| 1 | == Papers == |
| 2 | ||'''Title'''||A Framework for Building Intelligent SLA Negotiation Strategies under Time Constraints|| |
| 3 | ||'''Author(s)'''||G.C. Silaghi, L.D. Şerban and C.M. Litan|| |
| 4 | ||'''Cited'''||-|| |
| 5 | ||'''Subject(s)'''|||| |
| 6 | ||'''Summary'''|||| |
| 7 | ||'''Relevance'''|||| |
| 8 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:Snu0uoLL6tgJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 9 | ||'''Cites seen'''||Yes|| |
| 10 | [[BR]] |
| 11 | |
| 12 | ||'''Title'''||A Framework for Multi-agent Electronic Marketplaces: Analysis and Classification of Existing Systems || |
| 13 | ||'''Author(s)'''||K. Kurbel and I. Loutchko|| |
| 14 | ||'''Cited'''||25|| |
| 15 | ||'''Subject(s)'''|||| |
| 16 | ||'''Summary'''|||| |
| 17 | ||'''Relevance'''|||| |
| 18 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:rVdFnqvBOAMJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0&ct=citation&cd=0 Link]|| |
| 19 | ||'''Cites seen'''||Yes|| |
| 20 | [[BR]] |
| 21 | |
| 22 | ||'''Title'''||A Machine Learning Approach to Automated Negotiation and Prospects for Electronic Commerce || |
| 23 | ||'''Author(s)'''||J.R. Oliver|| |
| 24 | ||'''Cited'''||198|| |
| 25 | ||'''Subject(s)'''|||| |
| 26 | ||'''Summary'''|||| |
| 27 | ||'''Relevance'''|||| |
| 28 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:68RpIHxdsQEJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 29 | ||'''Cites seen'''||Yes|| |
| 30 | [[BR]] |
| 31 | |
| 32 | ||'''Title'''||AgentFSEGA - Time Constrained Reasoning Model for Bilateral Multi-Issue Negotiation|| |
| 33 | ||'''Author(s)'''||L.D. Serban, G.C. Silaghi, and C.M. Litan|| |
| 34 | ||'''Cited'''||-|| |
| 35 | ||'''Subject(s)'''||Learning issue utility curves by Bayesian learning; Learning issue ordering|| |
| 36 | ||'''Summary'''||The opponent model of FSEGA tries to approximate the ordering of the issues and the utility function of each issue by using Bayesian[[BR]] learning. Each value in an issue is imagined as approximating one of the three basic functions (downhill, uphill, triangular). Using[[BR]] the Bayesian formula, each hypothesis for a value is updated. Finally the hypothesis are combined based on their likelihood[[BR]] to determine the final form of the utility function for each value in the issue; combining these results in the utility function for[[BR]] an issue. Finally, the bidding strategy uses isocurves and the opponent model to increase acceptance.|| |
| 37 | ||'''Relevance'''||8|| |
| 38 | ||'''Bibtex'''||X|| |
| 39 | ||'''Cites seen'''||Yes|| |
| 40 | [[BR]] |
| 41 | |
| 42 | ||'''Title'''||Agents that Acquire Negotiation Strategies Using a Game Theoretic Learning Theory|| |
| 43 | ||'''Author(s)'''||N. Eiji Nawa|| |
| 44 | ||'''Cited'''||2|| |
| 45 | ||'''Subject(s)'''|||| |
| 46 | ||'''Summary'''|||| |
| 47 | ||'''Relevance'''|||| |
| 48 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:wGEmownS05MJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 49 | ||'''Cites seen'''||Yes|| |
| 50 | [[BR]] |
| 51 | |
| 52 | ||'''Title'''||An Adaptive Bilateral Negotiation Model for E-Commerce Settings|| |
| 53 | ||'''Author(s)'''||V. Narayanan and N.R. Jennings|| |
| 54 | ||'''Cited'''||26|| |
| 55 | ||'''Subject(s)'''|||| |
| 56 | ||'''Summary'''|||| |
| 57 | ||'''Relevance'''|||| |
| 58 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:-2t4LW-LK3cJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 59 | ||'''Cites seen'''||Yes|| |
| 60 | [[BR]] |
| 61 | |
| 62 | ||'''Title'''||An Adaptive Learning Method in Automated Negotiation Based on Artificial Neural Network|| |
| 63 | ||'''Author(s)'''||Z. Zeng, B. Meng, Y. Zeng|| |
| 64 | ||'''Cited'''||4|| |
| 65 | ||'''Subject(s)'''|||| |
| 66 | ||'''Summary'''|||| |
| 67 | ||'''Relevance'''|||| |
| 68 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:SaHRG-BD0RAJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 69 | ||'''Cites seen'''||Yes|| |
| 70 | [[BR]] |
| 71 | |
| 72 | ||'''Title'''||An Architecture for Negotiating Agents that Learn|| |
| 73 | ||'''Author(s)'''||H.H. Bui, S. Venkatesh, and D. Kieronska|| |
| 74 | ||'''Cited'''||2|| |
| 75 | ||'''Subject(s)'''|||| |
| 76 | ||'''Summary'''|||| |
| 77 | ||'''Relevance'''|||| |
| 78 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:1dvCOIJaG9cJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 79 | ||'''Cites seen'''||Yes|| |
| 80 | [[BR]] |
| 81 | |
| 82 | ||'''Title'''||An Automated Agent for Bilateral Negotiation with Bounded Rational Agents with Incomplete Information|| |
| 83 | ||'''Author(s)'''||R. Lin, S. Kraus, J. Wilkenfeld, J. Barry|| |
| 84 | ||'''Cited'''||23|| |
| 85 | ||'''Subject(s)'''|||| |
| 86 | ||'''Summary'''|||| |
| 87 | ||'''Relevance'''|||| |
| 88 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:vhcnBvl6XnMJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=00 Link]|| |
| 89 | ||'''Cites seen'''||Yes|| |
| 90 | [[BR]] |
| 91 | |
| 92 | ||'''Title'''||An Evolutionairy Learning Approach for Adaptive Negotiation Agents|| |
| 93 | ||'''Author(s)'''||R.Y.K. Lau, M. Tang, O. Wong, S.W. Milliner|| |
| 94 | ||'''Cited'''||19|| |
| 95 | ||'''Subject(s)'''|||| |
| 96 | ||'''Summary'''|||| |
| 97 | ||'''Relevance'''|||| |
| 98 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:WQAKMsZjXk8J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 99 | ||'''Cites seen'''||Yes|| |
| 100 | [[BR]] |
| 101 | |
| 102 | ||'''Title'''||Analysis of Negotiation Dynamics|| |
| 103 | ||'''Author(s)'''||K. Hindriks, C.M. Jonker, D. Tykhonov|| |
| 104 | ||'''Cited'''||5|| |
| 105 | ||'''Subject(s)'''||Strategy evaluation|| |
| 106 | ||'''Summary'''||The process of the negotiation determines the outcome. This work presents an outline of a formal toolbox to analyze [[BR]]the dynamics of negotiation based on an analysis of move types. Boulware is a hard bargaining tactic, whereas [[BR]]conceder is soft. Besides evaluating the outcome one should also analyze the dance. This can be done by [[BR]]classifying the moves (nice, selfish, etc). A trace is a list of bids. The percentage of a type of move can be [[BR]]calculated. The sensitivy for opponent moves is based on this measure. || |
| 107 | ||'''Relevance'''||7, interesting technique for evaluating strategies|| |
| 108 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:p9dR-WdVTQAJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 109 | ||'''Cites seen'''||Yes|| |
| 110 | ||'''Processed'''||Yes|| |
| 111 | [[BR]] |
| 112 | |
| 113 | ||'''Title'''||Anticipating Agent's Negotiation Strategies in an E-marketplace Using Belief Models|| |
| 114 | ||'''Author(s)'''||F. Teuteberg, K. Kurbel|| |
| 115 | ||'''Cited'''||11|| |
| 116 | ||'''Subject(s)'''|||| |
| 117 | ||'''Summary'''|||| |
| 118 | ||'''Relevance'''|||| |
| 119 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:qauKvN1Swx8J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 120 | ||'''Cites seen'''||Yes|| |
| 121 | [[BR]] |
| 122 | |
| 123 | ||'''Title'''||Automated Multi-Attribute Negotiation with Efficient Use of Incomplete Preference Information|| |
| 124 | ||'''Author(s)'''||C. Jonker and V. Robu|| |
| 125 | ||'''Cited'''||44|| |
| 126 | ||'''Subject(s)'''||Mechanism for taking learning and initial information into account in a standard bilateral negotiation model|| |
| 127 | ||'''Summary'''||The classic technique for negotiation with undisclosed preferences is to use a mediator, however[[BR]] can we be sure that he is impartial? The negotiation strategy discussed is for billeteral multi-issue[[BR]] negotiation. A decreasing util curve is considered. A bid is calculated to fit the current [[BR]]util. Each issue has a seperate parameter such that more or less concession can be made on [[BR]]certain issues. General tolerance determines the general speed of concession. For each issue[[BR]] for the opponent bid and new calculated bid it is considered how much concession is made [[BR]]towards the opponent bid based on the configuration tolerance for each issue. This full [[BR]]formula depends on the weights of the opponent, which have to be estimated. The weights for each [[BR]]attribute can be estimated by comparing the distance between attributes for an issue in [[BR]]sequential bids and using this distance to mark the importance of an attribute. This last [[BR]]step is domain dependent. Concluding, the technique works, but requires tuning for the domain[[BR]] and assumes that the other agent plays a more or less similiar concession based technique. || |
| 128 | ||'''Relevance'''||4, domain dependent opponent modelling approach for learning ordering of attributes|| |
| 129 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:fSLXt9dFf4kJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 130 | ||'''Cites seen'''||Yes|| |
| 131 | ||'''Processed'''||Yes|| |
| 132 | [[BR]] |
| 133 | |
| 134 | ||'''Title'''||Bayesian Learning in Bilateral Multi-issue Negotiation and its Application in MAS-based Electronic Commerce|| |
| 135 | ||'''Author(s)'''||J. Li, Y. Cao|| |
| 136 | ||'''Cited'''||6|| |
| 137 | ||'''Subject(s)'''|||| |
| 138 | ||'''Summary'''|||| |
| 139 | ||'''Relevance'''|||| |
| 140 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:QuJqFn4TJaAJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 141 | ||'''Cites seen'''||Yes|| |
| 142 | [[BR]] |
| 143 | |
| 144 | ||'''Title'''||Bayesian Learning in Negotiation|| |
| 145 | ||'''Author(s)'''||D. Zeng, K. Sycara|| |
| 146 | ||'''Cited'''||355|| |
| 147 | ||'''Subject(s)'''|||| |
| 148 | ||'''Summary'''|||| |
| 149 | ||'''Relevance'''|||| |
| 150 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:OcrAgrlmKdgJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 151 | ||'''Cites seen'''||Yes|| |
| 152 | [[BR]] |
| 153 | |
| 154 | ||'''Title'''||Benefits of Learning in Negotiation|| |
| 155 | ||'''Author(s)'''||D. Zeng, K. Sycara|| |
| 156 | ||'''Cited'''||116|| |
| 157 | ||'''Subject(s)'''||Benefits of learning, Bayesian learning, reservation values|| |
| 158 | ||'''Summary'''|| Growing interest in e-commerce motivates research in automated negotiation. Building intelligent negotiation agents is still[[br]] emerging. In contrast to most negotiation models, sequential decision model allows for learning. Learning can help understand[[br]] human behaviour, but can also result in better results for the learning party. Bayesian learning of reservation[[br]] values can be used to determine the zone of agreement for an issue based on the domain knowledge and bidding interactions.[[br]] Concluding for one-issue, learning positively influences bargaining quality, number of exchanged proposals,[[br]] and leads to a better compromise if both learn. Learning works always works better in the proposed case.|| |
| 159 | ||'''Relevance'''||8. Strong example of Bayesian learning|| |
| 160 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:omTF-8TbGE4J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 161 | ||'''Cites seen'''||Yes|| |
| 162 | ||'''Processed'''||Yes|| |
| 163 | [[BR]] |
| 164 | |
| 165 | ||'''Title'''||Bilateral Negotiation with Incomplete and Uncertain Information: A Decision-Theoretic Approach Using a Model of the Opponent|| |
| 166 | ||'''Author(s)'''||C. Mudgal, J. Vassileva|| |
| 167 | ||'''Cited'''||42|| |
| 168 | ||'''Subject(s)'''|||| |
| 169 | ||'''Summary'''|||| |
| 170 | ||'''Relevance'''|||| |
| 171 | ||'''Bibtex'''|||| |
| 172 | ||'''Cites seen'''||Yes|| |
| 173 | [[BR]] |
| 174 | |
| 175 | ||'''Title'''||Building Automated Negotiation Strategies Enhanced by MLP and GR Neural Networks for Opponent Agent Behaviour Prognosis|| |
| 176 | ||'''Author(s)'''||I. Roussaki, I. Papaioannou, and M. Anagostou|| |
| 177 | ||'''Cited'''||3|| |
| 178 | ||'''Subject(s)'''|||| |
| 179 | ||'''Summary'''|||| |
| 180 | ||'''Relevance'''|||| |
| 181 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:18qiNH2UInwJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 182 | ||'''Cites seen'''||Yes|| |
| 183 | [[BR]] |
| 184 | |
| 185 | ||'''Title'''||Comparing Equilibria for Game-Theoretic and Evolutionary Bargaining Models|| |
| 186 | ||'''Author(s)'''||S. Fatima, M. Wooldridge, N.R. Jennings|| |
| 187 | ||'''Cited'''||21|| |
| 188 | ||'''Subject(s)'''|||| |
| 189 | ||'''Summary'''|||| |
| 190 | ||'''Relevance'''|||| |
| 191 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:aLP4CeRMh68J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 192 | ||'''Cites seen'''||Yes|| |
| 193 | [[BR]] |
| 194 | |
| 195 | ||'''Title'''||Compromising Strategy based on Estimated Maximum Utility for Automated Negotiating Agents|| |
| 196 | ||'''Author(s)'''||S. Kawaguchi, K. Fujita, T. Ito|| |
| 197 | ||'''Cited'''||-|| |
| 198 | ||'''Subject(s)'''|||| |
| 199 | ||'''Summary'''|||| |
| 200 | ||'''Relevance'''|||| |
| 201 | ||'''Bibtex'''||X|| |
| 202 | ||'''Cites seen'''||Yes|| |
| 203 | [[BR]] |
| 204 | |
| 205 | ||'''Title'''||Determining Succesful Negotiation Strategies: An Evolutionary Approach|| |
| 206 | ||'''Author(s)'''||N. Matos, C. Sierra, N.R. Jennings|| |
| 207 | ||'''Cited'''||149|| |
| 208 | ||'''Subject(s)'''||Analysing strengths and weakness of tactics|| |
| 209 | ||'''Summary'''||This work uses an evolutionary approach to find on how agents using particular negotiation strategies fare against each[[BR]] other in a negotiation. A standard bileteral multi-lateral negotiation model is used. The issues are continious[[BR]] between a given range. Three types of techniques are considered: time-dependent, resource-[[BR]]dependent, and behaviour dependent. The results give an nice overview on which tactic is effective against which [[BR]]opponent. This is very interesting if the opponent is somehow able to determine the type of agent.|| |
| 210 | ||'''Relevance'''||8, motivation for learning of strategies|| |
| 211 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:jAWqPD9IQ-sJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 212 | ||'''Cites seen'''||Yes|| |
| 213 | ||'''Processed'''||Yes|| |
| 214 | [[BR]] |
| 215 | |
| 216 | ||'''Title'''||Facing the Challenge of Human-Agent Negotiations via Effective General Opponent Modeling|| |
| 217 | ||'''Author(s)'''||Y. Oshrat, R. Lin, S. Kraus|| |
| 218 | ||'''Cited'''||19|| |
| 219 | ||'''Subject(s)'''|||| |
| 220 | ||'''Summary'''|||| |
| 221 | ||'''Relevance'''|||| |
| 222 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:D7XLjMbCgQkJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 223 | ||'''Cites seen'''||Yes|| |
| 224 | [[BR]] |
| 225 | |
| 226 | ||'''Title'''||Genetic Algorithms for Automated Negotiations: A FSM-Based Application Approach|| |
| 227 | ||'''Author(s)'''||M.T. Tu, E. Wolff, W. Lamersdorf|| |
| 228 | ||'''Cited'''||37|| |
| 229 | ||'''Subject(s)'''|||| |
| 230 | ||'''Summary'''|||| |
| 231 | ||'''Relevance'''|||| |
| 232 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:kO_zImqufQMJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 233 | ||'''Cites seen'''||Yes|| |
| 234 | [[BR]] |
| 235 | |
| 236 | ||'''Title'''||IAMhaggler: A Negotiation Agent for Complex Environments|| |
| 237 | ||'''Author(s)'''||C.R. Williams, V. Robu, E.H. Gerding, and N.R. Jennings|| |
| 238 | ||'''Cited'''||-|| |
| 239 | ||'''Subject(s)'''||ANAC, Pareto search, Bayes' rule|| |
| 240 | ||'''Summary'''||IAMhaggler first determines the discount factor of the opponent by using non-linear regression. Next, the found curve[[BR]] is discounted to find the opponent bid curve. Next, the maximum is found on the opponent curve, and an [[BR]] appropriate curve is plotted for the own utility curve. For domains without unordered issues Pareto-search is [[BR]] used to determine all possible bids matching an utility. Next, it is determined which bid is the closest to the best[[BR]] received opponent bid by using the euclidean distance. For domains with unordered issues, each [[BR]] unorderded value is varied, after which the possible bids are determined which satisfy the utility. Finally, using Bayes' [[BR]] rule for opponent modelling, the best possible bid for the opponent is chosen. || |
| 241 | ||'''Relevance'''||8, beautifull strategy|| |
| 242 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:dXychgQCiFMJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 243 | ||'''Cites seen'''||Yes|| |
| 244 | [[BR]] |
| 245 | |
| 246 | ||'''Title'''||Inferring implicit preferences from negotiation actions|| |
| 247 | ||'''Author(s)'''||A. Restificar and P. Haddawy|| |
| 248 | ||'''Cited'''||10|| |
| 249 | ||'''Subject(s)'''|||| |
| 250 | ||'''Summary'''|||| |
| 251 | ||'''Relevance'''|||| |
| 252 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:m6_7yTkcPBwJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 253 | ||'''Cites seen'''||Yes|| |
| 254 | [[BR]] |
| 255 | |
| 256 | ||'''Title'''||Integration of Learning, Situational Power and Goal Constraints Into Time-Dependent Electronic Negotiation Agents|| |
| 257 | ||'''Author(s)'''||W.W.H. Mok|| |
| 258 | ||'''Cited'''||-|| |
| 259 | ||'''Subject(s)'''|||| |
| 260 | ||'''Summary'''|||| |
| 261 | ||'''Relevance'''|||| |
| 262 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:58qYQ6xl6vgJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=6 Link]|| |
| 263 | ||'''Cites seen'''||Yes|| |
| 264 | [[BR]] |
| 265 | |
| 266 | ||'''Title'''||Learning Algorithms for Single-instance Electronic Negotiations using the Time-dependent Behavioral Tactic|| |
| 267 | ||'''Author(s)'''||W.W.H Mok and R.P. Sundarraj|| |
| 268 | ||'''Cited'''||17|| |
| 269 | ||'''Subject(s)'''|||| |
| 270 | ||'''Summary'''|||| |
| 271 | ||'''Relevance'''|||| |
| 272 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:9mOSw0JyumEJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 273 | ||'''Cites seen'''||Yes|| |
| 274 | [[BR]] |
| 275 | |
| 276 | ||'''Title'''||Learning an Agent's Utility Function by Observing Behavior|| |
| 277 | ||'''Author(s)'''||U. Chajewska, D. Koller, D. Ormoneit|| |
| 278 | ||'''Cited'''||54|| |
| 279 | ||'''Subject(s)'''|||| |
| 280 | ||'''Summary'''|||| |
| 281 | ||'''Relevance'''|||| |
| 282 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:JXqC1SLmlPIJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 283 | ||'''Cites seen'''||Yes|| |
| 284 | [[BR]] |
| 285 | |
| 286 | |
| 287 | ||'''Title'''||Learning an Opponent's Preferences to Make Effective Multi-Issue Negotiation Trade-Offs|| |
| 288 | ||'''Author(s)'''||R.M. Coehoorn, N.R. Jennings|| |
| 289 | ||'''Cited'''||78|| |
| 290 | ||'''Subject(s)'''||KDE Learning, Negotiation model, Concession based strategy|| |
| 291 | ||'''Summary'''|| Effective and efficient multi-issue negotiation requires an agent to have some indication of it's opponent's preferences [[br]]over the issues in the domain. Kernel Density Estimation (KDE) is used to estimate the weight attached to different issues [[br]]by different agents. It is assumed that if the value of an issue increases, that this is positive for one agent, and negative [[br]]for the other. No assumptions about relation between time, negotiation history and issue-weight are required, in contrast [[br]]to Bayesian learning. The difference between concessive (counter)offers is used to estimate the weights of the issues [[br]] (assumption: stronger concessions are made later on in the negotiation). Faratin's hill climbing algorithm augmented with KDE is [[br]]used to propose the next bid. KDE proved succesful on the used negotiation model. Future works entails testing the approach [[br]]against different opponent strategies and extending the approach to other negotiation models (see assumption in summary). || |
| 292 | ||'''Relevance'''||9. KDE learning described in detail. Strong related work section|| |
| 293 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:Z79P04-IRS0J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 294 | ||'''Cites seen'''||Yes|| |
| 295 | [[BR]] |
| 296 | |
| 297 | ||'''Title'''||Learning Opponents' Preferences in Multi-Object Automated Negotiation|| |
| 298 | ||'''Author(s)'''||S. Buffett and B. Spencer|| |
| 299 | ||'''Cited'''||18|| |
| 300 | ||'''Subject(s)'''|||| |
| 301 | ||'''Summary'''|||| |
| 302 | ||'''Relevance'''|||| |
| 303 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:3k4MYX9X6BcJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 304 | ||'''Cites seen'''||Yes|| |
| 305 | [[BR]] |
| 306 | |
| 307 | ||'''Title'''||Learning other Agents' Preferences in Multiagent Negotiation using the Bayesian Classifier.|| |
| 308 | ||'''Author(s)'''||H.H. Bui, D. Kieronska, S. Venkatesh|| |
| 309 | ||'''Cited'''||29|| |
| 310 | ||'''Subject(s)'''|||| |
| 311 | ||'''Summary'''|||| |
| 312 | ||'''Relevance'''|||| |
| 313 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:zJTcBPpxfYoJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 314 | ||'''Cites seen'''||Yes|| |
| 315 | [[BR]] |
| 316 | |
| 317 | ||'''Title'''||Learning to Select Negotiation Strategies in Multi-Agent Meeting Scheduling|| |
| 318 | ||'''Author(s)'''||E. Crawford and M. Veleso|| |
| 319 | ||'''Cited'''||21|| |
| 320 | ||'''Subject(s)'''|||| |
| 321 | ||'''Summary'''|||| |
| 322 | ||'''Relevance'''|||| |
| 323 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:PfWgZlbnox8J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 324 | ||'''Cites seen'''||Yes|| |
| 325 | [[BR]] |
| 326 | |
| 327 | ||'''Title'''||Modelling Agents Behaviour in Automated Negotiation|| |
| 328 | ||'''Author(s)'''||C. Hou|| |
| 329 | ||'''Cited'''||10|| |
| 330 | ||'''Subject(s)'''|||| |
| 331 | ||'''Summary'''|||| |
| 332 | ||'''Relevance'''|||| |
| 333 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:OznI0-O4SlgJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 334 | ||'''Cites seen'''||Yes|| |
| 335 | [[BR]] |
| 336 | |
| 337 | ||'''Title'''||Modeling Opponent Decision in Repeated One-shot Negotiations|| |
| 338 | ||'''Author(s)'''||S.Saha, A. Biswas, S. Sen|| |
| 339 | ||'''Cited'''||26|| |
| 340 | ||'''Subject(s)'''|||| |
| 341 | ||'''Summary'''|||| |
| 342 | ||'''Relevance'''|||| |
| 343 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:HWyIIq6nlNUJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 344 | ||'''Cites seen'''||Yes|| |
| 345 | [[BR]] |
| 346 | |
| 347 | ||'''Title'''||Negotiating agents that learn about others' preferences|| |
| 348 | ||'''Author(s)'''||H.H. Bui, D. Kieronska and S. Venkatesh|| |
| 349 | ||'''Cited'''||5|| |
| 350 | ||'''Subject(s)'''||Logic-like representation negotiation model, bin-based opponent model, one-issue continious|| |
| 351 | ||'''Summary'''||The used method assumes that domain knowledge is available to partition the search space. Each turns, the agents communicate [[br]]the space where an agreement is possible. Each turn there is a negotiation between all agents to find a common space, which [[br]]means that the agent recommunicate a refined space of agreement until an agreement is reached. The proces continues until [[br]]a common decision is found (a decision is an element in the space of agreement). A learning algorithm can be used as follows: [[br]]first the full domain space is split into zones, which are allocated a uniform chance. This chance is updated for each region [[br]]for each agent based on the received space of agreement. When agents do not agree about the space, then a the space is chosen [[br]]which has the maximum support based on the chances of each space for each agent. This leads to a higher chance of agreement. |
| 352 | || |
| 353 | ||'''Relevance'''||3, domain knowledge required and only considers one issue|| |
| 354 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:8EOwrOyBdv0J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 355 | ||'''Cites seen'''||Yes|| |
| 356 | [[BR]] |
| 357 | |
| 358 | ||'''Title'''||Negotiation Decision Functions for Autonomous Agent|| |
| 359 | ||'''Author(s)'''||P. Faratin, C. Sierra, N.R. Jennings|| |
| 360 | ||'''Cited'''||718|| |
| 361 | ||'''Subject(s)'''|||| |
| 362 | ||'''Summary'''|||| |
| 363 | ||'''Relevance'''|||| |
| 364 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:Pmj4ztkTFq4J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 365 | ||'''Cites seen'''||Yes|| |
| 366 | [[BR]] |
| 367 | |
| 368 | ||'''Title'''||Negotiation Dynamics: Analysis, Concession Tactics, and Outcomes|| |
| 369 | ||'''Author(s)'''||K. Hindriks, C.M. Jonker, D. Tykhonov|| |
| 370 | ||'''Cited'''||7|| |
| 371 | ||'''Subject(s)'''|||| |
| 372 | ||'''Summary'''|||| |
| 373 | ||'''Relevance'''|||| |
| 374 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:8lUoyWRsIMMJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 375 | ||'''Cites seen'''||Yes|| |
| 376 | [[BR]] |
| 377 | |
| 378 | ||'''Title'''||On-Line Incremental Learning in Bilateral Multi-Issue Negotiation|| |
| 379 | ||'''Author(s)'''||V. Soo, C. Hung|| |
| 380 | ||'''Cited'''||18|| |
| 381 | ||'''Subject(s)'''||Online incremental learning using neural networks|| |
| 382 | ||'''Summary'''||This paper discusses using neural networks for learning the opponent model, however it is not described how, and the[[BR]] results are not promosing. By limiting the amount exchanges, opponent models become more important, and [[BR]]lead to beter outcomes. |
| 383 | || |
| 384 | ||'''Relevance'''||2, since the paper is not specific enough|| |
| 385 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:G3nExE5HdskJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 386 | ||'''Cites seen'''||Yes|| |
| 387 | [[BR]] |
| 388 | |
| 389 | ||'''Title'''||On Learning Negotiation Strategies by Artificial Adaptive Agents in Environments of Incomplete Information|| |
| 390 | ||'''Author(s)'''||J.R. Oliver|| |
| 391 | ||'''Cited'''||6|| |
| 392 | ||'''Subject(s)'''|||| |
| 393 | ||'''Summary'''|||| |
| 394 | ||'''Relevance'''|||| |
| 395 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:zk0BU_aG2ZIJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 396 | ||'''Cites seen'''||Yes|| |
| 397 | [[BR]] |
| 398 | |
| 399 | ||'''Title'''||Opponent Model Estimation in Bilateral Multi-issue Negotiation|| |
| 400 | ||'''Author(s)'''||N. van Galen Last|| |
| 401 | ||'''Cited'''||-|| |
| 402 | ||'''Subject(s)'''||Agent which participated in ANAC2010|| |
| 403 | ||'''Summary'''||Overall not interesting, but encouraged me to find fields involved in negotiation.|| |
| 404 | ||'''Relevance'''||2|| |
| 405 | ||'''Bibtex'''||X|| |
| 406 | ||'''Cites seen'''||Yes|| |
| 407 | ||'''Processed'''||Yes|| |
| 408 | [[BR]] |
| 409 | |
| 410 | ||'''Title'''||Opponent Modelling in Automated Multi-Issue Negotiation Using Bayesian Learning|| |
| 411 | ||'''Author(s)'''||K. Hindriks, D. Tykhonov|| |
| 412 | ||'''Cited'''||33|| |
| 413 | ||'''Subject(s)'''|||| |
| 414 | ||'''Summary'''|||| |
| 415 | ||'''Relevance'''|||| |
| 416 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:BtssqMir4RcJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 417 | ||'''Cites seen'''||Yes|| |
| 418 | [[BR]] |
| 419 | |
| 420 | ||'''Title'''||Optimal negotiation strategies for agents with incomplete information|| |
| 421 | ||'''Author(s)'''||S.S. Fatima, M. Wooldridge and N.R. Jennings|| |
| 422 | ||'''Cited'''||88|| |
| 423 | ||'''Subject(s)'''|||| |
| 424 | ||'''Summary'''|||| |
| 425 | ||'''Relevance'''|||| |
| 426 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:zfXBf6ObIaEJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 427 | ||'''Cites seen'''||Yes|| |
| 428 | [[BR]] |
| 429 | |
| 430 | ||'''Title'''||Predicting Agents Tactics in Automated Negotiation|| |
| 431 | ||'''Author(s)'''||C. Hou|| |
| 432 | ||'''Cited'''||12|| |
| 433 | ||'''Subject(s)'''|||| |
| 434 | ||'''Summary'''|||| |
| 435 | ||'''Relevance'''|||| |
| 436 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:4CP7PDlOJL8J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 437 | ||'''Cites seen'''||Yes|| |
| 438 | [[BR]] |
| 439 | |
| 440 | ||'''Title'''||Predicting partner's behaviour in agent negotiation|| |
| 441 | ||'''Author(s)'''||J. Brzostowski, R. Kowalczyk|| |
| 442 | ||'''Cited'''||16|| |
| 443 | ||'''Subject(s)'''|||| |
| 444 | ||'''Summary'''|||| |
| 445 | ||'''Relevance'''|||| |
| 446 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:3MifmJepz_4J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 447 | ||'''Cites seen'''||Yes|| |
| 448 | [[BR]] |
| 449 | |
| 450 | |
| 451 | ||'''Title'''||The Benefits of Opponent Models in Negotiation|| |
| 452 | ||'''Author(s)'''||K. Hindriks, C.M. Jonker, D. Tykhonov|| |
| 453 | ||'''Cited'''||-|| |
| 454 | ||'''Subject(s)'''||Nice Mirroring Strategy using Bayesian Learning|| |
| 455 | ||'''Summary'''||Opponent models can aid in preventing exploitation, by determining the type of move of the opponent (selfish, [[BR]] unfortunate, concession, nice, fortunate, silent), and by taking the opponents preferences into account to[[BR]] increase the chance of acceptation. The mirror strategy mirrors the behaviours of the opponent, based on a [[BR]]classification of the opponent move. Nice MS does the same, but adds a nice move, which is a move which only [[BR]]increases the opponents utility without decreasing ours. Overall the strategy is shown to be effective by [[BR]]comparing the result of first testing the strategy against a random agent, and then the other agents. Also, the[[BR]] distance to a Kalai-Smorodinsky solution and the distance to the Nash Point is used as a metric. For [[BR]]future work the exploitability of MS should be researched.|| |
| 456 | ||'''Relevance'''||8, interesting application of opponent modelling || |
| 457 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:BtssqMir4RcJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=2 Link]|| |
| 458 | ||'''Cites seen'''||Yes|| |
| 459 | ||'''Processed'''||Yes|| |
| 460 | [[BR]] |
| 461 | |
| 462 | ||'''Title'''||The First Automated Negotiating Agents Competition (ANAC 2010)|| |
| 463 | ||'''Author(s)'''||T. Baarslag, K. Hindriks, C. Jonker, S. Kraus, R. Lin|| |
| 464 | ||'''Cited'''||-|| |
| 465 | ||'''Subject(s)'''||ANAC, overview multiple agents, opponent models, acceptance conditions|| |
| 466 | ||'''Summary'''||The ANAC competition models bilateral multi-issue closed negotiations and provides a benchmark for negotiation agents. [[br]]Opponent models can also be used to identify the type of strategy of the opponent. Interesting agents for further analysis [[br]]are: IAM(crazy)Haggler, FSEGA (profile learning), and Agent Smith. Issues can be predicatable, which means that they [[br]]have a logical order, or unpredicatable, such as colors. This paper also includes acceptance conditions.|| |
| 467 | ||'''Relevance'''||5, too global, however interesting citations|| |
| 468 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:vKSG_Lm38D0J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=3 Link]|| |
| 469 | ||'''Cites seen'''||Yes|| |
| 470 | [[BR]] |
| 471 | |
| 472 | ||'''Title'''||Towards a Quality Assessment Method for Learning Preference Profiles in Negotiation|| |
| 473 | ||'''Author(s)'''||K.V. Hindriks and D. Tykhonov|| |
| 474 | ||'''Cited'''||6|| |
| 475 | ||'''Subject(s)'''||Measures for quality of opponent model|| |
| 476 | ||'''Summary'''||See section on quality measures in paper|| |
| 477 | ||'''Relevance'''||9|| |
| 478 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:oxFpfvvuE94J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 479 | ||'''Cites seen'''||Yes|| |
| 480 | ||'''Processed'''||Yes|| |
| 481 | [[BR]] |
| 482 | |
| 483 | ||'''Title'''||Using Similarity Criteria to Make Issue Trade-offs in Automated Negotiations|| |
| 484 | ||'''Author(s)'''||P. Faratin, C. Sierra, N.R. Jennings|| |
| 485 | ||'''Cited'''||367|| |
| 486 | ||'''Subject(s)'''|||| |
| 487 | ||'''Summary'''|||| |
| 488 | ||'''Relevance'''|||| |
| 489 | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:xXqv_X0tP9MJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
| 490 | ||'''Cites seen'''||Yes|| |
| 491 | [[BR]] |
| 492 | |
| 493 | ||'''Title'''||Yushu: a Heuristic-Based Agent for Automated Negotiating Competition|| |
| 494 | ||'''Author(s)'''||B. An and V. Lesser|| |
| 495 | ||'''Cited'''||-|| |
| 496 | ||'''Subject(s)'''||ANAC agent, Complexity learning|| |
| 497 | ||'''Summary'''||One of the interesting strategies of Yushu is that it tries to measure the competitiveness, which influences it's bidding strategy.[[BR]] Details can not be found in their paper, however this is not relevant for this survey. They also measures time by averaging [[BR]] over all bids. This is used to determine when to accept in panic.|| |
| 498 | ||'''Relevance'''||4, only finding the amount of rounds is interesting, but obvious|| |
| 499 | ||'''Bibtex'''||X|| |
| 500 | ||'''Cites seen'''||Yes|| |
| 501 | ||'''Processed'''||Yes|| |
| 502 | [[BR]] |