
The BANDANA Framework v1.3

Dave de Jonge

December 19, 2016

1 Introduction
BANDANA is a Java framework for the development of automated agents
that play the game of Diplomacy. This tutorial explains how to implement
your own Diplomacy-playing, negotiating agents, and how to let them play
against each other in a Diplomacy tournament. BANDANA is an extension
of the DipGame framework.1 However, it provides a new negotiation server
and uses a simplified negotiation language. For this tutorial we will assume
you are familiar with the Java programming language and with the rules of
Diplomacy. If not, you can find the rules here:
https://www.wizards.com/avalonhill/rules/diplomacy_rulebook.pdf.

Changes w.r.t. Version 1.1

• Updated the TournamentObserver class to display the names of the
players and the tournament standings.
• Introduced the ScoreCalculator class.

Changes w.r.t. Version 1.2

• Layout of the TournamentObserver slightly modified to align the player
names, powers, and scores.
• Previously, the TournamentRunner didn’t terminate when the tourna-
ment was over. Fixed this bug.
• Fixed a couple of smaller bugs.

Changes w.r.t. Version 1.2.1

• Added method proposeDraw() to ANACNegotiator.
• Added some comments to ExampleANACNegotiator.

1http://www.dipgame.org

1

https://www.wizards.com/avalonhill/rules/diplomacy_rulebook.pdf
http://www.dipgame.org


2 Before You Begin
To run a game of Diplomacy, you need to run a game server and 7 agents
that will be the players. Optionally, you may also run a negotiation server, if
you want the agents to negotiate, and you can run one or more so-called Ob-
servers, which are agents that observe the game, but do not play. Observers
are useful to collect or display information about ongoing games.

BANDANA does not provide any game server, so you will first need to
download and install one. There are two options:

• The DAIDE Server (Windows only)
• Parlance (platform-independent)

In this tutorial we will only consider Parlance.

Step 1: Download and Install Python

Since Parlance is implemented in Python, you first need to make sure that
Python is installed (if you are using the DAIDE server instead of Parlance
you can skip this step). Don’t worry if you are not familiar with Python. No
knowledge of Python is required to use BANDANA. Python can be down-
loaded here:
https://www.python.org/downloads/.
We have had some problems running Parlance on Python 3.4, therefore, we
advice to install Python 2.7 instead. Once you have installed Python, make
sure that ‘python’ is added to your path variable. For information on how
to do that (on Windows), look for example here:
http://stackoverflow.com/questions/25153802/how-to-set-python-path-in-windows-7

Step 2: Download and Install Parlance

The next step is to download and install the Parlance game server. Proceed
as follows:

1. Go to the following web page:
https://pypi.python.org/pypi/Parlance/1.4.1.

2. Download the file PARLANCE-1.4.1.tar.gz
3. Unzip it.
4. Open the terminal / command line.
5. Navigate to the unzipped folder.
6. Execute the following command:

>python setup.py install

2

https://www.python.org/downloads/
http://stackoverflow.com/questions/25153802/how-to-set-python-path-in-windows-7
https://pypi.python.org/pypi/Parlance/1.4.1


If everything went okay there should be a folder called Scripts in your
Python installation folder, which contains an executable called parlance-server.exe
(plus a number of other Parlance related files).

Step 3: download the BANDANA framework

As you had probably already figured out, the BANDANA framework can
be downloaded from http://www.iiia.csic.es/~davedejonge/bandana.

Download the framework and unzip it. Inside the unzipped folder you
will find a folder named src containing the Java source files that you will
need to set up a tournament and the source code of some example bots.
Furthermore, it contains a folder named lib that contains all the required
libraries. Also, it contains a folder named agents with compiled example
agents that you can use as opponents to test your own agent.

Step 4: Create a New Project

Next you need to create a new project in your favorite IDE and import the
Java classes found in the src folder. Make sure that your project references
all the libraries in the folder lib. We will here explain how to do this in
Eclipse, but you may use any other IDE as well (we have used Eclipse Luna,
so it could be slightly different if you are using a different version).

1. Create a new Java project in Eclipse, by clicking File –> New –> Java
Project. Choose a name for the project, and click Finish.

2. In the package explorer, right-click on the project folder and select
’import’.

3. Select General / File System and click Next.
4. Click on the button ’Browse’ next to the field ’From directory’.
5. Navigate to the BANDANA folder that you downloaded.
6. Click on the folder called BANDANA Framework 1.3 (the inner one,

which contains the folders ’agents’, ’lib’, and ’src’) and click OK.
7. Select the check box that appears next to BANDANA Framework 1.3

so that everything in the folder is selected.
8. Click Finish.

Next you have to make sure that all the libraries are properly referenced.
This goes as follows:

1. In the Package Explorer, right-click on the project, and select proper-
ties from the pop-up menu.

3

http://www.iiia.csic.es/~davedejonge/bandana


2. Select Java Build Path in the menu on the left in the window that
appears.

3. Click on the tab Libraries.
4. Click on Add Jars.
5. Open the project folder and select the lib folder.
6. Select all the .jar files that appear.
7. Click OK and then OK again.
8. If everything is okay you will see the project in the package explorer

without any errors.

Step 5: Set the Correct Paths
Open the file TournamentRunner.java from the BANDANA framework in
your IDE. To setup a tournament you need to adapt this class and run it
(it is probably easiest if you make a copy of the original file to keep as a
backup). However, before you can do this, you have to make sure that the
this class knows where to find the agents that will participate in it. Note
the following line of code at the top of TournamentRunner.java:
randomNegotiatorCommand = {"java", "-jar", "agents/RandomNegotiator.jar", "-log", "log", "-name", "RandomNegotiator", "-fy", "1905"};

This is the command line needed to run the RandomNegotiator, in the form
of an array of Strings. Note however, that we are not going to launch this
agent directly from the command line, but instead we are going to pass this
array to a Java class called ProcessRunner which will launch the agent.

This code assumes that the file RandomNegotiator.jar is located inside
a folder called agents which is located directly in your project folder. If
you have stored RandomNegotiator.jar elsewhere on your file system, then
change this line accordingly (the third entry of the array). Do the same with
the command lines for the other 3 agents.

You also may want to change the location where the log files will be
stored, by changing this line:
final static String LOG_FOLDER = "log";
If you do not change this line then all log files will be stored in a folder
called log directly in your project folder and you need to make sure this
folder exists. For each tournament that you start, a new folder will be
created inside this log folder, with the date and time as its name. All results
of that tournament will be logged there.

Finally, you need to make sure that the path to Parlance is set correctly.
Open the file ParlanceRunner.java so you can adapt the two following two
lines:
private static String PARLANCE_PATH = "C:\\Python27\\Scripts\\parlance-server.exe";
private static String HOME_FOLDER = "C:\\Users\\username";

4



Make sure that PARLANCE_PATH is correctly set to the location of the
file parlance-server executable (if you installed Parlance on Windows then it
is likely that the given path is already correct). Furthermore, make sure that
HOME_FOLDER is correctly set to the home folder of your user account
on the computer you are working on. Note that you can’t set this path to
any folder you like. It must really be your home folder. If this path is not
set correctly Parlance will still work, but you will not be able to change the
deadlines of the game.

3 Running a Tournament
Congratulations! You are now ready to run a tournament! You can do this
by simply running the TournamentRunner class. In Eclipse you can do this
by right-clicking on TournamentRunner.java in the Package Explorer and
then selecting ’Run As’ and then clicking ’Java Application’.

By default it will run 3 games, with 1 or 2 instances of each of the 4
example bots included with the framework. You can change the number of
games to play, the deadlines for the games, and the year after which the
players declare a draw inside the main method.

As you have seen in the previous section, the TournamentRunner con-
tains four lines with the command line parameters for each of the four agents
included in the BANDANA framework. They all have the same structure:
java -jar [location] -log [logPath] -name [name] -fy [finalYear]

Here, [location] is the location where the .jar file of the agent is stored.
[logPath] is the path to the folder where you want its log files to be stored.
[name] is the name of each agent (when running a tournament make sure
that each agent is started with a different name!) and [finalYear] is the
year after which the agent will propose a draw to every other player. If all
surviving players propose a draw then the server stops the game and declares
the outcome to be a draw. This option is very useful because otherwise a
game may continue forever if it reaches a state in which no player is able
to make any more progress. For some reason however, the Parlance server
does not always manage to handle the draw proposals immediately, so the
game may sometimes end a couple of rounds later than the intended final
year.

Please keep in mind that these command line options apply to the 4
example agents that we have included with the BANDANA framework. Any
agent developed by anyone else may require completely different command
line arguments.

5



Once you start the tournament you should see a window appearing that
displays information from the TournamentObserver. In the top of the win-
dow it displays which game of the tournament is currently running. For
example, if we are running a tournament consisting of 3 games then dur-
ing the first game it will display: Game: 1/3. The second line shows the
current phase and year of the current game.

Below this, it displays the progress of the current game. It displays the
names of the 7 players, and the name of each player is followed by the power
it plays and the number of Supply Centers it currently owns. Note that for
some agents it does not display a name, but only a question mark. The
reason for this is that the Tournament Observer learns their names from the
Negotiation Server. The Parlance game server does not disclose the names
of the connected players until the end of the game, so during the game
the Tournament Observer can only know the names of the agents that are
connected to the Negotiation Server. The agents indicated with a question
mark are agents that do not negotiate (see Section 6 for more information
about this).

In the bottom of the window you see a table that displays the tournament
standings so far. During the first game of the tournament it will be empty,
but from the second game onward it will show the overall scores of each
player over the previous games. By default it displays 4 different score
values for each player, namely the following:

• Solo Victories: how many times it won the game by a solo victory
(owned 18 Supply Centers or more).
• Supply Centers: how many Supply Centers it conquered in total (the
number of Supply Centers it owned at the end of a game, summed
over all games).
• Points: a player receives 0 points if it gets eliminated, 12 points for
each solo victory, 6 points for each 2-player draw, 4 points for each
3-player draw, 3 points for a 4-player draw, 2 points for a 5-player or
6-player draw and 1 point for a 7-player draw.
• Average Rank: the average over all ranks it obtained in each game.
A player obtains rank 1 in a game if it scored the highest number of
Supply Centers, rank 2 if it scored the second highest number of Supply
Centers, etcetera. If two players both end with 0 Supply Centers the
players are ranked according to who was eliminated last. If two players
rank equally they both receive the average of the two ranks.

By default, the players are ordered according to the number of solo victories.
The player with the highest number of solo victories is displayed at the top

6



of the table. If two or more players have an equal number of solo victories
they are ranked according to who conquered the most Supply Centers. If
they still rank equal the tie is broken by the number of points, and finally
they are ordered according to their average rank (the player with the lowest
average game rank, is the better one). In Section 5 we explain how you can
change the order of importance of these scoring systems and how you can
even implement your own scoring system. Note that for the first 3 of these
scoring systems the table displays the total value, followed the average value
between parentheses, while for the last one it only shows the average value.

A new folder to store the log files of this tournament is created inside
your main log folder. When the tournament is finished, it contains a number
of files and a folder for each agent that played in the game. There is a file
called gameResults.log which contains the results of all the games played
in the tournament. For each game it displays for each player which power
it played and with how many Supply Centers it finished, or in which year it
got eliminated.

The file tournamentResults.log contains the overall results of the tour-
nament. It displays for each player how many games it played, and its final
score according to the same scoring systems as you have seen in the window
of the Tournament Observer.

If you want to write some code to analyze the results of the tournament
you can use the following line after the tournament has finished:

ArrayList<GameResult> results = tournamentObserver.getGameResults();

It returns a list that contains one GameResult object for each game of the
tournament, which represents the results of that game. It provides methods
to get the names of the players in that game, the number of Supply Centers
owned by each player at the end of the game, the rank of each player, the
year of elimination of a player (if it got eliminated) and, in case of a Solo
Victory, the name of the winner.

For each player you will find a log folder inside the main log folder which
in turn contains one folder for each game played. Each of these folders
contains one or two log files. The first log file has a file name starting
with dip_. This file is created by the DipGame framework and stores the
communication between the player and the server. The other log file is
created by the player itself and has the name of the Power played as its file
name. Note however that not all players create such a log file.

Sometimes, after a game has finished, the console may display an error
message coming from the Parlance server saying something like ’An existing
connection was forcibly closed...’. You can simply ignore this.

7



Finally, we would like to remark that if you stop the TournamentRunner
before the tournament is finished then Parlance may continue running. In
that case you may need to kill that process manually via the TaskManager
(in Windows) before you can start a new tournament. You may also need
to manually kill the players in that case.

Exercises

1. Adapt the code of the TournamentRunner to start a tournament with
4 instances of the DumbBot and 3 instances of D-Brane. Let them
play 10 games, and make sure they declare a draw after the year 1910.
Set the deadlines to 10 seconds for each type of phase.

2. After the tournament has finished, open the tournamentResults.log
file. Which player scored the most Supply Centers?

4 Building Your Own Agent
Now that you have managed to set up the framework and have a tournament
running, it is time to start writing your own agent. In order to do this you
need to create a Java class that extends the Player class which is defined in
the DipGame framework.

As an example, we will take a look at the source code of the RandomBot,
which is provided with the framework. This player provides the bare mini-
mum of a Diplomacy-playing agent. It makes only random moves and does
not negotiate. We will look at negotiating agents in the following sections.

The agent contains a main method which creates a new object of the
RandomBot class and then creates a communicator object that establishes
the connection between the agent and the game server. The agent is then
started by calling randomBot.start(communicator).

The agent will automatically connect to the game server. Once it is
connected, the DipGame framework will call the method init() of the
Player class, which is overridden by the RandomBot. Also, the DipGame
framwork sets the me field of the Player class. This field represents the power
that the server has assigned to the agent.

Once 7 players have connected to the server, the method start() is
called, which you can implement to do any stuff you want to happen at the
start of the game. From now own you can access the ‘game’ field which
represents the current state of the game (see section below: ‘The Game
Class’).

8



The most important method inherited from the Player class is the play()
method. This method is called at the beginning of each new phase and must
return a list of orders, containing exactly one order for each of the player’s
units.

The Game Class

The Player class has a field called game of class Game. This object is updated
every round and can be used to obtain all information about the current
state of the game. Through this object you can for example obtain the the
current year, the current phase, and the positions of all the units on the
map. Furthermore, through this object you can get a list of all provinces,
and for each province it stores which power currently controls that province
and which power is the owner of that province (A power ‘controls’ a province
if it currently has a unit in that province. A power becomes the ‘owner’ a
province if it controls the province after a fall phase and remains the owner
until another power becomes the owner of that province).

The Province Class

As you know, the map of Diplomacy is divided into provinces. These
provinces are represented in DipGame by Province objects. You can get
a Province object by calling game.getProvince(name); where name is a
string which is the three-letter acronym of that province. For example, to get
the Province object representing Holland, you call: game.getProvince("HOL");.
To determine whether a certain province is a Supply Center or not the
Province class provides the method isSC(). To get a list of all provinces,
you can call: game.getProvinces().

The following code demonstrates how you can obtain the current owner
and the current controller of a province:

Province holland = game.getProvince("HOL");
Power ownerOfHolland = game.getOwner(holland);
Power controllerOfHolland = game.getController(holland);

The Region Class

Each province in DipGame contains one or more Regions. There are two
types of regions: army-regions and fleet-regions and we can distinguish three
kinds of provinces:

9



• A Sea Province is a Province that contains exactly one fleet-region and
no army-regions.
• An Inland Province is a Province that contains exactly one army-region
and no fleet regions.
• A Coastal Province is a Province that contains exactly one army-region
and one or two fleet-regions.

When a unit is located in a Province, then it is in fact located in one of
its Regions. Clearly, if the unit is an army then it must be located in the
army-region of that province, and if it is a fleet then it must be located in
any of its fleet-regions.

For a given province you can get its regions by calling its getRegions()
method:

Province holland = game.getProvince("HOL");
List<Region> regionsOfHolland = holland.getRegions();

Also, you can get a specific region from the game object by calling game.getRegion(name),
where name is the six-letter acronym of the region. For example, to get the
army-region of Holland: game.getRegion("HOLAMY").

We should remark that in DipGame there is no special class to de-
fine the players’ units. Instead, a unit is simply represented by a Region
object, corresponding to the region where that unit is located. To know
where the units of any power are located, the agent can call the method
getControlledRegions() on a Power object. For example:

Power austria = game.getPower("AUS");
List<Region> unitsOfAustria = austria.getControlledRegions();

The Order Class

In every SPR and FAL phase of the game you must give an order to each of
your units. This is done by creating a list of Order objects which must be
returned by the play() method.

For example, suppose you want to move an army in Holland to Belgium.
Then you must create an object of type MTOOrder (move-to order):

Region location = game.getRegions("HOLAMY");
Region destination = game.getRegions("BELAMY");
Order order = new MTOOrder(me, location, destination);

If however you want the army in Holland to stay where it is, you must
create a HLDOrder (hold order):

10



Region location = game.getRegions("HOLAMY");
Order order = new HLDOrder(me, location);

If you want your fleet in the North Sea to support your army in Holland
to move to Belgium, you can do this as follows:

//Order the army in Holland to move to Belgium
Region location1 = game.getRegions("HOLAMY");
Region destination1 = game.getRegions("BELAMY");
Order order1 = new MTOOrder(me, location1, destination1);

//Order the fleet in the North Sea to support the previous order.
Region location2 = game.getRegions("NTHFLT");
Order order2 = new SUPMTOOrder(me, location2, order1);

If you want to support a unit to hold you must create an object of type
SUPOrder rather than SUPMTOOrder.

For more information about the types of Orders you can create for AUT,
SUM and WIN phases, please take a look at the source code of RandomBot.

Unfortunately, the current version of DipGame does not provide any class
for Convoy orders. Therefore, it is not possible for an agent implemented
on the DipGame framework (or the BANDANA framework) to use convoys.

Exercises

1. Adapt RandomBot such that at the beginning of the game it prints
out a list of names of all the provinces, and for each province a list of
names of all its regions.

2. Let’s make the RandomBot a bit more intelligent and a bit less ran-
dom. Therefore, adapt it such that:

• If it has a unit inside a Supply Center, which it currently does
not own, then make sure that it holds.
• Otherwise, if a unit is in a province adjacent to a Supply Center
which it does not own, make sure it moves there.

3. Adapt the agent of the previous exercise such that, whenever two of
its units want to move to the same province, instead, one unit will give
support to the other.

4. Run a tournament to see if your new agent is better than the original
RandomBot. To do this, make sure that both the RandomBot and
your new agent are compiled into a jar-file, and adapt the code of the
TournamentRunner so that it can run this agent.

11



5 Implementing your own Scoring System
Above we have explained that the Tournament Observer calculates 4 types
of scores for the players and we have explained how it uses these scores
to rank the players. In this section we explain how you can change this
behavior and implement your own scoring system.

5.1 Changing the Order of Importance of the Scoring Sys-
tems

Note that the source code of the TournamentRunner contains the following
lines:

ArrayList<ScoreCalculator> scoreCalculators = new ArrayList<ScoreCalculator>();
scoreCalculators.add(new SoloVictoryCalculator());
scoreCalculators.add(new SupplyCenterCalculator());
scoreCalculators.add(new PointsCalculator());
scoreCalculators.add(new RankCalculator());

The list of ScoreCalculators created here is passed on to the constructor
of the TournamentObserver. The order in which the ScoreCalculators are
added to this list determines their order of importance.

Suppose for example that you are not interested in the number of solo
victories or the number of points. Instead, you want the players to be scored
according to their average rank, and you want to use the number of supply
centers as a tie breaker. You can then simply replace the above 5 lines by
the following 3 lines:

ArrayList<ScoreCalculator> scoreCalculators = new ArrayList<ScoreCalculator>();
scoreCalculators.add(new RankCalculator());
scoreCalculators.add(new SupplyCenterCalculator());

Now the TournamentObserver and the tournamentResults log file will no
longer show the number of solo victories or the number of points. They will
order the players firstly based on their average ranks (because the RankCal-
culator was added first to the list) and will use the number of Supply Centers
as the tie breaker (because it was added second to the list). You can add as
many ScoreCalculators to this list as you like (but minimally one) and you
can add them in any order you like.

12



5.2 Implementing Your Own ScoreCalculator

If you are not satisfied with any of the four scoring systems supplied with
the Bandana framework you may implement your own Score Calculator.

For example, suppose that you want to run a tournament in which a
player receives 100 points for every game in which it conquers 10 or more
Supply Centers, and 0 points for all other games. In order to do so, you
can create a new class that extends the abstract classScoreCalculator.
In this example we will call this class MyScoreExample. You then need to
implement the following four methods:

• calculateGameScore(GameResult newResult, String playerName)
• getTournamentScore(String playerName)
• getScoreSystemName()
• getScoreString(String playerName)

The calculateGameScore() method is called once for every player at the
end of each game. The ScoreCalculator base class uses this to calculate the
sum and the average of the scores obtained over all games played. Following
our example, we can implement it as follows:

public double calculateGameScore(GameResult newResult, String playerName) {
if(newResult.getNumSupplyCenters(playerName) >= 10){

return 100.0;
}else{

return 0.0;
}

}

The getTournamentScore() method is the most important method. It is
also called once for every player at the end of each game. The Tournament
Observer uses the value returned by this method to sort the players in its
window and in the tournamentResults log file. In most cases you would
simply want this method to return the average of the scores returned by
calculateGameScore() for each game previously played. Since this average
is already calculated by the ScoreCalculator base class and can be obtained
by calling getAverageScore(), we can simply implement it as follows:

public double getTournamentScore(String name) {
return this.getAverageScore(name);

}

13



In some cases however, you may want this method to return something more
complicated than the average score over all games. For example, you may
want it to return the highest value obtained in any of the games, or the
average over the 10 highest values obtained. In such cases you will need to
write your own code to calculate this.

The method getScoreSystemName() is used to display the name of the
scoring system in the top of the table in the window of the TournamentO-
bserver. We can simply let it return the String "MyScoreExample". The
method getScoreString() determines how the player’s score will be dis-
played in the table and in the log file. The standard implementation is as
follows:
public String getScoreString(String playerName) {

long total = Math.round(this.getTotalScore(playerName));
double average = Utils.round(this.getAverageScore(playerName), 3);
return "" + total + " (av. = "+ average + ")";

}

This returns a String consisting of the total score obtained by the player, fol-
lowed, between parentheses, by the average value rounded off to 3 decimals.
The string returned by this method can be anything and does not need to be
related to the score of the player at all, but then the TournamentObserver
and the tournamentResults file would not show any interesting information.

Finally, we need to add a constructor to our example:
public MyScoreExample() {

super(true);
}

The boolean value true passed on to the super constructor indicates that a
higher score is to be interpreted as a better result. If you look at the source
code of the four provided ScoreCalculator implementations you see that
only the RankCalculator passes false to its super constructor. Indeed, a
player is considered better if it obtains a lower average rank.

Exercises

1. Implement a score system based on the number of supply centers, but
in which the score of Russia is multiplied by 3

4 (because Russia starts
with 4 units, while all other powers start with 3 units).

2. Implement a score system based on the number of supply centers con-
quered, but in which the supply centers conquered in the last 3 games
count double.

14



3. Implement a score system that orders players purely based on their
names. The lower a player’s name comes in alphabetical order, the
higher it is ranked. Note that since this is completely independent
of the results a player obtained in the games, the implementation of
calculateGameScore() is in this case totally irrelevant.

4. Run a tournament in which the players are ranked according to their
score returned by the Score Calculator you implemented for Exercise
1. Use the Score Calculator of Exercise 2 as a first tie breaker, and
use the one of Exercise 3 as a second tie breaker.

6 Negotiations

6.1 The Negotiation Protocol

BANDANA provides a default multilateral negotiation protocol. The pro-
tocol can be changed, but we will not go into that in this tutorial. Unlike
the common Alternating Offers Protocol, in our protocol agents do not take
turns. This means that any agent is allowed to make any proposal or accept
any proposal whenever it wants.

The protocol involves a special agent, which we call the Notary agent
(or sometimes the Protocol Manager), which monitors the negotiations. The
Notary is started automatically when the negotiation server is started. If
an agent has made a proposal and all other agents that are involved in
the proposal have accepted that proposal then the Notary agent will send
a ‘confirm’ message to all agents involved in the proposal. This message
should be considered the official confirmation that the agreement has become
binding.

If your agent has accepted a proposal, but later changes its mind, it can
send a reject message to withdraw from the proposal and hence prevent it
from becoming confirmed. However, if this is done after the Notary has
already sent a confirm message for that proposal, then your agent is too
late. The reject message will be ignored, and your agent is still committed
to the agreement.

Even though we say that proposals are ‘officially’ confirmed by the No-
tary, it is important to remark that there is no mechanism to control that
players indeed obey the agreements they make. Therefore, one should al-
ways take into account that some players break their promises and when
implementing an agent it is recommended to keep track of which players
have broken their promises, so you can make sure your agent will no longer
negotiate with them.

15



6.2 Deals You Can Propose

The BANDANA framework allows you to propose deals that specify the
following two components:

• A (possibly empty) set of Order Commitments
• A (possibly empty) set of Demilitarized Zones.

Definition 1. An Order Commitment oc is a tuple: oc = (y, φ, o), where
y is a ‘year’ (an integer number higher than 1900), and φ is a phase i.e.
φ ∈ {Spring, Summer, Fall, Autumn,Winter} and o is any legal order.

An order commitment is a promise that a power will submit a certain
order during a certain phase and year. For example: "The army in Hol-
land will move to Belgium in the Spring of 1902". However, if the order
is a HLDOrder, then the corresponding power is still allowed to submit a
SUPOrder or SUPMTOOrder for that unit instead of the HLDOrder.

Definition 2. A Demilitarized Zone dmz is a tuple: dmz = (y, φ,A,B)
with y and φ as above, A a nonempty set of Powers:

A ⊂ {Austria,England, France,Germany, Italy,Russia, Turkey}

and B a nonempty set of Provinces.

A Demilitarized Zone consists of a phase, a year, a set of Powers and a set
of Provinces, with the interpretation that none of these Powers is allowed to
enter (or stay inside) any of these Provinces during that phase and year. For
example the Demilitarized Zone (1903, Fall, {FRA,GER,ENG}, {NTH,ECH})
has the interpretation "In the Fall of 1903 FRA, GER, and ENG will not
enter the North Sea and will not enter the English Channel".

Definition 3. A Deal d is a set:

d = {oc1, . . . ocn, dmz1, . . . dmzm}

where each oci is an Order Commitment, each dmzi is a Demilitarized Zone,
and with n ≥ 0, m ≥ 0, and d 6= ∅.

When a deal is confirmed by the Notary, the interpretation is that all
powers involved in the deal agree that all Order Commitments in the deal
and all Demilitarized Zones in the deal will be respected.

A proposed deal can only be accepted or rejected in its entirety. It is
not possible to only accept part of the deal. In the case you wish to accept

16



only a part of the deal, you simply need to propose a new deal which only
consists of those Order Commitments and Demilitarized Zones you wish to
include in it. For example, if Austria proposes a deal d = {oc1, oc2} to
Germany, then Germany can choose to either accept d or to reject d, but
cannot choose to only accept {oc1}. Instead however, Germany can decide
to make a new proposal d′ = {oc1} to Austria, so then it is up to Austria to
determine whether to accept or reject d′.

Deals in the BANDANA framework are represented by objects of the
BasicDeal class, which implements the abstract Deal class. Currently, Ba-
sicDeal is the only implementation of Deal but in the future we may allow
different kinds of deals than the ones described above. Also, we may in
the future allow users to define their own Deal classes so that you can use
the BANDANA framework without being bound to the specific type of deal
described above.

6.3 The RandomNegotiator

As you have seen, the BANDANA framework comes with an agent called
RandomNegotiator. The source code is included in the package. This agent
is just the RandomBot extended with negotiation capabilities. We will now
take a look at how it works.

Note that, apart from adding negotiating capabilities, we have also added
some other functionality, such as a logger for debugging. Furthermore, we
have added two important fields:

DiplomacyNegoClient negoClient;
ArrayList<BasicDeal> confirmedDeals = new ArrayList<BasicDeal>();

The negoClient field is the client that will connect to the negotiation server.
This field is essential if you want your agent to negotiate via the BANDANA
negotiation server. The second field is a list that we will use to store the
deals that have been confirmed by the Notary.

6.3.1 Connecting to the Negotiation Server

In order to negotiate we need to connect to the negotiation server, which is
done in the init() method of the RandomNegotiator:

this.negoClient.connect();
this.negoClient.waitTillReady();
if(this.negoClient.getStatus() == STATUS.READY){
//successfully connected to the server.

17



...
}else{
//connection failed.
...
}

The first method establishes a connection with the negotiation server in
a separate thread. The second method lets the current thread hang until
either the connection is established, or the connection has failed. With the
if-else statement we can check whether the client has connected to the server
successfully. It is not possible to connect to the negotiation server before
the init() method is called. This is because the negotiation client needs
to know which Power you are playing and this information is only available
once the init() method is called.

6.3.2 Negotiating

The play() method of the RandomNegotiator is identical to the play()
method of the RandomBot, except that we have added a call to a negotiate()
method for SPR and FAL seasons. The RandomNegotiator does not nego-
tiate during the other seasons, but you can implement your own agent to do
so.

The negotiate() method contains a loop that runs for a couple of sec-
onds, and which consists of two parts. The first part handles incoming
messages, while the second part searches for proposals to make.

When we have received a message, we can check what type of message
it is by calling receivedMessage.getPerformative(). If the message is a
proposal, then we can extract the proposed deal from that message using
the following line:
DiplomacyProposal receivedProposal = (DiplomacyProposal)receivedMessage.getContent();

We can then analyze the proposal and determine whether we want to accept
it or not. You can then get the orders and Demilitarized Zones of the deal
as follows:

BasicDeal deal = (BasicDeal)receivedProposal.getProposedDeal();
List<DMZ> dmzs = deal.getDemilitarizedZones();
for(DMZ dmz : dmzs){
List<Power> powers = dmz.getPowers();
List<Province> provinces = dmz.getProvinces();
//TODO: decide if we like this DMZ or not.
}

18



for(OrderCommitment orderCommitment : deal.getOrderCommitments()){
Order order = orderCommitment.getOrder();
//TODO: decide if we like these orders.
}

Note however, that in the RandomNegotiator we have added some extra
code in these loops to check that the Demilitarized Zones and Order Com-
mitments are not outdated. With this we mean for example an Order Com-
mitment that proposes to make a certain move during Spring 1902, while
the game is already in the Fall 1902 phase, so it cannot be obeyed any more.
This may for example happen because the message has arrived too late, or
simply because there is some other agent that makes senseless proposals. It
does not make sense to accept such a proposal, so we can ignore it. For this
purpose we have implemented the isHistory() method that returns true
if and only if the specified year and phase lie in the past with respect to the
current year and phase of the game. Note that since the proposal must be
accepted in its entirety the whole proposal becomes senseless even if only
one of its Order Commitments or Demilitarized Zones is outdated.

Each proposal automatically gets an ID assigned to it when it is pro-
posed. You need this ID to accept the proposal, which is done by the
following line:

this.negoClient.acceptProposal(receivedProposal.getId());

The RandomNegotiator simply accepts the proposal with a probability of
50% regardless of the contents of the proposal.

You can call receivedProposal.getParticipants() to get a list of
names of all powers that are involved in the deal. All these powers need to
accept the deal before it becomes confirmed.

When the RandomNegotiator receives a confirm message it means that
it is committed to fulfil its part of the confirmed proposal. Therefore it
stores the confirmed deal in a list:

confirmedDeals.add(confirmedProposal.getProposedDeal());

This way, once it must decide its moves to make, it can access the con-
firmed deals and make sure that the orders it chooses are consistent with
the confirmed deals.

6.3.3 Checking Confirmed Deals are Still Valid

Note that at the beginning of the play() method we have included some
code to check that previously confirmed deals are still valid. A deal is invalid

19



if it includes an order for a unit that is no longer possible to execute, because
the game evolved in a way different than expected.

We can illustrate this with the following example:

1. AUS plans to move his unit in Holland into Belgium during the SPR
1902 phase.

2. AUS agrees with GER that it will use that same unit in the following
FAL 1902 phase to give support from Belgium to some unit of GER.

3. However, if during the SPR 1902 phase the unit in Holland fails to
move to Belgium (e.g. because it is blocked by FRA), then in the next
phase AUS cannot give the promised support.

In that case we say the agreement has become invalid and no longer needs
to be obeyed. We check whether a confirmed deal is still valid by calling
Utilities.testValidity(game, confirmedDeal).
If this method returns null it means the deal is still valid and must be
obeyed. If it returns a String however, it means that it is no longer valid,
so we can ignore it. The returned String is a description of why the deal is
invalid. This may be useful for debugging purposses.

6.4 Rejecting Proposals

You can reject an incoming proposal by calling

this.negoClient.rejectProposal(proposal.getID());

There are three reasons why you may wish to reject a proposal.
The first is simply to communicate to the other agents that you are not

interested in a proposal that you received. Note that if this is the case it is
not required to send a REJECT message. Instead, you may also choose to
simply ignore the proposal. However, it may be helpful for your allies if you
explicitly reject it.

Another case where you may wish to send a REJECT message is when
you first make a proposal, or accept an incoming proposal, but then later
change your mind. If the Notary receives your REJECT message before all
other agents involved in the deal have accepted it you prevent the deal from
becoming confirmed. If you send this message to late however, and the deal
has already been confirmed by the Notary, then there is nothing you can do
anymore. The deal has definitively become a binding agreement.

The third case in which you may want to send a REJECT message is
when you have made two or more inconsistent proposals and one of them
becomes confirmed. In that case you should reject the other proposals,

20



because otherwise they may also become confirmed and you will not be able
to obey them all.

Note however, that normally this third case is not relevant, because
the Notary already checks consistency and only confirms deals that are
consistent with earlier confirmed deals (see Section "Inconsistent Deals").
Therefore, this third case is only relevant if you have disabled the Notary’s
consistency checking mechanism.

6.5 Searching for Profitable Deals

Finding good deals to propose is probably the hardest task when implement-
ing a negotiating Diplomacy player. The RandomNegotiator however simply
generates a random deal (in the method generateRandomDeal()) and pro-
poses it. A deal is proposed by calling negoClient.proposeDeal(newDealToPropose);

6.6 Obeying the Confirmed Deals

As explained, when all players involved in a proposed deal accept the pro-
posal, and none of them has rejected it after accepting it, then the Notary
sends a ‘CONFIRM’ message to all players involved in the deal. From this
moment the deal is considered official, so all involved players are expected
to obey the agreement (although we can never be sure that they really will).

In general, whenever another player accepts a proposal in which you are
also involved, you receive an ACCEPT message. However, when all but one
of the involved players have already accepted it, and the last player finally
also accepts it, then the Notary will send a CONFIRM message. You will
not receive the last ACCEPT message, but instead you will just receive the
CONFIRM message.

We have adapted the method generateRandomMoveOrders() to make
sure that it only generates orders that are consistent with its confirmed
agreements. That is, we have added some code that collects all provinces
we are not allowed to enter during the current phase, and all orders that
we are committed to. Then, when generating orders, we make sure that we
don’t generate any orders for units that are already committed to an order,
and that the orders we do generate do not move into any demilitarized
province.

Note however that we have not adapted the methods generateRandomBuildOrders(),
generateRandomRetreatOrders() and generateRandomRemoveOrders() to
obey confirmed deals. We leave this as an exercise.

21



Furthermore, if a deal has OrderCommitments and/or Demilitarized
Zones for more than one round of the game, and one player did not obey
his part of the agreement in the first round of the agreement, then you may
also want to ignore your part of that agreement for the future rounds. For
example:

1. AUS and GER agree that AUS will move his unit from Bohemia to
Galicia in the Spring of 1904, and that GER will move his unit from
Tyrolia to Venice in the Fall of 1904.

2. In Spring 1904, AUS does not obey this agreement. He moves his unit
from Bohemia to Munich.

3. In Fal 1904, GER may now also decide not to obey his part of the
agreement and instead move his unit from Tyrolia to Trieste.

In order to check whether the other players have obeyed their agreements
the Player class provides the receivedOrder() method. This method is
automatically called after the players have submitted their moves, and is
called once for each order submitted by any other player.

6.7 Inconsistent Deals

Agent may make several proposals that are inconsistent with each other.
For example, in one deal it proposes that its army in Belgium will move to
Holland, while in in another deal it proposes that that its army in Belgium
will move to Picardy.

Proposing inconsistent deals in not a problem. However, once all agents
involved in a proposed deal have accepted it, before sending a CONFIRM
message, the Notary will check that this deal is consistent will proposals
that have been confirmed earlier and are still valid. If this is not the case
the Notary will simply not send a CONFIRM message for this new deal and
the deal is not considered a binding agreement. Therefore, you can always
be sure that the proposals that have been confirmed by the Notary are all
consistent with each other.

If you want to set up a tournament in which the Notary does not not
check whether deals are consistent or not then you can do that by adding
the following line

NegoServerRunner.ENABLE_CONSISTENCY_CHECKING = false;

before the line

NegoServerRunner.run();

in the TournamentRunner.

22



6.8 Sending Informal Messages

Apart from proposing, accepting and rejecting deals, the BANDANA also
allows you to send informal messages.

An informal message can simply be anything. The content is completely
ignored by the Notary, and therefore has no formal meaning. You can use
this if you want to allow any kind of communication between the players
other than the formal negotiation protocol.

We have put an example of such a message in the start() method of
the RandomNegotiator:

List<Power> receivers = game.getPowers();
this.negoClient.sendInformalMessage(receivers, "Hello World! I am " + me.getName());

If you want to set up a tournament in which you do not want the players to
use informal messages you can disable this possibility by including the line

NegoServerRunner.ALLOW_INFORMAL_MESSAGES = false;

before the line

NegoServerRunner.run();

in the TournamentRunner.

Exercises

1. The RandomNegotiator randomly chooses to accept a proposal or not.
Instead, change the code such that it will always accept any proposal
that contains an order for one of its own units to move to a Supply
Center it currently does not own.

2. Instead of randomly proposing deals, try to find a deal in which one
its own units moves into a Supply Center, and one of its opponents’
units supports that move.

7 Building a Negotiating Agent on top of the D-
Brane’s Tactical Module

Arguably the most important contribution of the BANDANA framework is
the ability to build your own negotiation algorithm on top of the existing
tactical module of D-Brane. This allows you to do research on Negotiations
without having to worry about the underlying tactical aspects of the game.

23



D-Brane is a high-quality Diplomacy player that has won the Computer
Diplomacy Challenge at the 2015 ICGA Computer Olympiad.

In order to demonstrate how this works we have added the DBraneEx-
ampleBot to the framework, of which you can find the source code in the
folder src/ddejonge/bandana/exampleAgents.

Note that this class looks very similar to the RandomNegotiatior. How-
ever, we have added a field called dBraneTactics. Whenever you pass a list
of deals to this object, it will try to find the best list of orders for units. Of
course there is no guarantee that the returned list is the theoretically best
set of orders, it will most often be very good. It is used as follows:

Plan plan = dbraneTactics.determineBestPlan(game, power, deals, allies);
List<Order> myOrdersToSubmit = plan.getMyOrders()

Here, game is simply the game object that represents the current state of
the game. The given power is the Power for which you want to obtain the
set of moves. Normally you would pass the power that you play, but you
can also pass any other power, for example if you want to predict what your
coalition partners might do given these agreements. The argument ‘deals’
can be any list of BasicDeal objects, and ‘allies’ is a list of powers that you
consider your allies.

The Plan object that is returned contains a list of orders for the given
power, such that they all obey the given deals and such that non of your
units invades any Supply Center currently owned by any of the given allies.
The idea here is that this list of orders is the set of deals that maximizes
the number of Supply Centers you conquer in that round. In other words:
it is a greedy player that does not think ahead more than one step at a
time. Although this may seem a very naive strategy, it turns out to play
better than most other existing Diplomacy bots. You can get the number
of Supply Centers the DBraneTactics object expects to conquer by calling:

int numberOfConqueredSCs = plan.getValue();

We should note however that this is only an expected number. There is no
guarantee that this number is correct (although usually it should at least be
a correct lower bound, assuming all agents obey the agreements).

In the play() method of the DBraneExample bot we demonstrate how
the DBraneTactics object can be used after the negotiations to get the
best plan that obeys the made agreements. However, it can also be used
by the negotiation algorithm itself. This is demonstrated in the method
searchForNewDealToPropose(). In this method we first determine what

24



happens if we do not make any new agreements, by asking DBraneTactics
for the best plan under the already confirmed agreements. Next, we gener-
ate a number of random deals, and for each such deal we ask DBraneTactics
what would be the best plan if that random deal were also confirmed. We
finally return the random deal for which the returned plan gives us the high-
est expected number of conquered Supply Centers (unless this number is not
higher than if we make no new deal at all, in which case we return null).

Of course, the number of conquered Supply Centers in the current round
is only a very rough indication of the quality of the deal, so instead you may
want to write a more sophisticated algorithm to determine its quality, using
the list of orders returned by plan.getMyOrders()

8 Useful Tools
In this section we describe some tools that may come in handy when imple-
menting your own Diplomacy bot.

8.1 The Internal Adjudicator

When implementing an agent you may encounter the problem that you
would like to know for a given game configuration, a given set of orders for
your units, and a given set of orders for the units for your opponents, what
the outcome of those orders will be. The process of determining the outcome
of a set of orders is known as adjudication. Unfortunately, this task is far
from trivial, as the rules of Diplomacy are fairly complex.

Luckily however, we have added an adjudicator for you to the BAN-
DANA framework2. It works in a very simple way. First you create an
object of the InternalAdjudicator class. Then, every time you wish to use
it, you call its clear() method to reset it, then you call clear(game,
listOfOrders) to execute the adjudication process. After that, you can
call getResult(order) for each order. This will return true if the order
succeeded, and false if the order failed.

More precisely, if a MTOOrder succeeds, it means that the unit will
indeed move to the intended province. If it fails it will either stay in the
same place, or it is dislodged (it is kicked out of its current location by an
opponent, and will have to retreat in the next SUM or AUT phase). For

2The implementation of the adjudicator is based on this article: http://diplom.org/
Zine/S2009M/Kruijswijk/DipMath_Chp1.htm by Lucas Kruijswijk

25

http://diplom.org/Zine/S2009M/Kruijswijk/DipMath_Chp1.htm
http://diplom.org/Zine/S2009M/Kruijswijk/DipMath_Chp1.htm


a HLDOrder, if it succeeds it will stay in its current location, and will be
dislodged if it fails.

For a SUPOrder or SUPMTOOrder if it succeeds it will stay in its current
location. However, if it fails it may or may not be dislodged. The fact that
it failed means that it didn’t manage to give support to the supported unit,
because the support was cut. However, it does not tell you whether it
successfully managed to stay in its current location or if it was dislodged.

For failed SUPOrders, SUPMTOOrders and MTOOrders to know whether
it was dislodged or not you have to check whether there was some other unit
that successfully moved into its location.

For an example of how to use the InternalAdjudicator, please take a look
at the source code of the AdjudicatorExampleBot that we have included in
the BANDANA package. This agent is almost identical to the RandomBot,
except that in SPR and FAL phases it now generates a set of orders for
all agents instead of only for itself. It then uses the InternalAdjudicator to
check how many supply centers it gains if those orders are indeed submitted
by the players. It repeats this process several times and finally picks the set
of orders that yields the highest numbers of Supply Centers and will play
his moves from that list (of course, there is no guarantee that this strategy
works because the opponents will likely submit completely different orders,
but it just serves as an example of how the adjudicator works).

We should note that the InternalAdjudicator does not check whether an
order is legal or not. Therefore, it is not suitable to be used inside a game
server. It is only intended to be used internally by a single agent (hence
the name internal adjudicator). The agent itself is responsible for checking
that it does not supply this adjudicator with illegal moves (for example an
army trying to move into a sea-province, or a player submitting an order for
a unit of an opponent).

8.2 The DiplomacyGameBuilder

Another useful tool is the DiplomacyGameBuilder. This tool allows you to
generate a custom game, with units positioned on the map any way you
like. This can be very handy during the development of your agent when
you want to test your algorithms on specific test cases.

In the following example, we create game which is in the 1903 FAL phase,
and with three units. We place a Russian fleet in Sevastopol, a French fleet
in the Spanish North Coast, and an Italian army in Rome. Furthermore, we
set England as the current owner of London. All other regions of the map
will remain empty, and all other Supply Centers will not have any owner.

26



After placing the units and setting the owners of the Supply Centers we
create the Game object by calling createMyGame().

DiplomacyGameBuilder gameBuilder = new DiplomacyGameBuilder();

gameBuilder.setPhase(Phase.FAL, 1903);

gameBuilder.placeUnit("RUS", "SEVFLT");
gameBuilder.placeUnit("FRA", "SPANCS");
gameBuilder.placeUnit("ITA", "ROMAMY");

gameBuilder.setOwner("ENG", "LON");

Game myGame = gameBuilder.createMyGame();

If you want to create the standard board configuration, as it is at the be-
ginning of any standard game, you can simply do the following:

DiplomacyGameBuilder gameBuilder = new DiplomacyGameBuilder();
Game myGame = gameBuilder.createDefaultGame();.

Note: the game builder may fail if you try to add more than 34 units on the
map. Also, it will fail if you do not set the phase and year of the game.

8.3 The Diplomacy Mapper

The Diplomacy Mapper is a tool that displays a visual representation of
an ongoing game, so that you can follow the game with your own eyes.
Furthermore it even provides an interface for humans to play, so you can
play against your own agents.

This tool however is not part of BANDANA or DipGame, as it was de-
veloped by others. Nevertheless, you can still use it perfectly in combination
with BANDANA, and you can download it from here:
http://www.ellought.demon.co.uk/dipai/
Unfortunately, it only works on Windows.

9 Tips, Tricks and Warnings

9.1 Using HashMaps

The Power, Region and Province classes of the DipGame framework unfor-
tunately do not override the hashcode() method while they do override the

27

http://www.ellought.demon.co.uk/dipai/


equals() method (two Powers, Regions, or Provinces are considered equal
if they have the same name). This can lead to problems if you want to you
use any of those classes as the Key class in a HashMap. In order to avoid
such problems you can use String as the Key class instead, and use the name
of the Power, Region or Province object as the key.

9.2 Proposing Draws

When your agent proposes a draw by calling the proposeDraw() method
the proposal is sent via the game server and not via the negotiation server.
Therefore, your agent can propose draws even if it does not have the negoClient
field or if it is not connected to the negotiation server.

Furthermore, note that for this reason the protocol for draw proposals
is a bit different from the protocol described in Section 6.1. Specifically,
once you have proposed a draw you cannot reject it anymore. Also, when
another player proposes a draw you are not notified of this, and you cannot
decide to accept or reject it. Instead, you simply decide to propose a draw
whenever you want, and the server declares a draw if and only if all players
have proposed a draw in the same round.

9.3 Play Diplomacy Online

No matter how well you understand the game theoretically, we think it is
absolutely essential that you also play the game a couple of times yourself
before you will be able to implement a good player. An excellent place
to start playing Diplomacy is http://www.playdiplomacy.com/. Here you
can play online with people from all over the world.

10 Contact
If you still have any questions about Diplomacy, or BANDANA, please do
not hesitate to contact us. Also if you have any suggestions on how to
improve the BANDANA framework or this manual, then we are happy
to hear from you. You can contact us by sending an e-mail to davede-
jonge@iiia.csic.es

28

http://www.playdiplomacy.com/

	Introduction
	Before You Begin
	Running a Tournament
	Building Your Own Agent
	Implementing your own Scoring System
	Changing the Order of Importance of the Scoring Systems
	Implementing Your Own ScoreCalculator

	Negotiations
	The Negotiation Protocol
	Deals You Can Propose
	The RandomNegotiator
	Connecting to the Negotiation Server
	Negotiating
	Checking Confirmed Deals are Still Valid

	Rejecting Proposals
	Searching for Profitable Deals
	Obeying the Confirmed Deals
	Inconsistent Deals
	Sending Informal Messages

	Building a Negotiating Agent on top of the D-Brane's Tactical Module
	Useful Tools
	The Internal Adjudicator
	The DiplomacyGameBuilder
	The Diplomacy Mapper

	Tips, Tricks and Warnings
	Using HashMaps
	Proposing Draws
	Play Diplomacy Online

	Contact

