Version 8 (modified by mark, 14 years ago) ( diff )

--

Literature Survey: Opponent Models

Papers

TitleAnticipating Agent's Negotiation Strategies in an E-marketplace Using Belief Models
Author(s)F. Teuteberg, K. Kurbel
Subject(s)
Summary
Relevance
BibtexLink


TitleBenefits of Learning in Negotiation
Author(s)D. Zeng, K. Sycara
Subject(s)Benefits of learning, Bayesian learning, reservation values
Summary Growing interest in e-commerce motivates research in automated negotiation. Building intelligent negotiation agents is still
emerging. In contrast to most negotiation models, sequential decision model allows for learning. Learning can help understand
human behaviour, but can also result in better results for the learning party. Bayesian learning of reservation
values can be used to determine the zone of agreement for an issue based on the domain knowledge and bidding interactions.
Concluding for one-issue, learning positively influences bargaining quality, number of exchanged proposals,
and leads to a better compromise if both learn. Learning works always works better in the proposed case.
Relevance8. Strong example of Bayesian learning
BibtexLink


TitleLearning an Opponent's Preferences to Make Effective Multi-Issue Negotiation Trade-Offs
Author(s)R.M. Coehoorn, N.R. Jennings
Subject(s)KDE Learning, Negotiation model, Concession based strategy
Summary Effective and efficient multi-issue negotiation requires an agent to have some indication of it's opponent's preferences
over the issues in the domain. Kernel Density Estimation (KDE) is used to estimate the weight attached to different issues
by different agents. It is assumed that if the value of an issue increases, that this is positive for one agent, and negative
for the other. No assumptions about relation between time, negotiation history and issue-weight are required, in contrast
to Bayesian learning. The difference between concessive (counter)offers is used to estimate the weights of the issues
(assumption: stronger concessions are made later on in the negotiation). Faratin's hill climbing algorithm augmented with KDE is
used to propose the next bid. KDE proved succesful on the used negotiation model. Future works entails testing the approach
against different opponent strategies and extending the approach to other negotiation models (see assumption in summary).
Relevance9. KDE learning described in detail. Strong related works section
BibtexLink


TitleOpponent Modelling in Automated Multi-Issue Negotiation Using Bayesian Learning
Author(s)K. Hindriks, D. Tykhonov
Subject(s)
Summary
Relevance
BibtexLink


TitleThe First Automated Negotiating Agents Competition (ANAC 2010)
Author(s)T. Baarslag, K. Hindriks, C. Jonker, S. Kraus, R. Lin
Subject(s)
Summary
Relevance
BibtexLink


Meetings

Planning

Attachments (3)

Download all attachments as: .zip

Note: See TracWiki for help on using the wiki.