1 | package geniusweb.blingbling;
|
---|
2 |
|
---|
3 | // old one, not used.
|
---|
4 | import java.math.BigInteger;
|
---|
5 | import java.util.ArrayList;
|
---|
6 | import java.util.Collections;
|
---|
7 | import java.util.Comparator;
|
---|
8 | import java.util.HashMap;
|
---|
9 | import java.util.HashSet;
|
---|
10 | import java.util.LinkedList;
|
---|
11 | import java.util.List;
|
---|
12 | import java.util.Set;
|
---|
13 | import java.util.logging.Level;
|
---|
14 |
|
---|
15 | import org.nd4j.linalg.api.ndarray.INDArray;
|
---|
16 | import org.nd4j.linalg.factory.Nd4j;
|
---|
17 |
|
---|
18 | import geniusweb.blingbling.Ranknet.NeuralRankNet;
|
---|
19 | import geniusweb.blingbling.Ranknet.*;
|
---|
20 |
|
---|
21 | import geniusweb.profile.DefaultPartialOrdering;
|
---|
22 | import geniusweb.profile.Profile;
|
---|
23 | import geniusweb.profile.utilityspace.UtilitySpace;
|
---|
24 | import geniusweb.issuevalue.Bid;
|
---|
25 | import geniusweb.issuevalue.Domain;
|
---|
26 | import geniusweb.issuevalue.Value;
|
---|
27 |
|
---|
28 | public class MyUtilityModel {
|
---|
29 | //model param
|
---|
30 | private NeuralRankNet ann;
|
---|
31 | private double LearningRate = 0.001;
|
---|
32 | private int Epoch = 500;
|
---|
33 | private int inputcount = 0;
|
---|
34 | private int hiddencount = 30;
|
---|
35 |
|
---|
36 | //train data
|
---|
37 | private List<INDArray> Input1 = new ArrayList<>();
|
---|
38 | private List<INDArray> Input2 = new ArrayList<>();
|
---|
39 |
|
---|
40 | //negotiation param
|
---|
41 | private Domain domain;
|
---|
42 | private List<Bid> bidlist = new ArrayList<>();
|
---|
43 | private Bid reservationbid;
|
---|
44 | private Bid maxBid;
|
---|
45 | private Bid minBid;
|
---|
46 | private HashMap<String, HashMap<Value, Integer>> valuePosition = new HashMap<String, HashMap<Value, Integer>>();
|
---|
47 |
|
---|
48 | //for elicit compare
|
---|
49 | private HashMap<String, HashMap<Value, Integer>> valuefrequency = new HashMap<String, HashMap<Value, Integer>>();//new?or null?
|
---|
50 |
|
---|
51 | public MyUtilityModel(Profile profile) {
|
---|
52 | DefaultPartialOrdering prof = (DefaultPartialOrdering) profile;
|
---|
53 |
|
---|
54 | this.domain = prof.getDomain();
|
---|
55 | this.bidlist = prof.getBids();
|
---|
56 | this.reservationbid = prof.getReservationBid();
|
---|
57 |
|
---|
58 | //get input size.
|
---|
59 | for (String issue: domain.getIssues()) {
|
---|
60 | int num = domain.getValues(issue).size().intValue();
|
---|
61 | inputcount = inputcount+num;
|
---|
62 | }
|
---|
63 |
|
---|
64 | buildRankModel(prof.getDomain(), hiddencount);
|
---|
65 |
|
---|
66 | // if (true) {
|
---|
67 | // throw new RuntimeException("ttt done"+ inputcount);
|
---|
68 | // }
|
---|
69 | getValueind();
|
---|
70 | constructdata(profile);
|
---|
71 | train();
|
---|
72 | }
|
---|
73 |
|
---|
74 | public void buildRankModel(Domain domain, int Hiddencount) {
|
---|
75 | // Set<String> issueset = domain.getIssues();
|
---|
76 | ann = NeuralRankNet.Builder().setLearningRate(LearningRate)
|
---|
77 | .addLayer(Layer.Builder().setInCount(inputcount).setOutCount(Hiddencount).setActivationFunction(SigmoidActivationFunction.INSTANCE).build())
|
---|
78 | .addLayer(Layer.Builder().setInCount(Hiddencount).setOutCount(Hiddencount).setActivationFunction(SigmoidActivationFunction.INSTANCE).build())
|
---|
79 | .addLayer(Layer.Builder().setInCount(Hiddencount).setOutCount(1).setActivationFunction(SigmoidActivationFunction.INSTANCE).build())
|
---|
80 | .build();
|
---|
81 | }
|
---|
82 |
|
---|
83 | public void constructdata(Profile profile) {
|
---|
84 | DefaultPartialOrdering prof = (DefaultPartialOrdering) profile;
|
---|
85 | int ind = 0;
|
---|
86 | for(int i = 0; i < bidlist.size(); i++) {
|
---|
87 | for (int j = i+1; j < bidlist.size(); j++) {
|
---|
88 | Bid bid1 = bidlist.get(i);
|
---|
89 | Bid bid2 = bidlist.get(j);
|
---|
90 |
|
---|
91 | if(prof.isPreferredOrEqual(bid1, bid2)) {
|
---|
92 | Input1.add(ind, bidtoArray(bid1));
|
---|
93 | Input2.add(ind, bidtoArray(bid2));
|
---|
94 | ind ++;
|
---|
95 | }
|
---|
96 | if (prof.isPreferredOrEqual(bid2, bid1)) {
|
---|
97 | Input1.add(ind, bidtoArray(bid2));
|
---|
98 | Input2.add(ind, bidtoArray(bid1));
|
---|
99 | ind ++;
|
---|
100 | }
|
---|
101 | }
|
---|
102 | }
|
---|
103 | // return null;
|
---|
104 | }
|
---|
105 |
|
---|
106 | public void getValueind() {//get the input position of a value
|
---|
107 |
|
---|
108 | int valueind = 0;
|
---|
109 | for(String issue: domain.getIssues()) {
|
---|
110 | HashMap<Value, Integer> temp = new HashMap<Value, Integer>();
|
---|
111 | for (Value value: domain.getValues(issue)) {
|
---|
112 | temp.put(value, valueind);
|
---|
113 | valuePosition.put(issue, temp);
|
---|
114 | valueind ++;
|
---|
115 | }
|
---|
116 | }
|
---|
117 | }
|
---|
118 |
|
---|
119 | public INDArray bidtoArray(Bid bid) {//input the bid, return a indarray vector.
|
---|
120 |
|
---|
121 | INDArray features = Nd4j.zeros(1, inputcount);
|
---|
122 | for (String issue: domain.getIssues()) {
|
---|
123 | Value v = bid.getValue(issue);
|
---|
124 | int valuepos = valuePosition.get(issue).get(v);
|
---|
125 | features.putScalar(0, valuepos, 1.0);
|
---|
126 | }
|
---|
127 | // features.putScalar(row, col, value)
|
---|
128 | return features;
|
---|
129 | }
|
---|
130 |
|
---|
131 |
|
---|
132 | public void train() {
|
---|
133 |
|
---|
134 | for (int epoch = 0; epoch< Epoch; epoch++) {
|
---|
135 | for (int ind= 0; ind < Input1.size(); ind++) {
|
---|
136 | ann.train(Input1.get(ind), Input2.get(ind), Nd4j.scalar(1));
|
---|
137 | }
|
---|
138 | }
|
---|
139 | }
|
---|
140 |
|
---|
141 | public void update(Bid bid, List<Bid> betterBids, List<Bid> worseBids) {
|
---|
142 |
|
---|
143 | }
|
---|
144 |
|
---|
145 | public double getUtility(Bid bid) {
|
---|
146 | //get the utility from the model.
|
---|
147 | List<INDArray> feedForward = ann.feedForward(bidtoArray(bid));
|
---|
148 | return feedForward.get(feedForward.size() - 1).getDouble(0);
|
---|
149 | }
|
---|
150 |
|
---|
151 | public void setvaluefrequency(List<Bid> inbidlist) {//init and update the valuefrequency.
|
---|
152 |
|
---|
153 | for (Bid bid: inbidlist) {
|
---|
154 | for (String issue: bid.getIssues()) {
|
---|
155 | Value v = bid.getValue(issue);
|
---|
156 | HashMap<Value, Integer> temp = valuefrequency.get(issue);
|
---|
157 | int cnt = temp.get(v);
|
---|
158 | temp.put(v, cnt+1);
|
---|
159 | valuefrequency.put(issue, temp);
|
---|
160 | }
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | public HashMap<String, List<Value>> getmostinformative(){//return a map contains the
|
---|
165 |
|
---|
166 | HashMap<String, List<Value>> infovalue = new HashMap<String, List<Value>>();
|
---|
167 | for (String issue : domain.getIssues()) {
|
---|
168 | List<Value> elicitvalueset = new ArrayList<Value>();
|
---|
169 | int minfreq = 0;
|
---|
170 | for (Value value: domain.getValues(issue)) {
|
---|
171 | int freq = valuefrequency.get(issue).get(value);
|
---|
172 | if (elicitvalueset.isEmpty()) {
|
---|
173 | elicitvalueset.add(value);
|
---|
174 | minfreq = freq;
|
---|
175 | }else {
|
---|
176 | if (freq<minfreq) {
|
---|
177 | elicitvalueset.clear();
|
---|
178 | elicitvalueset.add(value);
|
---|
179 | }else if(freq == minfreq) {
|
---|
180 | elicitvalueset.add(value);
|
---|
181 | }
|
---|
182 | }
|
---|
183 | }
|
---|
184 | infovalue.put(issue, elicitvalueset);
|
---|
185 |
|
---|
186 | }
|
---|
187 | return infovalue;
|
---|
188 | }
|
---|
189 |
|
---|
190 | public Domain getDomain() {
|
---|
191 | return this.domain;
|
---|
192 | }
|
---|
193 |
|
---|
194 | public Bid getBestBid() {
|
---|
195 | return this.maxBid;
|
---|
196 | }
|
---|
197 |
|
---|
198 | public Bid getWorstBid() {
|
---|
199 | return this.minBid;
|
---|
200 | }
|
---|
201 |
|
---|
202 | public Bid getReservationBid() {
|
---|
203 | return this.reservationbid;
|
---|
204 | }
|
---|
205 | public List<Bid> getBidlist(){
|
---|
206 | return this.bidlist;
|
---|
207 | }
|
---|
208 | public NeuralRankNet getann() {
|
---|
209 | return this.ann;
|
---|
210 | }
|
---|
211 |
|
---|
212 | }
|
---|