1 | package geniusweb.blingbling.Ranknet;
|
---|
2 |
|
---|
3 | //import neuralnet.activationfunction.IActivationFunction;
|
---|
4 | import org.nd4j.linalg.api.ndarray.INDArray;
|
---|
5 | import org.nd4j.linalg.factory.Nd4j;
|
---|
6 | //import org.nd4j.shade.guava.collect.Lists;
|
---|
7 |
|
---|
8 | import java.util.LinkedList;
|
---|
9 | import java.util.List;
|
---|
10 |
|
---|
11 | public class Layer {
|
---|
12 | private INDArray weights;
|
---|
13 | private INDArray biases;
|
---|
14 | private IActivationFunction activationFunction;
|
---|
15 |
|
---|
16 | // Iteration instance variables.
|
---|
17 | private INDArray input;
|
---|
18 | private INDArray z;
|
---|
19 | private INDArray activation;
|
---|
20 | private INDArray activationDerivative;
|
---|
21 |
|
---|
22 | public static LayerBuilder Builder() {
|
---|
23 | return new LayerBuilder();
|
---|
24 | }
|
---|
25 |
|
---|
26 | protected Layer(INDArray weights, INDArray biases, IActivationFunction activationFunction) {
|
---|
27 | this.weights = weights;
|
---|
28 | this.biases = biases;
|
---|
29 | this.activationFunction = activationFunction;
|
---|
30 | }
|
---|
31 |
|
---|
32 | public void activate(INDArray input) {
|
---|
33 | this.input = input;
|
---|
34 | z = calculateZ(input);
|
---|
35 | activation = calculateActivation(z);
|
---|
36 | activationDerivative = calculateActivationDerivative(z);
|
---|
37 | }
|
---|
38 |
|
---|
39 | public INDArray getInput() {
|
---|
40 | return input;
|
---|
41 | }
|
---|
42 |
|
---|
43 | public INDArray getZ() {
|
---|
44 | return z;
|
---|
45 | }
|
---|
46 |
|
---|
47 | public INDArray getActivation() {
|
---|
48 | return activation;
|
---|
49 | }
|
---|
50 |
|
---|
51 | public INDArray getActivationDerivative() {
|
---|
52 | return activationDerivative;
|
---|
53 | }
|
---|
54 |
|
---|
55 | public INDArray getErrorGradient(INDArray error, INDArray prevActivationDerivative) {
|
---|
56 | return error.mmul(weights).mul(prevActivationDerivative);
|
---|
57 | }
|
---|
58 |
|
---|
59 | public void updateWeights(INDArray gradients) {
|
---|
60 | List<INDArray> rows = new LinkedList<INDArray>();
|
---|
61 | int stride = activation.rows() * weights.rows();
|
---|
62 |
|
---|
63 | for (int row = 0; row < gradients.rows(); row = row + stride) {
|
---|
64 | int[] extractRows = new int[stride];
|
---|
65 | for (int i = 0; i < stride; i++) {
|
---|
66 | extractRows[i] = (row * stride) + i;
|
---|
67 | }
|
---|
68 | rows.add(gradients.getRows(extractRows));
|
---|
69 | }
|
---|
70 | weights = weights.add(Nd4j.averageAndPropagate(rows));
|
---|
71 | }
|
---|
72 |
|
---|
73 | public void updateBiases(INDArray gradients) {
|
---|
74 | List<INDArray> rows = new LinkedList<INDArray>();
|
---|
75 | int stride = activation.rows();
|
---|
76 |
|
---|
77 | for (int row = 0; row < gradients.rows(); row = row + stride) {
|
---|
78 | int[] extractRows = new int[stride];
|
---|
79 | for (int i = 0; i < stride; i++) {
|
---|
80 | extractRows[i] = (row * stride) + i;
|
---|
81 | }
|
---|
82 | rows.add(gradients.getRows(extractRows));
|
---|
83 | }
|
---|
84 | biases = biases.add(Nd4j.averageAndPropagate(rows));
|
---|
85 | }
|
---|
86 |
|
---|
87 | public INDArray calculateZ(INDArray input) {
|
---|
88 | INDArray biasMatrix = biases;
|
---|
89 | for (int i = 1; i < input.rows(); i++) {
|
---|
90 | biasMatrix = Nd4j.hstack(biasMatrix, biases);
|
---|
91 | }
|
---|
92 | return input.mmul(weights.transpose()).add(biasMatrix);
|
---|
93 | }
|
---|
94 |
|
---|
95 | public INDArray calculateActivation(INDArray z) {
|
---|
96 | return activationFunction.output(z);
|
---|
97 | }
|
---|
98 |
|
---|
99 | public INDArray calculateActivationDerivative(INDArray z) {
|
---|
100 | return activationFunction.derivative(z);
|
---|
101 | }
|
---|
102 | } |
---|