5 | | |
6 | | ||'''Title'''||A Framework for Building Intelligent SLA Negotiation Strategies under Time Constraints|| |
7 | | ||'''Author(s)'''||G.C. Silaghi, L.D. Şerban and C.M. Litan|| |
8 | | ||'''Cited'''||-|| |
9 | | ||'''Subject(s)'''|||| |
10 | | ||'''Summary'''|||| |
11 | | ||'''Relevance'''|||| |
12 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:Snu0uoLL6tgJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
13 | | ||'''Cites seen'''||Yes|| |
14 | | [[BR]] |
15 | | |
16 | | ||'''Title'''||A Framework for Multi-agent Electronic Marketplaces: Analysis and Classification of Existing Systems || |
17 | | ||'''Author(s)'''||K. Kurbel and I. Loutchko|| |
18 | | ||'''Cited'''||25|| |
19 | | ||'''Subject(s)'''|||| |
20 | | ||'''Summary'''|||| |
21 | | ||'''Relevance'''|||| |
22 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:rVdFnqvBOAMJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0&ct=citation&cd=0 Link]|| |
23 | | ||'''Cites seen'''||Yes|| |
24 | | [[BR]] |
25 | | |
26 | | ||'''Title'''||A Machine Learning Approach to Automated Negotiation and Prospects for Electronic Commerce || |
27 | | ||'''Author(s)'''||J.R. Oliver|| |
28 | | ||'''Cited'''||198|| |
29 | | ||'''Subject(s)'''|||| |
30 | | ||'''Summary'''|||| |
31 | | ||'''Relevance'''|||| |
32 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:68RpIHxdsQEJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
33 | | ||'''Cites seen'''||Yes|| |
34 | | [[BR]] |
35 | | |
36 | | ||'''Title'''||AgentFSEGA - Time Constrained Reasoning Model for Bilateral Multi-Issue Negotiation|| |
37 | | ||'''Author(s)'''||L.D. Serban, G.C. Silaghi, and C.M. Litan|| |
38 | | ||'''Cited'''||-|| |
39 | | ||'''Subject(s)'''||Learning issue utility curves by Bayesian learning; Learning issue ordering|| |
40 | | ||'''Summary'''||The opponent model of FSEGA tries to approximate the ordering of the issues and the utility function of each issue by using Bayesian[[BR]] learning. Each value in an issue is imagined as approximating one of the three basic functions (downhill, uphill, triangular). Using[[BR]] the Bayesian formula, each hypothesis for a value is updated. Finally the hypothesis are combined based on their likelihood[[BR]] to determine the final form of the utility function for each value in the issue; combining these results in the utility function for[[BR]] an issue. Finally, the bidding strategy uses isocurves and the opponent model to increase acceptance.|| |
41 | | ||'''Relevance'''||8|| |
42 | | ||'''Bibtex'''||X|| |
43 | | ||'''Cites seen'''||Yes|| |
44 | | [[BR]] |
45 | | |
46 | | ||'''Title'''||Agents that Acquire Negotiation Strategies Using a Game Theoretic Learning Theory|| |
47 | | ||'''Author(s)'''||N. Eiji Nawa|| |
48 | | ||'''Cited'''||2|| |
49 | | ||'''Subject(s)'''|||| |
50 | | ||'''Summary'''|||| |
51 | | ||'''Relevance'''|||| |
52 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:wGEmownS05MJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
53 | | ||'''Cites seen'''||Yes|| |
54 | | [[BR]] |
55 | | |
56 | | ||'''Title'''||An Adaptive Bilateral Negotiation Model for E-Commerce Settings|| |
57 | | ||'''Author(s)'''||V. Narayanan and N.R. Jennings|| |
58 | | ||'''Cited'''||26|| |
59 | | ||'''Subject(s)'''|||| |
60 | | ||'''Summary'''|||| |
61 | | ||'''Relevance'''|||| |
62 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:-2t4LW-LK3cJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
63 | | ||'''Cites seen'''||Yes|| |
64 | | [[BR]] |
65 | | |
66 | | ||'''Title'''||An Adaptive Learning Method in Automated Negotiation Based on Artificial Neural Network|| |
67 | | ||'''Author(s)'''||Z. Zeng, B. Meng, Y. Zeng|| |
68 | | ||'''Cited'''||4|| |
69 | | ||'''Subject(s)'''|||| |
70 | | ||'''Summary'''|||| |
71 | | ||'''Relevance'''|||| |
72 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:SaHRG-BD0RAJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
73 | | ||'''Cites seen'''||Yes|| |
74 | | [[BR]] |
75 | | |
76 | | ||'''Title'''||An Architecture for Negotiating Agents that Learn|| |
77 | | ||'''Author(s)'''||H.H. Bui, S. Venkatesh, and D. Kieronska|| |
78 | | ||'''Cited'''||2|| |
79 | | ||'''Subject(s)'''|||| |
80 | | ||'''Summary'''|||| |
81 | | ||'''Relevance'''|||| |
82 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:1dvCOIJaG9cJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
83 | | ||'''Cites seen'''||Yes|| |
84 | | [[BR]] |
85 | | |
86 | | ||'''Title'''||An Automated Agent for Bilateral Negotiation with Bounded Rational Agents with Incomplete Information|| |
87 | | ||'''Author(s)'''||R. Lin, S. Kraus, J. Wilkenfeld, J. Barry|| |
88 | | ||'''Cited'''||23|| |
89 | | ||'''Subject(s)'''|||| |
90 | | ||'''Summary'''|||| |
91 | | ||'''Relevance'''|||| |
92 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:vhcnBvl6XnMJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=00 Link]|| |
93 | | ||'''Cites seen'''||Yes|| |
94 | | [[BR]] |
95 | | |
96 | | ||'''Title'''||An Evolutionairy Learning Approach for Adaptive Negotiation Agents|| |
97 | | ||'''Author(s)'''||R.Y.K. Lau, M. Tang, O. Wong, S.W. Milliner|| |
98 | | ||'''Cited'''||19|| |
99 | | ||'''Subject(s)'''|||| |
100 | | ||'''Summary'''|||| |
101 | | ||'''Relevance'''|||| |
102 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:WQAKMsZjXk8J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
103 | | ||'''Cites seen'''||Yes|| |
104 | | [[BR]] |
105 | | |
106 | | ||'''Title'''||Analysis of Negotiation Dynamics|| |
107 | | ||'''Author(s)'''||K. Hindriks, C.M. Jonker, D. Tykhonov|| |
108 | | ||'''Cited'''||5|| |
109 | | ||'''Subject(s)'''||Strategy evaluation|| |
110 | | ||'''Summary'''||The process of the negotiation determines the outcome. This work presents an outline of a formal toolbox to analyze [[BR]]the dynamics of negotiation based on an analysis of move types. Boulware is a hard bargaining tactic, whereas [[BR]]conceder is soft. Besides evaluating the outcome one should also analyze the dance. This can be done by [[BR]]classifying the moves (nice, selfish, etc). A trace is a list of bids. The percentage of a type of move can be [[BR]]calculated. The sensitivy for opponent moves is based on this measure. || |
111 | | ||'''Relevance'''||7, interesting technique for evaluating strategies|| |
112 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:p9dR-WdVTQAJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
113 | | ||'''Cites seen'''||Yes|| |
114 | | ||'''Processed'''||Yes|| |
115 | | [[BR]] |
116 | | |
117 | | ||'''Title'''||Anticipating Agent's Negotiation Strategies in an E-marketplace Using Belief Models|| |
118 | | ||'''Author(s)'''||F. Teuteberg, K. Kurbel|| |
119 | | ||'''Cited'''||11|| |
120 | | ||'''Subject(s)'''|||| |
121 | | ||'''Summary'''|||| |
122 | | ||'''Relevance'''|||| |
123 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:qauKvN1Swx8J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
124 | | ||'''Cites seen'''||Yes|| |
125 | | [[BR]] |
126 | | |
127 | | ||'''Title'''||Automated Multi-Attribute Negotiation with Efficient Use of Incomplete Preference Information|| |
128 | | ||'''Author(s)'''||C. Jonker and V. Robu|| |
129 | | ||'''Cited'''||44|| |
130 | | ||'''Subject(s)'''||Mechanism for taking learning and initial information into account in a standard bilateral negotiation model|| |
131 | | ||'''Summary'''||The classic technique for negotiation with undisclosed preferences is to use a mediator, however[[BR]] can we be sure that he is impartial? The negotiation strategy discussed is for billeteral multi-issue[[BR]] negotiation. A decreasing util curve is considered. A bid is calculated to fit the current [[BR]]util. Each issue has a seperate parameter such that more or less concession can be made on [[BR]]certain issues. General tolerance determines the general speed of concession. For each issue[[BR]] for the opponent bid and new calculated bid it is considered how much concession is made [[BR]]towards the opponent bid based on the configuration tolerance for each issue. This full [[BR]]formula depends on the weights of the opponent, which have to be estimated. The weights for each [[BR]]attribute can be estimated by comparing the distance between attributes for an issue in [[BR]]sequential bids and using this distance to mark the importance of an attribute. This last [[BR]]step is domain dependent. Concluding, the technique works, but requires tuning for the domain[[BR]] and assumes that the other agent plays a more or less similiar concession based technique. || |
132 | | ||'''Relevance'''||4, domain dependent opponent modelling approach for learning ordering of attributes|| |
133 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:fSLXt9dFf4kJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
134 | | ||'''Cites seen'''||Yes|| |
135 | | ||'''Processed'''||Yes|| |
136 | | [[BR]] |
137 | | |
138 | | ||'''Title'''||Bayesian Learning in Bilateral Multi-issue Negotiation and its Application in MAS-based Electronic Commerce|| |
139 | | ||'''Author(s)'''||J. Li, Y. Cao|| |
140 | | ||'''Cited'''||6|| |
141 | | ||'''Subject(s)'''|||| |
142 | | ||'''Summary'''|||| |
143 | | ||'''Relevance'''|||| |
144 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:QuJqFn4TJaAJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
145 | | ||'''Cites seen'''||Yes|| |
146 | | [[BR]] |
147 | | |
148 | | ||'''Title'''||Bayesian Learning in Negotiation|| |
149 | | ||'''Author(s)'''||D. Zeng, K. Sycara|| |
150 | | ||'''Cited'''||355|| |
151 | | ||'''Subject(s)'''|||| |
152 | | ||'''Summary'''|||| |
153 | | ||'''Relevance'''|||| |
154 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:OcrAgrlmKdgJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
155 | | ||'''Cites seen'''||Yes|| |
156 | | [[BR]] |
157 | | |
158 | | ||'''Title'''||Benefits of Learning in Negotiation|| |
159 | | ||'''Author(s)'''||D. Zeng, K. Sycara|| |
160 | | ||'''Cited'''||116|| |
161 | | ||'''Subject(s)'''||Benefits of learning, Bayesian learning, reservation values|| |
162 | | ||'''Summary'''|| Growing interest in e-commerce motivates research in automated negotiation. Building intelligent negotiation agents is still[[br]] emerging. In contrast to most negotiation models, sequential decision model allows for learning. Learning can help understand[[br]] human behaviour, but can also result in better results for the learning party. Bayesian learning of reservation[[br]] values can be used to determine the zone of agreement for an issue based on the domain knowledge and bidding interactions.[[br]] Concluding for one-issue, learning positively influences bargaining quality, number of exchanged proposals,[[br]] and leads to a better compromise if both learn. Learning works always works better in the proposed case.|| |
163 | | ||'''Relevance'''||8. Strong example of Bayesian learning|| |
164 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:omTF-8TbGE4J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
165 | | ||'''Cites seen'''||Yes|| |
166 | | ||'''Processed'''||Yes|| |
167 | | [[BR]] |
168 | | |
169 | | ||'''Title'''||Bilateral Negotiation with Incomplete and Uncertain Information: A Decision-Theoretic Approach Using a Model of the Opponent|| |
170 | | ||'''Author(s)'''||C. Mudgal, J. Vassileva|| |
171 | | ||'''Cited'''||42|| |
172 | | ||'''Subject(s)'''|||| |
173 | | ||'''Summary'''|||| |
174 | | ||'''Relevance'''|||| |
175 | | ||'''Bibtex'''|||| |
176 | | ||'''Cites seen'''||Yes|| |
177 | | [[BR]] |
178 | | |
179 | | ||'''Title'''||Building Automated Negotiation Strategies Enhanced by MLP and GR Neural Networks for Opponent Agent Behaviour Prognosis|| |
180 | | ||'''Author(s)'''||I. Roussaki, I. Papaioannou, and M. Anagostou|| |
181 | | ||'''Cited'''||3|| |
182 | | ||'''Subject(s)'''|||| |
183 | | ||'''Summary'''|||| |
184 | | ||'''Relevance'''|||| |
185 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:18qiNH2UInwJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
186 | | ||'''Cites seen'''||Yes|| |
187 | | [[BR]] |
188 | | |
189 | | ||'''Title'''||Comparing Equilibria for Game-Theoretic and Evolutionary Bargaining Models|| |
190 | | ||'''Author(s)'''||S. Fatima, M. Wooldridge, N.R. Jennings|| |
191 | | ||'''Cited'''||21|| |
192 | | ||'''Subject(s)'''|||| |
193 | | ||'''Summary'''|||| |
194 | | ||'''Relevance'''|||| |
195 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:aLP4CeRMh68J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
196 | | ||'''Cites seen'''||Yes|| |
197 | | [[BR]] |
198 | | |
199 | | ||'''Title'''||Compromising Strategy based on Estimated Maximum Utility for Automated Negotiating Agents|| |
200 | | ||'''Author(s)'''||S. Kawaguchi, K. Fujita, T. Ito|| |
201 | | ||'''Cited'''||-|| |
202 | | ||'''Subject(s)'''|||| |
203 | | ||'''Summary'''|||| |
204 | | ||'''Relevance'''|||| |
205 | | ||'''Bibtex'''||X|| |
206 | | ||'''Cites seen'''||Yes|| |
207 | | [[BR]] |
208 | | |
209 | | ||'''Title'''||Determining Succesful Negotiation Strategies: An Evolutionary Approach|| |
210 | | ||'''Author(s)'''||N. Matos, C. Sierra, N.R. Jennings|| |
211 | | ||'''Cited'''||149|| |
212 | | ||'''Subject(s)'''||Analysing strengths and weakness of tactics|| |
213 | | ||'''Summary'''||This work uses an evolutionary approach to find on how agents using particular negotiation strategies fare against each[[BR]] other in a negotiation. A standard bileteral multi-lateral negotiation model is used. The issues are continious[[BR]] between a given range. Three types of techniques are considered: time-dependent, resource-[[BR]]dependent, and behaviour dependent. The results give an nice overview on which tactic is effective against which [[BR]]opponent. This is very interesting if the opponent is somehow able to determine the type of agent.|| |
214 | | ||'''Relevance'''||8, motivation for learning of strategies|| |
215 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:jAWqPD9IQ-sJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
216 | | ||'''Cites seen'''||Yes|| |
217 | | ||'''Processed'''||Yes|| |
218 | | [[BR]] |
219 | | |
220 | | ||'''Title'''||Facing the Challenge of Human-Agent Negotiations via Effective General Opponent Modeling|| |
221 | | ||'''Author(s)'''||Y. Oshrat, R. Lin, S. Kraus|| |
222 | | ||'''Cited'''||19|| |
223 | | ||'''Subject(s)'''|||| |
224 | | ||'''Summary'''|||| |
225 | | ||'''Relevance'''|||| |
226 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:D7XLjMbCgQkJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
227 | | ||'''Cites seen'''||Yes|| |
228 | | [[BR]] |
229 | | |
230 | | ||'''Title'''||Genetic Algorithms for Automated Negotiations: A FSM-Based Application Approach|| |
231 | | ||'''Author(s)'''||M.T. Tu, E. Wolff, W. Lamersdorf|| |
232 | | ||'''Cited'''||37|| |
233 | | ||'''Subject(s)'''|||| |
234 | | ||'''Summary'''|||| |
235 | | ||'''Relevance'''|||| |
236 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:kO_zImqufQMJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
237 | | ||'''Cites seen'''||Yes|| |
238 | | [[BR]] |
239 | | |
240 | | ||'''Title'''||IAMhaggler: A Negotiation Agent for Complex Environments|| |
241 | | ||'''Author(s)'''||C.R. Williams, V. Robu, E.H. Gerding, and N.R. Jennings|| |
242 | | ||'''Cited'''||-|| |
243 | | ||'''Subject(s)'''||ANAC, Pareto search, Bayes' rule|| |
244 | | ||'''Summary'''||IAMhaggler first determines the discount factor of the opponent by using non-linear regression. Next, the found curve[[BR]] is discounted to find the opponent bid curve. Next, the maximum is found on the opponent curve, and an [[BR]] appropriate curve is plotted for the own utility curve. For domains without unordered issues Pareto-search is [[BR]] used to determine all possible bids matching an utility. Next, it is determined which bid is the closest to the best[[BR]] received opponent bid by using the euclidean distance. For domains with unordered issues, each [[BR]] unorderded value is varied, after which the possible bids are determined which satisfy the utility. Finally, using Bayes' [[BR]] rule for opponent modelling, the best possible bid for the opponent is chosen. || |
245 | | ||'''Relevance'''||8, beautifull strategy|| |
246 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:dXychgQCiFMJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
247 | | ||'''Cites seen'''||Yes|| |
248 | | [[BR]] |
249 | | |
250 | | ||'''Title'''||Inferring implicit preferences from negotiation actions|| |
251 | | ||'''Author(s)'''||A. Restificar and P. Haddawy|| |
252 | | ||'''Cited'''||10|| |
253 | | ||'''Subject(s)'''|||| |
254 | | ||'''Summary'''|||| |
255 | | ||'''Relevance'''|||| |
256 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:m6_7yTkcPBwJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
257 | | ||'''Cites seen'''||Yes|| |
258 | | [[BR]] |
259 | | |
260 | | ||'''Title'''||Integration of Learning, Situational Power and Goal Constraints Into Time-Dependent Electronic Negotiation Agents|| |
261 | | ||'''Author(s)'''||W.W.H. Mok|| |
262 | | ||'''Cited'''||-|| |
263 | | ||'''Subject(s)'''|||| |
264 | | ||'''Summary'''|||| |
265 | | ||'''Relevance'''|||| |
266 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:58qYQ6xl6vgJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=6 Link]|| |
267 | | ||'''Cites seen'''||Yes|| |
268 | | [[BR]] |
269 | | |
270 | | ||'''Title'''||Learning Algorithms for Single-instance Electronic Negotiations using the Time-dependent Behavioral Tactic|| |
271 | | ||'''Author(s)'''||W.W.H Mok and R.P. Sundarraj|| |
272 | | ||'''Cited'''||17|| |
273 | | ||'''Subject(s)'''|||| |
274 | | ||'''Summary'''|||| |
275 | | ||'''Relevance'''|||| |
276 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:9mOSw0JyumEJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
277 | | ||'''Cites seen'''||Yes|| |
278 | | [[BR]] |
279 | | |
280 | | ||'''Title'''||Learning an Agent's Utility Function by Observing Behavior|| |
281 | | ||'''Author(s)'''||U. Chajewska, D. Koller, D. Ormoneit|| |
282 | | ||'''Cited'''||54|| |
283 | | ||'''Subject(s)'''|||| |
284 | | ||'''Summary'''|||| |
285 | | ||'''Relevance'''|||| |
286 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:JXqC1SLmlPIJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
287 | | ||'''Cites seen'''||Yes|| |
288 | | [[BR]] |
289 | | |
290 | | |
291 | | ||'''Title'''||Learning an Opponent's Preferences to Make Effective Multi-Issue Negotiation Trade-Offs|| |
292 | | ||'''Author(s)'''||R.M. Coehoorn, N.R. Jennings|| |
293 | | ||'''Cited'''||78|| |
294 | | ||'''Subject(s)'''||KDE Learning, Negotiation model, Concession based strategy|| |
295 | | ||'''Summary'''|| Effective and efficient multi-issue negotiation requires an agent to have some indication of it's opponent's preferences [[br]]over the issues in the domain. Kernel Density Estimation (KDE) is used to estimate the weight attached to different issues [[br]]by different agents. It is assumed that if the value of an issue increases, that this is positive for one agent, and negative [[br]]for the other. No assumptions about relation between time, negotiation history and issue-weight are required, in contrast [[br]]to Bayesian learning. The difference between concessive (counter)offers is used to estimate the weights of the issues [[br]] (assumption: stronger concessions are made later on in the negotiation). Faratin's hill climbing algorithm augmented with KDE is [[br]]used to propose the next bid. KDE proved succesful on the used negotiation model. Future works entails testing the approach [[br]]against different opponent strategies and extending the approach to other negotiation models (see assumption in summary). || |
296 | | ||'''Relevance'''||9. KDE learning described in detail. Strong related work section|| |
297 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:Z79P04-IRS0J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
298 | | ||'''Cites seen'''||Yes|| |
299 | | [[BR]] |
300 | | |
301 | | ||'''Title'''||Learning Opponents' Preferences in Multi-Object Automated Negotiation|| |
302 | | ||'''Author(s)'''||S. Buffett and B. Spencer|| |
303 | | ||'''Cited'''||18|| |
304 | | ||'''Subject(s)'''|||| |
305 | | ||'''Summary'''|||| |
306 | | ||'''Relevance'''|||| |
307 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:3k4MYX9X6BcJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
308 | | ||'''Cites seen'''||Yes|| |
309 | | [[BR]] |
310 | | |
311 | | ||'''Title'''||Learning other Agents' Preferences in Multiagent Negotiation using the Bayesian Classifier.|| |
312 | | ||'''Author(s)'''||H.H. Bui, D. Kieronska, S. Venkatesh|| |
313 | | ||'''Cited'''||29|| |
314 | | ||'''Subject(s)'''|||| |
315 | | ||'''Summary'''|||| |
316 | | ||'''Relevance'''|||| |
317 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:zJTcBPpxfYoJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
318 | | ||'''Cites seen'''||Yes|| |
319 | | [[BR]] |
320 | | |
321 | | ||'''Title'''||Learning to Select Negotiation Strategies in Multi-Agent Meeting Scheduling|| |
322 | | ||'''Author(s)'''||E. Crawford and M. Veleso|| |
323 | | ||'''Cited'''||21|| |
324 | | ||'''Subject(s)'''|||| |
325 | | ||'''Summary'''|||| |
326 | | ||'''Relevance'''|||| |
327 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:PfWgZlbnox8J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
328 | | ||'''Cites seen'''||Yes|| |
329 | | [[BR]] |
330 | | |
331 | | ||'''Title'''||Modelling Agents Behaviour in Automated Negotiation|| |
332 | | ||'''Author(s)'''||C. Hou|| |
333 | | ||'''Cited'''||10|| |
334 | | ||'''Subject(s)'''|||| |
335 | | ||'''Summary'''|||| |
336 | | ||'''Relevance'''|||| |
337 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:OznI0-O4SlgJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
338 | | ||'''Cites seen'''||Yes|| |
339 | | [[BR]] |
340 | | |
341 | | ||'''Title'''||Modeling Opponent Decision in Repeated One-shot Negotiations|| |
342 | | ||'''Author(s)'''||S.Saha, A. Biswas, S. Sen|| |
343 | | ||'''Cited'''||26|| |
344 | | ||'''Subject(s)'''|||| |
345 | | ||'''Summary'''|||| |
346 | | ||'''Relevance'''|||| |
347 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:HWyIIq6nlNUJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
348 | | ||'''Cites seen'''||Yes|| |
349 | | [[BR]] |
350 | | |
351 | | ||'''Title'''||Negotiating agents that learn about others' preferences|| |
352 | | ||'''Author(s)'''||H.H. Bui, D. Kieronska and S. Venkatesh|| |
353 | | ||'''Cited'''||5|| |
354 | | ||'''Subject(s)'''||Logic-like representation negotiation model, bin-based opponent model, one-issue continious|| |
355 | | ||'''Summary'''||The used method assumes that domain knowledge is available to partition the search space. Each turns, the agents communicate [[br]]the space where an agreement is possible. Each turn there is a negotiation between all agents to find a common space, which [[br]]means that the agent recommunicate a refined space of agreement until an agreement is reached. The proces continues until [[br]]a common decision is found (a decision is an element in the space of agreement). A learning algorithm can be used as follows: [[br]]first the full domain space is split into zones, which are allocated a uniform chance. This chance is updated for each region [[br]]for each agent based on the received space of agreement. When agents do not agree about the space, then a the space is chosen [[br]]which has the maximum support based on the chances of each space for each agent. This leads to a higher chance of agreement. |
356 | | || |
357 | | ||'''Relevance'''||3, domain knowledge required and only considers one issue|| |
358 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:8EOwrOyBdv0J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
359 | | ||'''Cites seen'''||Yes|| |
360 | | [[BR]] |
361 | | |
362 | | ||'''Title'''||Negotiation Decision Functions for Autonomous Agent|| |
363 | | ||'''Author(s)'''||P. Faratin, C. Sierra, N.R. Jennings|| |
364 | | ||'''Cited'''||718|| |
365 | | ||'''Subject(s)'''|||| |
366 | | ||'''Summary'''|||| |
367 | | ||'''Relevance'''|||| |
368 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:Pmj4ztkTFq4J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
369 | | ||'''Cites seen'''||Yes|| |
370 | | [[BR]] |
371 | | |
372 | | ||'''Title'''||Negotiation Dynamics: Analysis, Concession Tactics, and Outcomes|| |
373 | | ||'''Author(s)'''||K. Hindriks, C.M. Jonker, D. Tykhonov|| |
374 | | ||'''Cited'''||7|| |
375 | | ||'''Subject(s)'''|||| |
376 | | ||'''Summary'''|||| |
377 | | ||'''Relevance'''|||| |
378 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:8lUoyWRsIMMJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
379 | | ||'''Cites seen'''||Yes|| |
380 | | [[BR]] |
381 | | |
382 | | ||'''Title'''||On-Line Incremental Learning in Bilateral Multi-Issue Negotiation|| |
383 | | ||'''Author(s)'''||V. Soo, C. Hung|| |
384 | | ||'''Cited'''||18|| |
385 | | ||'''Subject(s)'''||Online incremental learning using neural networks|| |
386 | | ||'''Summary'''||This paper discusses using neural networks for learning the opponent model, however it is not described how, and the[[BR]] results are not promosing. By limiting the amount exchanges, opponent models become more important, and [[BR]]lead to beter outcomes. |
387 | | || |
388 | | ||'''Relevance'''||2, since the paper is not specific enough|| |
389 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:G3nExE5HdskJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
390 | | ||'''Cites seen'''||Yes|| |
391 | | [[BR]] |
392 | | |
393 | | ||'''Title'''||On Learning Negotiation Strategies by Artificial Adaptive Agents in Environments of Incomplete Information|| |
394 | | ||'''Author(s)'''||J.R. Oliver|| |
395 | | ||'''Cited'''||6|| |
396 | | ||'''Subject(s)'''|||| |
397 | | ||'''Summary'''|||| |
398 | | ||'''Relevance'''|||| |
399 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:zk0BU_aG2ZIJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
400 | | ||'''Cites seen'''||Yes|| |
401 | | [[BR]] |
402 | | |
403 | | ||'''Title'''||Opponent Model Estimation in Bilateral Multi-issue Negotiation|| |
404 | | ||'''Author(s)'''||N. van Galen Last|| |
405 | | ||'''Cited'''||-|| |
406 | | ||'''Subject(s)'''||Agent which participated in ANAC2010|| |
407 | | ||'''Summary'''||Overall not interesting, but encouraged me to find fields involved in negotiation.|| |
408 | | ||'''Relevance'''||2|| |
409 | | ||'''Bibtex'''||X|| |
410 | | ||'''Cites seen'''||Yes|| |
411 | | ||'''Processed'''||Yes|| |
412 | | [[BR]] |
413 | | |
414 | | ||'''Title'''||Opponent Modelling in Automated Multi-Issue Negotiation Using Bayesian Learning|| |
415 | | ||'''Author(s)'''||K. Hindriks, D. Tykhonov|| |
416 | | ||'''Cited'''||33|| |
417 | | ||'''Subject(s)'''|||| |
418 | | ||'''Summary'''|||| |
419 | | ||'''Relevance'''|||| |
420 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:BtssqMir4RcJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
421 | | ||'''Cites seen'''||Yes|| |
422 | | [[BR]] |
423 | | |
424 | | ||'''Title'''||Optimal negotiation strategies for agents with incomplete information|| |
425 | | ||'''Author(s)'''||S.S. Fatima, M. Wooldridge and N.R. Jennings|| |
426 | | ||'''Cited'''||88|| |
427 | | ||'''Subject(s)'''|||| |
428 | | ||'''Summary'''|||| |
429 | | ||'''Relevance'''|||| |
430 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:zfXBf6ObIaEJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
431 | | ||'''Cites seen'''||Yes|| |
432 | | [[BR]] |
433 | | |
434 | | ||'''Title'''||Predicting Agents Tactics in Automated Negotiation|| |
435 | | ||'''Author(s)'''||C. Hou|| |
436 | | ||'''Cited'''||12|| |
437 | | ||'''Subject(s)'''|||| |
438 | | ||'''Summary'''|||| |
439 | | ||'''Relevance'''|||| |
440 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:4CP7PDlOJL8J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
441 | | ||'''Cites seen'''||Yes|| |
442 | | [[BR]] |
443 | | |
444 | | ||'''Title'''||Predicting partner's behaviour in agent negotiation|| |
445 | | ||'''Author(s)'''||J. Brzostowski, R. Kowalczyk|| |
446 | | ||'''Cited'''||16|| |
447 | | ||'''Subject(s)'''|||| |
448 | | ||'''Summary'''|||| |
449 | | ||'''Relevance'''|||| |
450 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:3MifmJepz_4J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
451 | | ||'''Cites seen'''||Yes|| |
452 | | [[BR]] |
453 | | |
454 | | |
455 | | ||'''Title'''||The Benefits of Opponent Models in Negotiation|| |
456 | | ||'''Author(s)'''||K. Hindriks, C.M. Jonker, D. Tykhonov|| |
457 | | ||'''Cited'''||-|| |
458 | | ||'''Subject(s)'''||Nice Mirroring Strategy using Bayesian Learning|| |
459 | | ||'''Summary'''||Opponent models can aid in preventing exploitation, by determining the type of move of the opponent (selfish, [[BR]] unfortunate, concession, nice, fortunate, silent), and by taking the opponents preferences into account to[[BR]] increase the chance of acceptation. The mirror strategy mirrors the behaviours of the opponent, based on a [[BR]]classification of the opponent move. Nice MS does the same, but adds a nice move, which is a move which only [[BR]]increases the opponents utility without decreasing ours. Overall the strategy is shown to be effective by [[BR]]comparing the result of first testing the strategy against a random agent, and then the other agents. Also, the[[BR]] distance to a Kalai-Smorodinsky solution and the distance to the Nash Point is used as a metric. For [[BR]]future work the exploitability of MS should be researched.|| |
460 | | ||'''Relevance'''||8, interesting application of opponent modelling || |
461 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:BtssqMir4RcJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=2 Link]|| |
462 | | ||'''Cites seen'''||Yes|| |
463 | | ||'''Processed'''||Yes|| |
464 | | [[BR]] |
465 | | |
466 | | ||'''Title'''||The First Automated Negotiating Agents Competition (ANAC 2010)|| |
467 | | ||'''Author(s)'''||T. Baarslag, K. Hindriks, C. Jonker, S. Kraus, R. Lin|| |
468 | | ||'''Cited'''||-|| |
469 | | ||'''Subject(s)'''||ANAC, overview multiple agents, opponent models, acceptance conditions|| |
470 | | ||'''Summary'''||The ANAC competition models bilateral multi-issue closed negotiations and provides a benchmark for negotiation agents. [[br]]Opponent models can also be used to identify the type of strategy of the opponent. Interesting agents for further analysis [[br]]are: IAM(crazy)Haggler, FSEGA (profile learning), and Agent Smith. Issues can be predicatable, which means that they [[br]]have a logical order, or unpredicatable, such as colors. This paper also includes acceptance conditions.|| |
471 | | ||'''Relevance'''||5, too global, however interesting citations|| |
472 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:vKSG_Lm38D0J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=3 Link]|| |
473 | | ||'''Cites seen'''||Yes|| |
474 | | [[BR]] |
475 | | |
476 | | ||'''Title'''||Towards a Quality Assessment Method for Learning Preference Profiles in Negotiation|| |
477 | | ||'''Author(s)'''||K.V. Hindriks and D. Tykhonov|| |
478 | | ||'''Cited'''||6|| |
479 | | ||'''Subject(s)'''||Measures for quality of opponent model|| |
480 | | ||'''Summary'''||See section on quality measures in paper|| |
481 | | ||'''Relevance'''||9|| |
482 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:oxFpfvvuE94J:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
483 | | ||'''Cites seen'''||Yes|| |
484 | | ||'''Processed'''||Yes|| |
485 | | [[BR]] |
486 | | |
487 | | ||'''Title'''||Using Similarity Criteria to Make Issue Trade-offs in Automated Negotiations|| |
488 | | ||'''Author(s)'''||P. Faratin, C. Sierra, N.R. Jennings|| |
489 | | ||'''Cited'''||367|| |
490 | | ||'''Subject(s)'''|||| |
491 | | ||'''Summary'''|||| |
492 | | ||'''Relevance'''|||| |
493 | | ||'''Bibtex'''||[http://scholar.google.nl/scholar.bib?q=info:xXqv_X0tP9MJ:scholar.google.com/&output=citation&hl=nl&as_sdt=0,5&ct=citation&cd=0 Link]|| |
494 | | ||'''Cites seen'''||Yes|| |
495 | | [[BR]] |
496 | | |
497 | | ||'''Title'''||Yushu: a Heuristic-Based Agent for Automated Negotiating Competition|| |
498 | | ||'''Author(s)'''||B. An and V. Lesser|| |
499 | | ||'''Cited'''||-|| |
500 | | ||'''Subject(s)'''||ANAC agent, Complexity learning|| |
501 | | ||'''Summary'''||One of the interesting strategies of Yushu is that it tries to measure the competitiveness, which influences it's bidding strategy.[[BR]] Details can not be found in their paper, however this is not relevant for this survey. They also measures time by averaging [[BR]] over all bids. This is used to determine when to accept in panic.|| |
502 | | ||'''Relevance'''||4, only finding the amount of rounds is interesting, but obvious|| |
503 | | ||'''Bibtex'''||X|| |
504 | | ||'''Cites seen'''||Yes|| |
505 | | ||'''Processed'''||Yes|| |
506 | | [[BR]] |
| 5 | [http://mmi.tudelft.nl/trac/negotiation/wiki/Papers Papers] |