiscreteValue) {
227 temp_ls.add(((DiscreteValue) b.getValue(is)).getValue());
228 }
229 else if(b.getValue(is) instanceof NumberValue) {
230 temp_ls.add(((NumberValue) b.getValue(is)).getValue().toString());
231 }
232 }
233 givenBids.add(temp_ls);
234 }
235 double[][] encodedTrainValues= oneHotEncoder(givenBids,howmanyvalue,allValuesAsValues);
236
237 double[] indexes= new double[encodedTrainValues.length];
238 for(int i=1;i<=indexes.length;i++) indexes[i-1]=i*2;
239 regression=new OLSMultipleLinearRegression();
240 double[] bid_prediction= new double[encodedValues.length];
241 boolean axet = true;
242 try {
243 regression.newSampleData(indexes, encodedTrainValues);
244 }
245 catch (Exception e){
246 for(int i=0 ;i<encodedValues.length; i++){
247 random= new Random();
248 bid_prediction[i] = random.nextDouble();
249 axet=false;
250 }
251 }
252
253 try {
254 for (int i = 0; i < encodedValues.length&&axet; i++) {
255 bid_prediction[i] = predict(regression, encodedValues[i]);
256 }
257 }
258 catch (Exception e){
259 for(int i=0 ;i<encodedValues.length; i++){
260 random= new Random();
261 bid_prediction[i] = random.nextDouble();
262 }
263 }
264 List<Bid> lob = new ArrayList<>();
265 for(int i=0;i<encodedValues.length;i++) {
266 Map<String, Value> msv = new HashMap<>();
267 for(String s: issues){
268 for(int j=0;j<allPossibleBids.get(i).size();j++) {
269 if (types.get(j).equals("Discrete")&&profileint.getProfile().getDomain().getValues(s).toString().contains(allPossibleBids.get(i).get(j)))
270 msv.put(s, new DiscreteValue(allPossibleBids.get(i).get(j)));
271 else if(types.get(j).equals("Number")&&profileint.getProfile().getDomain().getValues(s).toString().contains(allPossibleBids.get(i).get(j)))
272 msv.put(s, new NumberValue(allPossibleBids.get(i).get(j)));
273 }
274 }
275 sortedPredictedBids.add(new Bid(msv));
276 lob.add(new Bid(msv));
277 }
278
279 sortedPredictedBids.sort(Comparator.comparing(s ->bid_prediction[lob.indexOf(s)]));
280
281
282 }
283 catch (Exception e){
284 System.out.println("Couldn't elicitate");
285 e.printStackTrace();
286 }
287 }
288
289 public static double[][] oneHotEncoder(List<List<String>> bidOrder, int countAll, List<List<Value>> allIssues) {
290 double[][] oneHotEncoded = new double[bidOrder.size()][countAll];
291 int count = 0;
292 for (int i = 0; i < oneHotEncoded.length; i++) {
293 for (int j = 0; j < oneHotEncoded[0].length; j++) {
294 for (int k = 0; k < bidOrder.get(i).size(); k++) {
295 for (int l = 0; l < allIssues.get(k).size(); l++) {
296 boolean cget=true;
297 if(bidOrder.get(i).get(k)==null) oneHotEncoded[i][count]=0.5;
298 else if(allIssues.get(k).get(l) instanceof DiscreteValue) {
299 if (bidOrder.get(i).get(k).equals(((DiscreteValue) allIssues.get(k).get(l)).getValue())) {
300 oneHotEncoded[i][count] = 1.0;
301 cget=false;
302 }
303 }
304 else if(allIssues.get(i).get(k) instanceof NumberValue){
305 if (bidOrder.get(i).get(k).equals(((NumberValue) allIssues.get(k).get(l)).getValue().toString())) {
306 oneHotEncoded[i][count] = 1.0;
307 cget=false;
308 }
309 }
310 if (cget){
311 oneHotEncoded[i][count] = 0.0;
312 }
313 count++;
314 }
315 }
316 count = 0;
317 }
318 }
319 return oneHotEncoded;
320 }
321
322 public static double predict(OLSMultipleLinearRegression regression, double[] x) {
323 if (regression == null) {
324 throw new IllegalArgumentException("Null Object");
325 }
326 double[] params = regression.estimateRegressionParameters();
327 double prediction = params[0];
328 for (int i = 1; i < params.length; i++) {
329 prediction += params[i] * x[i - 1];
330 }
331 return prediction;
332 }
333
334}
Note: See TracBrowser for help on using the repository browser.