1 | package geniusweb.blingbling.Ranknet4j;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 | import java.util.List;
|
---|
5 |
|
---|
6 | import org.neuroph.core.Layer;
|
---|
7 | import org.neuroph.core.NeuralNetwork;
|
---|
8 | import org.neuroph.core.input.WeightedSum;
|
---|
9 | import org.neuroph.core.transfer.Linear;
|
---|
10 | import org.neuroph.nnet.comp.neuron.BiasNeuron;
|
---|
11 | import org.neuroph.nnet.comp.neuron.InputNeuron;
|
---|
12 | //import org.neuroph.nnet.learning.BackPropagation;
|
---|
13 | //import org.neuroph.nnet.learning.MomentumBackpropagation;
|
---|
14 | import org.neuroph.util.ConnectionFactory;
|
---|
15 | import org.neuroph.util.LayerFactory;
|
---|
16 | import org.neuroph.util.NeuralNetworkFactory;
|
---|
17 | import org.neuroph.util.NeuralNetworkType;
|
---|
18 | import org.neuroph.util.NeuronProperties;
|
---|
19 | import org.neuroph.util.TransferFunctionType;
|
---|
20 | import org.neuroph.util.random.RangeRandomizer;
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * Multi Layer Perceptron neural network with Back propagation learning algorithm.
|
---|
24 | *
|
---|
25 | * @author Zoran Sevarac <sevarac@gmail.com>
|
---|
26 | */
|
---|
27 | public class Ranknet extends NeuralNetwork<BackPropagation> {
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * The class fingerprint that is set to indicate serialization
|
---|
31 | * compatibility with a previous version of the class.
|
---|
32 | */
|
---|
33 | private static final long serialVersionUID = 2L;
|
---|
34 |
|
---|
35 | /**
|
---|
36 | * Creates new MultiLayerPerceptron with specified number of neurons in layers
|
---|
37 | *
|
---|
38 | * @param neuronsInLayers collection of neuron number in layers
|
---|
39 | */
|
---|
40 | public Ranknet(List<Integer> neuronsInLayers) {
|
---|
41 | // init neuron settings
|
---|
42 | NeuronProperties neuronProperties = new NeuronProperties();
|
---|
43 | neuronProperties.setProperty("useBias", true);
|
---|
44 | neuronProperties.setProperty("transferFunction", TransferFunctionType.SIGMOID);
|
---|
45 |
|
---|
46 | this.createNetwork(neuronsInLayers, neuronProperties);
|
---|
47 | }
|
---|
48 |
|
---|
49 | public Ranknet(int... neuronsInLayers) {
|
---|
50 | // init neuron settings
|
---|
51 | NeuronProperties neuronProperties = new NeuronProperties();
|
---|
52 | neuronProperties.setProperty("useBias", true);
|
---|
53 | neuronProperties.setProperty("transferFunction", TransferFunctionType.SIGMOID);
|
---|
54 | neuronProperties.setProperty("inputFunction", WeightedSum.class);
|
---|
55 |
|
---|
56 | List<Integer> neuronsInLayersVector = new ArrayList<>();
|
---|
57 | for (int i = 0; i < neuronsInLayers.length; i++) {
|
---|
58 | neuronsInLayersVector.add(Integer.valueOf(neuronsInLayers[i]));
|
---|
59 | }
|
---|
60 |
|
---|
61 | this.createNetwork(neuronsInLayersVector, neuronProperties);
|
---|
62 | }
|
---|
63 |
|
---|
64 | public Ranknet(TransferFunctionType transferFunctionType, int... neuronsInLayers) {
|
---|
65 | // init neuron settings
|
---|
66 | NeuronProperties neuronProperties = new NeuronProperties();
|
---|
67 | neuronProperties.setProperty("useBias", true);
|
---|
68 | neuronProperties.setProperty("transferFunction", transferFunctionType);
|
---|
69 | neuronProperties.setProperty("inputFunction", WeightedSum.class);
|
---|
70 |
|
---|
71 |
|
---|
72 | List<Integer> neuronsInLayersVector = new ArrayList<>();
|
---|
73 | for (int i = 0; i < neuronsInLayers.length; i++) {
|
---|
74 | neuronsInLayersVector.add(Integer.valueOf(neuronsInLayers[i]));
|
---|
75 | }
|
---|
76 |
|
---|
77 | this.createNetwork(neuronsInLayersVector, neuronProperties);
|
---|
78 | }
|
---|
79 |
|
---|
80 | public Ranknet(List<Integer> neuronsInLayers, TransferFunctionType transferFunctionType) {
|
---|
81 | // init neuron settings
|
---|
82 | NeuronProperties neuronProperties = new NeuronProperties();
|
---|
83 | neuronProperties.setProperty("useBias", true);
|
---|
84 | neuronProperties.setProperty("transferFunction", transferFunctionType);
|
---|
85 |
|
---|
86 | this.createNetwork(neuronsInLayers, neuronProperties);
|
---|
87 | }
|
---|
88 |
|
---|
89 | /**
|
---|
90 | * Creates new MultiLayerPerceptron net with specified number neurons in
|
---|
91 | * getLayersIterator
|
---|
92 | *
|
---|
93 | * @param neuronsInLayers collection of neuron numbers in layers
|
---|
94 | * @param neuronProperties neuron properties
|
---|
95 | */
|
---|
96 | public Ranknet(List<Integer> neuronsInLayers, NeuronProperties neuronProperties) {
|
---|
97 | this.createNetwork(neuronsInLayers, neuronProperties);
|
---|
98 | }
|
---|
99 |
|
---|
100 | /**
|
---|
101 | * Creates MultiLayerPerceptron Network architecture - fully connected
|
---|
102 | * feed forward with specified number of neurons in each layer
|
---|
103 | *
|
---|
104 | * @param neuronsInLayers collection of neuron numbers in getLayersIterator
|
---|
105 | * @param neuronProperties neuron properties
|
---|
106 | */
|
---|
107 | private void createNetwork(List<Integer> neuronsInLayers, NeuronProperties neuronProperties) {
|
---|
108 |
|
---|
109 | // set network type
|
---|
110 | this.setNetworkType(NeuralNetworkType.MULTI_LAYER_PERCEPTRON);
|
---|
111 |
|
---|
112 | // create input layer
|
---|
113 | NeuronProperties inputNeuronProperties = new NeuronProperties(InputNeuron.class, Linear.class);
|
---|
114 | Layer layer = LayerFactory.createLayer(neuronsInLayers.get(0), inputNeuronProperties);
|
---|
115 |
|
---|
116 | boolean useBias = true; // use bias neurons by default
|
---|
117 | if (neuronProperties.hasProperty("useBias")) {
|
---|
118 | useBias = (Boolean) neuronProperties.getProperty("useBias");
|
---|
119 | }
|
---|
120 |
|
---|
121 | if (useBias) {
|
---|
122 | layer.addNeuron(new BiasNeuron());
|
---|
123 | }
|
---|
124 |
|
---|
125 | this.addLayer(layer);
|
---|
126 |
|
---|
127 | // create layers
|
---|
128 | Layer prevLayer = layer;
|
---|
129 |
|
---|
130 | //for(Integer neuronsNum : neuronsInLayers)
|
---|
131 | for (int layerIdx = 1; layerIdx < neuronsInLayers.size(); layerIdx++) {
|
---|
132 | Integer neuronsNum = neuronsInLayers.get(layerIdx);
|
---|
133 | // createLayer layer
|
---|
134 | layer = LayerFactory.createLayer(neuronsNum, neuronProperties);
|
---|
135 |
|
---|
136 | if (useBias && (layerIdx < (neuronsInLayers.size() - 1))) {
|
---|
137 | layer.addNeuron(new BiasNeuron());
|
---|
138 | }
|
---|
139 |
|
---|
140 | // add created layer to network
|
---|
141 | this.addLayer(layer);
|
---|
142 | // createLayer full connectivity between previous and this layer
|
---|
143 | if (prevLayer != null) {
|
---|
144 | ConnectionFactory.fullConnect(prevLayer, layer);
|
---|
145 | }
|
---|
146 |
|
---|
147 | prevLayer = layer;
|
---|
148 | }
|
---|
149 |
|
---|
150 | // set input and output cells for network
|
---|
151 | NeuralNetworkFactory.setDefaultIO(this);
|
---|
152 |
|
---|
153 | // set learnng rule
|
---|
154 | // this.setLearningRule(new BackPropagation());
|
---|
155 | BackPropagation bp = new BackPropagation();
|
---|
156 | bp.setMaxIterations(4000);
|
---|
157 | bp.setLearningRate(0.003);
|
---|
158 | // bp.setMaxError(0.1);
|
---|
159 | // bp.setBatchMode(true);
|
---|
160 | this.setLearningRule(bp);
|
---|
161 | // this.setLearningRule(new DynamicBackPropagation());
|
---|
162 |
|
---|
163 | this.randomizeWeights(new RangeRandomizer(-1.0, 1.0));
|
---|
164 |
|
---|
165 | }
|
---|
166 |
|
---|
167 | public void connectInputsToOutputs() {
|
---|
168 | // connect first and last layer
|
---|
169 | ConnectionFactory.fullConnect(getLayerAt(0), getLayerAt(getLayersCount() - 1), false);
|
---|
170 | }
|
---|
171 |
|
---|
172 | } |
---|