Changes between Version 73 and Version 74 of OpponentModels


Ignore:
Timestamp:
04/24/11 16:20:08 (14 years ago)
Author:
mark
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • OpponentModels

    v73 v74  
    77||'''Title'''||A Framework for Building Intelligent SLA Negotiation Strategies under Time Constraints||
    88||'''Author(s)'''||G.C. Silaghi, L.D. Şerban and C.M. Litan||
     9||'''Cited'''||-||
    910||'''Subject(s)'''||||
    1011||'''Summary'''||||
     
    1617||'''Title'''||A Framework for Multi-agent Electronic Marketplaces: Analysis and Classification of Existing Systems ||
    1718||'''Author(s)'''||K. Kurbel and I. Loutchko||
     19||'''Cited'''||25||
    1820||'''Subject(s)'''||||
    1921||'''Summary'''||||
     
    2628||'''Title'''||AgentFSEGA - Time Constrained Reasoning Model for Bilateral Multi-Issue Negotiation||
    2729||'''Author(s)'''||L.D. Serban, G.C. Silaghi, and C.M. Litan||
     30||'''Cited'''||-||
    2831||'''Subject(s)'''||||
    2932||'''Summary'''||||
     
    3538||'''Title'''||An Architecture for Negotiating Agents that Learn||
    3639||'''Author(s)'''||H.H. Bui, S. Venkatesh, and D. Kieronska||
     40||'''Cited'''||2||
    3741||'''Subject(s)'''||||
    3842||'''Summary'''||||
     
    4448||'''Title'''||Analysis of Negotiation Dynamics||
    4549||'''Author(s)'''||K. Hindriks, C.M. Jonker, D. Tykhonov||
     50||'''Cited'''||5||
    4651||'''Subject(s)'''||||
    4752||'''Summary'''||||
     
    5358||'''Title'''||Anticipating Agent's Negotiation Strategies in an E-marketplace Using Belief Models||
    5459||'''Author(s)'''||F. Teuteberg, K. Kurbel||
     60||'''Cited'''||11||
    5561||'''Subject(s)'''||||
    5662||'''Summary'''||||
     
    6268||'''Title'''||Bayesian Learning in Bilateral Multi-issue Negotiation and its Application in MAS-based Electronic Commerce||
    6369||'''Author(s)'''||J. Li, Y. Cao||
     70||'''Cited'''||6||
    6471||'''Subject(s)'''||||
    6572||'''Summary'''||||
     
    7178||'''Title'''||Bayesian Learning in Negotiation||
    7279||'''Author(s)'''||D. Zeng, K. Sycara||
     80||'''Cited'''||355||
    7381||'''Subject(s)'''||||
    7482||'''Summary'''||||
     
    8088||'''Title'''||Benefits of Learning in Negotiation||
    8189||'''Author(s)'''||D. Zeng, K. Sycara||
     90||'''Cited'''||116||
    8291||'''Subject(s)'''||Benefits of learning, Bayesian learning, reservation values||
    8392||'''Summary'''|| Growing interest in e-commerce motivates research in automated negotiation. Building intelligent negotiation agents is still[[br]] emerging. In contrast to most negotiation models, sequential decision model allows for learning. Learning can help understand[[br]] human behaviour, but can also result in better results for the learning party. Bayesian learning of reservation[[br]] values can be used to determine the zone of agreement for an issue based on the domain knowledge and bidding interactions.[[br]] Concluding for one-issue, learning positively influences bargaining quality, number of exchanged proposals,[[br]] and leads to a better compromise if both learn. Learning works always works better in the proposed case.||
     
    8998||'''Title'''||Bilateral Negotiation with Incomplete and Uncertain Information: A Decision-Theoretic Approach Using a Model of the Opponent||
    9099||'''Author(s)'''||C. Mudgal, J. Vassileva||
     100||'''Cited'''||42||
    91101||'''Subject(s)'''||||
    92102||'''Summary'''||||
     
    98108||'''Title'''||Compromising Strategy based on Estimated Maximum Utility for Automated Negotiating Agents||
    99109||'''Author(s)'''||S. Kawaguchi, K. Fujita, T. Ito||
     110||'''Cited'''||-||
    100111||'''Subject(s)'''||||
    101112||'''Summary'''||||
     
    106117
    107118||'''Title'''||Facing the Challenge of Human-Agent Negotiations via Effective General Opponent Modeling||
    108 ||'''Author(s)'''||J. Li, Y. Cao||
     119||'''Author(s)'''||Y. Oshrat, R. Lin, S. Kraus||
     120||'''Cited'''||19||
    109121||'''Subject(s)'''||||
    110122||'''Summary'''||||
     
    116128||'''Title'''||IAMhaggler: A Negotiation Agent for Complex Environments||
    117129||'''Author(s)'''||C.R. Williams, V. Robu, E.H. Gerding, and N.R. Jennings||
     130||'''Cited'''||-||
    118131||'''Subject(s)'''||||
    119132||'''Summary'''||||
     
    125138||'''Title'''||Inferring implicit preferences from negotiation actions||
    126139||'''Author(s)'''||A. Restificar and P. Haddawy||
     140||'''Cited'''||10||
    127141||'''Subject(s)'''||||
    128142||'''Summary'''||||
     
    134148||'''Title'''||Integration of Learning, Situational Power and Goal Constraints Into Time-Dependent Electronic Negotiation Agents||
    135149||'''Author(s)'''||W.W.H. Mok||
     150||'''Cited'''||-||
    136151||'''Subject(s)'''||||
    137152||'''Summary'''||||
     
    143158||'''Title'''||Learning Algorithms for Single-instance Electronic Negotiations using the Time-dependent Behavioral Tactic||
    144159||'''Author(s)'''||W.W.H Mok and R.P. Sundarraj||
     160||'''Cited'''||17||
    145161||'''Subject(s)'''||||
    146162||'''Summary'''||||
     
    152168||'''Title'''||Learning an Agent's Utility Function by Observing Behavior||
    153169||'''Author(s)'''||U. Chajewska, D. Koller, D. Ormoneit||
     170||'''Cited'''||54||
    154171||'''Subject(s)'''||||
    155172||'''Summary'''||||
     
    162179||'''Title'''||Learning an Opponent's Preferences to Make Effective Multi-Issue Negotiation Trade-Offs||
    163180||'''Author(s)'''||R.M. Coehoorn, N.R. Jennings||
     181||'''Cited'''||78||
    164182||'''Subject(s)'''||KDE Learning, Negotiation model, Concession based strategy||
    165183||'''Summary'''|| Effective and efficient multi-issue negotiation requires an agent to have some indication of it's opponent's preferences [[br]]over the issues in the domain. Kernel Density Estimation (KDE) is used to estimate the weight attached to different issues [[br]]by different agents. It is assumed that if the value of an issue increases, that this is positive for one agent, and negative [[br]]for the other. No assumptions about relation between time, negotiation history and issue-weight are required, in contrast [[br]]to Bayesian learning. The difference between concessive (counter)offers is used to estimate the weights of the issues [[br]] (assumption: stronger concessions are made later on in the negotiation). Faratin's hill climbing algorithm augmented with KDE is [[br]]used to propose the next bid. KDE proved succesful on the used negotiation model. Future works entails testing the approach [[br]]against different opponent strategies and extending the approach to other negotiation models (see assumption in summary). ||
     
    171189||'''Title'''||Learning Opponents' Preferences in Multi-Object Automated Negotiation||
    172190||'''Author(s)'''||S. Buffett and B. Spencer||
     191||'''Cited'''||18||
    173192||'''Subject(s)'''||||
    174193||'''Summary'''||||
     
    180199||'''Title'''||Learning other Agents' Preferences in Multiagent Negotiation using the Bayesian Classifier.||
    181200||'''Author(s)'''||H.H. Bui, D. Kieronska, S. Venkatesh||
     201||'''Cited'''||29||
    182202||'''Subject(s)'''||||
    183203||'''Summary'''||||
     
    189209||'''Title'''||Modeling Opponent Decision in Repeated One-shot Negotiations||
    190210||'''Author(s)'''||S.Saha, A. Biswas, S. Sen||
     211||'''Cited'''||26||
    191212||'''Subject(s)'''||||
    192213||'''Summary'''||||
     
    198219||'''Title'''||Negotiation Decision Functions for Autonomous Agent||
    199220||'''Author(s)'''||P. Faratin, C. Sierra, N.R. Jennings||
     221||'''Cited'''||718||
    200222||'''Subject(s)'''||||
    201223||'''Summary'''||||
     
    207229||'''Title'''||Negotiation Dynamics: Analysis, Concession Tactics, and Outcomes||
    208230||'''Author(s)'''||K. Hindriks, C.M. Jonker, D. Tykhonov||
     231||'''Cited'''||7||
    209232||'''Subject(s)'''||||
    210233||'''Summary'''||||
     
    216239||'''Title'''||On-Line Incremental Learning in Bilateral Multi-Issue Negotiation||
    217240||'''Author(s)'''||V. Soo, C. Hung||
     241||'''Cited'''||18||
    218242||'''Subject(s)'''||||
    219243||'''Summary'''||||
     
    225249||'''Title'''||Opponent Model Estimation in Bilateral Multi-issue Negotiation||
    226250||'''Author(s)'''||N. van Galen Last||
     251||'''Cited'''||-||
    227252||'''Subject(s)'''||||
    228253||'''Summary'''||||
     
    234259||'''Title'''||Opponent Modelling in Automated Multi-Issue Negotiation Using Bayesian Learning||
    235260||'''Author(s)'''||K. Hindriks, D. Tykhonov||
     261||'''Cited'''||33||
    236262||'''Subject(s)'''||||
    237263||'''Summary'''||||
     
    243269||'''Title'''||Optimal negotiation strategies for agents with incomplete information||
    244270||'''Author(s)'''||S.S. Fatima, M. Wooldridge and N.R. Jennings||
     271||'''Cited'''||88||
    245272||'''Subject(s)'''||||
    246273||'''Summary'''||||
     
    253280||'''Title'''||The Benefits of Opponent Models in Negotiation||
    254281||'''Author(s)'''||K. Hindriks, C.M. Jonker, D. Tykhonov||
     282||'''Cited'''||-||
    255283||'''Subject(s)'''||||
    256284||'''Summary'''||||
     
    262290||'''Title'''||The First Automated Negotiating Agents Competition (ANAC 2010)||
    263291||'''Author(s)'''||T. Baarslag, K. Hindriks, C. Jonker, S. Kraus, R. Lin||
     292||'''Cited'''||-||
    264293||'''Subject(s)'''||ANAC, overview multiple agents, opponent models, acceptance conditions||
    265294||'''Summary'''||The ANAC competition models bilateral multi-issue closed negotiations and provides a benchmark for negotiation agents. [[br]]Opponent models can also be used to identify the type of strategy of the opponent. Interesting agents for further analysis [[br]]are: IAM(crazy)Haggler, FSEGA (profile learning), and Agent Smith. Issues can be predicatable, which means that they [[br]]have a logical order, or unpredicatable, such as colors. This paper also includes acceptance conditions.||
     
    271300||'''Title'''||Towards a Quality Assessment Method for Learning Preference Profiles in Negotiation||
    272301||'''Author(s)'''||K.V. Hindriks and D. Tykhonov||
     302||'''Cited'''||6||
    273303||'''Subject(s)'''||||
    274304||'''Summary'''||||
     
    280310||'''Title'''||Using Similarity Criteria to Make Issue Trade-offs in Automated Negotiations||
    281311||'''Author(s)'''||P. Faratin, C. Sierra, N.R. Jennings||
     312||'''Cited'''||367||
    282313||'''Subject(s)'''||||
    283314||'''Summary'''||||
     
    289320||'''Title'''||Yushu: a Heuristic-Based Agent for Automated Negotiating Competition||
    290321||'''Author(s)'''||B. An and V. Lesser||
     322||'''Cited'''||-||
    291323||'''Subject(s)'''||||
    292324||'''Summary'''||||