1 | package geniusweb.blingbling;
|
---|
2 |
|
---|
3 | //old one not used.
|
---|
4 | import java.util.ArrayList;
|
---|
5 | import java.util.Collections;
|
---|
6 | import java.util.Comparator;
|
---|
7 | import java.util.HashMap;
|
---|
8 | import java.util.HashSet;
|
---|
9 | import java.util.LinkedList;
|
---|
10 | import java.util.List;
|
---|
11 | import java.util.Set;
|
---|
12 | import java.util.logging.Level;
|
---|
13 |
|
---|
14 | import org.neuroph.core.Layer;
|
---|
15 | import org.neuroph.core.NeuralNetwork;
|
---|
16 | import org.neuroph.core.Neuron;
|
---|
17 | import org.neuroph.core.data.DataSet;
|
---|
18 | import org.neuroph.core.data.DataSetRow;
|
---|
19 | import org.neuroph.core.learning.LearningRule;
|
---|
20 | import org.neuroph.nnet.learning.BackPropagation;
|
---|
21 | import org.neuroph.util.ConnectionFactory;
|
---|
22 |
|
---|
23 | import geniusweb.profile.DefaultPartialOrdering;
|
---|
24 | import geniusweb.profile.Profile;
|
---|
25 | import geniusweb.profile.utilityspace.UtilitySpace;
|
---|
26 | import geniusweb.issuevalue.Bid;
|
---|
27 | import geniusweb.issuevalue.Domain;
|
---|
28 | import geniusweb.issuevalue.Value;
|
---|
29 |
|
---|
30 | //ranknet
|
---|
31 | import geniusweb.blingbling.Ranknet.NeuralRankNet;
|
---|
32 | import geniusweb.blingbling.Ranknet.*;
|
---|
33 |
|
---|
34 |
|
---|
35 | import tudelft.utilities.logging.Reporter;
|
---|
36 |
|
---|
37 |
|
---|
38 | public class MyUtilitySpace {
|
---|
39 | //my estimate utility space class.
|
---|
40 | private Domain domain;
|
---|
41 | private List<Bid> bidlist = new ArrayList<>();
|
---|
42 | private List<Bid> sortedbidlist = new LinkedList<>();
|
---|
43 | private Bid reservationbid;
|
---|
44 | private Bid maxBid;
|
---|
45 | private Bid minBid;
|
---|
46 | private HashMap<String, HashMap<Value, Integer>> valuefrequency = new HashMap<String, HashMap<Value, Integer>>();//new?or null?
|
---|
47 | private NeuralNetwork<LearningRule> ann = new NeuralNetwork<LearningRule>();// the network
|
---|
48 | private HashMap<String, Integer> issueToNeuron = new HashMap<String, Integer>(); //track the neuron position of issue
|
---|
49 | private HashMap<String, HashMap<Value, Integer>> valueToNeuron = new HashMap<String, HashMap<Value, Integer>>();
|
---|
50 | int maxIter = 500; //Integer.parseInt(args[0]);
|
---|
51 | double maxError = 0.01; // Double.parseDouble(args[1]);
|
---|
52 | double learningRate = 0.0005 ; // Double.parseDouble(args[2]);
|
---|
53 |
|
---|
54 | DefaultPartialOrdering prof;
|
---|
55 | List<List<Integer>> betterlist;
|
---|
56 |
|
---|
57 |
|
---|
58 | public MyUtilitySpace(Profile profile, Reporter reporter) {
|
---|
59 |
|
---|
60 | DefaultPartialOrdering prof = (DefaultPartialOrdering) profile;
|
---|
61 |
|
---|
62 | this.domain = prof.getDomain();
|
---|
63 | this.bidlist = prof.getBids();
|
---|
64 | this.reservationbid = prof.getReservationBid();
|
---|
65 | this.sortedbidlist = setSortedBids(prof);
|
---|
66 | this.maxBid = sortedbidlist.get(sortedbidlist.size()-1);
|
---|
67 | this.minBid = sortedbidlist.get(0);
|
---|
68 | this.betterlist = prof.getBetter();//for learning to rank method.
|
---|
69 |
|
---|
70 |
|
---|
71 | initValueFrequency();
|
---|
72 | setvaluefrequency(prof.getBids());//for elicit compare.
|
---|
73 | buildNetwork(prof.getDomain());
|
---|
74 | initweight();
|
---|
75 | DataSet ds = setDataset(this.sortedbidlist);
|
---|
76 | trainNetwork(ds);
|
---|
77 | }
|
---|
78 |
|
---|
79 |
|
---|
80 | public void buildNetwork(Domain domain) {
|
---|
81 | //neural network model.
|
---|
82 | Set<String> issueset = domain.getIssues();//get all the issues.
|
---|
83 | Layer inputlayer = new Layer(); // set the input layer.
|
---|
84 | Layer weightlayer = new Layer(); // set the weight layer.
|
---|
85 | int weightind = 0; // the ind tracks the issue position in weight layer
|
---|
86 | int valueind = 0; // the ind tracks the value position in input layer
|
---|
87 | for (String issue: issueset) {//iterate the issues
|
---|
88 | weightlayer.addNeuron(weightind, new Neuron()); // add one neuron to the weight layer as
|
---|
89 | issueToNeuron.put(issue, weightind);//put the index to the issue
|
---|
90 | weightind ++;//update the weight index
|
---|
91 |
|
---|
92 | HashMap<Value, Integer> temp = new HashMap<Value, Integer>();
|
---|
93 | for (Value value: domain.getValues(issue)) {
|
---|
94 | inputlayer.addNeuron(valueind, new Neuron());// add neuron for every value.
|
---|
95 | temp.put(value, valueind);
|
---|
96 | valueToNeuron.put(issue, temp);
|
---|
97 | valueind ++; //update the value index(position)
|
---|
98 | }
|
---|
99 | }
|
---|
100 | ann.addLayer(0, inputlayer);//set layer position
|
---|
101 | ann.addLayer(1, weightlayer);
|
---|
102 | Layer outputlayer = new Layer();
|
---|
103 | outputlayer.addNeuron(0, new Neuron());//add one neuron to the output layer.
|
---|
104 | ann.addLayer(2, outputlayer);
|
---|
105 | ann.setInputNeurons(inputlayer.getNeurons());
|
---|
106 | ann.setOutputNeurons(outputlayer.getNeurons());
|
---|
107 | }
|
---|
108 |
|
---|
109 | public void initweight() {
|
---|
110 | //init the NN weight via a specific method. And create connections.
|
---|
111 | Set<String> issueset = domain.getIssues();// get all the issues
|
---|
112 | for (String issue: issueset) {
|
---|
113 | for (Value value: domain.getValues(issue)) {
|
---|
114 | //create connections from value neurons to issue neurons
|
---|
115 | if(valuefrequency.get(issue).get(value) == 0) {
|
---|
116 | ann.createConnection(ann.getLayerAt(0).getNeuronAt(valueToNeuron.get(issue).get(value)),
|
---|
117 | ann.getLayerAt(1).getNeuronAt(issueToNeuron.get(issue)),
|
---|
118 | 0.0);// if one value never shows in the partial data, then we assign 0 to the weight of this value.
|
---|
119 | continue;
|
---|
120 | }
|
---|
121 | ann.createConnection(ann.getLayerAt(0).getNeuronAt(valueToNeuron.get(issue).get(value)),
|
---|
122 | ann.getLayerAt(1).getNeuronAt(issueToNeuron.get(issue)),
|
---|
123 | 0.5);// otherwise we assign 0.5 to the weight. If there is another proper way to init this weight?
|
---|
124 | }
|
---|
125 | ann.createConnection(ann.getLayerAt(1).getNeuronAt(issueToNeuron.get(issue)),
|
---|
126 | ann.getLayerAt(2).getNeuronAt(0),
|
---|
127 | 1.0/issueset.size());//equal issueweight according to number of issues. Is there a way to control the sum of the weight to be 1.0?
|
---|
128 | }
|
---|
129 | }
|
---|
130 |
|
---|
131 | public void initValueFrequency() {
|
---|
132 | // create an all-0 hashmap
|
---|
133 | for (String issue: domain.getIssues()) {
|
---|
134 | HashMap<Value, Integer> vmap = new HashMap<Value, Integer>();
|
---|
135 | for (Value value: domain.getValues(issue)) {
|
---|
136 | vmap.put(value, 0);
|
---|
137 | }
|
---|
138 | this.valuefrequency.put(issue, vmap);
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | public void setvaluefrequency(List<Bid> inbidlist) {
|
---|
143 | //init and update the valuefrequency.
|
---|
144 | for (Bid bid: inbidlist) {
|
---|
145 | for (String issue: bid.getIssues()) {
|
---|
146 | Value v = bid.getValue(issue);
|
---|
147 | HashMap<Value, Integer> temp = valuefrequency.get(issue);
|
---|
148 | int cnt = temp.get(v);
|
---|
149 | temp.put(v, cnt+1);
|
---|
150 | valuefrequency.put(issue, temp);
|
---|
151 | }
|
---|
152 | }
|
---|
153 | }
|
---|
154 |
|
---|
155 | public HashMap<String, List<Value>> getmostinformative(){
|
---|
156 | HashMap<String, List<Value>> infovalue = new HashMap<String, List<Value>>();
|
---|
157 | for (String issue : domain.getIssues()) {
|
---|
158 | List<Value> elicitvalueset = new ArrayList<Value>();
|
---|
159 | int minfreq = 0;
|
---|
160 | for (Value value: domain.getValues(issue)) {
|
---|
161 | int freq = valuefrequency.get(issue).get(value);
|
---|
162 | if (elicitvalueset.isEmpty()) {
|
---|
163 | elicitvalueset.add(value);
|
---|
164 | minfreq = freq;
|
---|
165 | }else {
|
---|
166 | if (freq<minfreq) {
|
---|
167 | elicitvalueset.clear();
|
---|
168 | elicitvalueset.add(value);
|
---|
169 | }else if(freq == minfreq) {
|
---|
170 | elicitvalueset.add(value);
|
---|
171 | }
|
---|
172 | }
|
---|
173 | }
|
---|
174 | infovalue.put(issue, elicitvalueset);
|
---|
175 |
|
---|
176 | }
|
---|
177 | return infovalue;
|
---|
178 | }
|
---|
179 |
|
---|
180 | public DataSet setDataset(List<Bid> inbidlist) {
|
---|
181 | //Construct the training dataset.
|
---|
182 | // input sorted bidlist. Utility from low to high. Trained using assigned utility.
|
---|
183 | int inputsize = ann.getInputsCount();
|
---|
184 | int outputsize = ann.getOutputsCount();
|
---|
185 | DataSet ds = new DataSet(inputsize, outputsize);
|
---|
186 | int datasize = inbidlist.size();// the size
|
---|
187 | double cnt = 0;//
|
---|
188 | for (Bid bid: inbidlist) {
|
---|
189 | double[] input = new double[inputsize];
|
---|
190 | double[] output = new double[outputsize];
|
---|
191 | Set<Integer> indset = new HashSet<Integer>();
|
---|
192 | for (String issue: domain.getIssues()) {
|
---|
193 | Value v = bid.getValue(issue);//get bid's value of issue.
|
---|
194 | indset.add(valueToNeuron.get(issue).get(v));// keep a set of the position of the bid values.
|
---|
195 | //ValuetoNeural is a map maps every possible value into the position of input value.
|
---|
196 | }
|
---|
197 |
|
---|
198 | for (int ind =0; ind<inputsize; ind++) { //construct input vector.
|
---|
199 | if (indset.contains(ind)) {
|
---|
200 | input[ind] = 1.0; // assign 1.0 to the bid's value position
|
---|
201 | }else {
|
---|
202 | input[ind] =0.0;// assign 0 to others
|
---|
203 | }
|
---|
204 | }
|
---|
205 | output[0] = 0.9*(cnt/datasize)+0.1;//the uniform distribution between [0.1, 1], the minimum set to 0.1?
|
---|
206 | DataSetRow dsr = new DataSetRow(input, output);// combine the input vector and the output values.
|
---|
207 | ds.add(dsr);//add this row to the dataset
|
---|
208 | cnt = cnt+1.0; //update the cnt by +1.
|
---|
209 | }
|
---|
210 | return ds;
|
---|
211 | }
|
---|
212 |
|
---|
213 | public void trainNetwork(DataSet ds) {
|
---|
214 | //update the NN via the given compared bids. retrain the
|
---|
215 | // is there space to improve? maybe a better learning rule?
|
---|
216 | BackPropagation bp = new BackPropagation();
|
---|
217 | bp.setMaxIterations(maxIter);
|
---|
218 | //bp.setMaxError(maxError);
|
---|
219 | bp.setLearningRate(learningRate);
|
---|
220 | ann.setLearningRule(bp);
|
---|
221 | ann.learn(ds);
|
---|
222 | }
|
---|
223 |
|
---|
224 | private List<Bid> setSortedBids(Profile profile) {
|
---|
225 | //returns a sortedlist here. from low utility to high utility.
|
---|
226 | DefaultPartialOrdering prof = (DefaultPartialOrdering) profile;
|
---|
227 | List<Bid> bidslist = prof.getBids(); //get all the bid in the partial information.
|
---|
228 | // NOTE sort defaults to ascending order.
|
---|
229 | Collections.sort(bidslist, new Comparator<Bid>() {
|
---|
230 |
|
---|
231 | @Override
|
---|
232 | public int compare(Bid b1, Bid b2) {
|
---|
233 | return prof.isPreferredOrEqual(b1, b2) ? 1 : -1; //
|
---|
234 | }
|
---|
235 |
|
---|
236 | });
|
---|
237 |
|
---|
238 | return bidslist;
|
---|
239 | }
|
---|
240 |
|
---|
241 | //get and update method
|
---|
242 | public void update(Bid bid, List<Bid> worseBids) {//note the frequency also need to be updated
|
---|
243 | //relist the bids
|
---|
244 | int n = 0;
|
---|
245 | while (n < sortedbidlist.size() && worseBids.contains(sortedbidlist.get(n)))
|
---|
246 | n++;
|
---|
247 | LinkedList<Bid> newbids = new LinkedList<Bid>(sortedbidlist);
|
---|
248 | newbids.add(n, bid);
|
---|
249 | sortedbidlist = newbids;
|
---|
250 |
|
---|
251 | DataSet ds = setDataset(sortedbidlist);
|
---|
252 | trainNetwork(ds);
|
---|
253 |
|
---|
254 | bidlist.add(bid);//this is unsorted bid list.
|
---|
255 | }
|
---|
256 |
|
---|
257 | public double getUtility(Bid bid) {
|
---|
258 | int inputsize = ann.getInputsCount();
|
---|
259 | double[] input = new double[inputsize];
|
---|
260 |
|
---|
261 | Set<Integer> indset = new HashSet<Integer>();
|
---|
262 | for (String issue: domain.getIssues()) {
|
---|
263 | Value v = bid.getValue(issue);
|
---|
264 | indset.add(valueToNeuron.get(issue).get(v));
|
---|
265 | }
|
---|
266 |
|
---|
267 | for (int ind =0; ind<inputsize; ind++) { //construct input
|
---|
268 | if (indset.contains(ind)) {
|
---|
269 | input[ind] = 1.0;
|
---|
270 | }else {
|
---|
271 | input[ind] = 0.0;
|
---|
272 | }
|
---|
273 | }
|
---|
274 | ann.setInput(input);
|
---|
275 | ann.calculate();
|
---|
276 | return ann.getOutput()[0];//transfer double[] to double.
|
---|
277 | }
|
---|
278 |
|
---|
279 | public Domain getDomain() {
|
---|
280 | return this.domain;
|
---|
281 | }
|
---|
282 |
|
---|
283 | public Bid getReservationBid() {
|
---|
284 | return this.reservationbid;
|
---|
285 | }
|
---|
286 |
|
---|
287 | public List<Bid> getSortedBids(){
|
---|
288 | return this.sortedbidlist;
|
---|
289 | }
|
---|
290 |
|
---|
291 | public Bid getBestBid() {
|
---|
292 | return this.maxBid;
|
---|
293 | }
|
---|
294 |
|
---|
295 | public Bid getWorstBid() {
|
---|
296 | return this.minBid;
|
---|
297 | }
|
---|
298 | public NeuralNetwork getann() {
|
---|
299 | return this.ann;
|
---|
300 | }
|
---|
301 |
|
---|
302 | // The following is for the learning to rank method. use deeplearning4j.
|
---|
303 | public DataSet setPairwiseDataset() {
|
---|
304 |
|
---|
305 | betterlist= prof.getBetter();
|
---|
306 |
|
---|
307 | return null;
|
---|
308 | }
|
---|
309 |
|
---|
310 | public void trainPairwise(DataSet ds) {
|
---|
311 | //using pairwise information
|
---|
312 | }
|
---|
313 |
|
---|
314 | }
|
---|