1 | /**
|
---|
2 | * The dynamic programming solvers. This code is used for either DP, IDP, ODP, or the IDP part of ODP-IP
|
---|
3 | * @author Talal Rahwan
|
---|
4 | */
|
---|
5 | package geniusweb.ip.dpSolver;
|
---|
6 |
|
---|
7 | import java.util.Arrays;
|
---|
8 |
|
---|
9 | import geniusweb.ip.general.Combinations;
|
---|
10 | import geniusweb.ip.inputOutput.Input;
|
---|
11 | import geniusweb.ip.inputOutput.SolverNames;
|
---|
12 | import geniusweb.ip.inputOutput.ValueDistribution;
|
---|
13 | import geniusweb.ip.mainSolver.Result;
|
---|
14 |
|
---|
15 | public class DPSolver {
|
---|
16 | int[] t; // t[i] contains the first half of the best split of coalition i
|
---|
17 | // (where the coalition is represented in bit format)
|
---|
18 | // this is only used by DP, i.e., it is not used by IDP, ODP, or the IDP
|
---|
19 | // part of ODP-IP
|
---|
20 |
|
---|
21 | private double[] f;
|
---|
22 |
|
---|
23 | private boolean stop = false;
|
---|
24 |
|
---|
25 | private Input input;
|
---|
26 |
|
---|
27 | private Result result;
|
---|
28 |
|
---|
29 | public DPSolver(Input input, Result result) {
|
---|
30 | this.input = input;
|
---|
31 | this.result = result;
|
---|
32 | }
|
---|
33 |
|
---|
34 | // *********************************************************************************************************
|
---|
35 |
|
---|
36 | public void set_f(int index, double value) {
|
---|
37 | if (input.solverName == SolverNames.ODPIP)
|
---|
38 | result.idpSolver_whenRunning_ODPIP
|
---|
39 | .updateValueOfBestPartitionFound(index, value);
|
---|
40 | else
|
---|
41 | f[index] = value;
|
---|
42 | }
|
---|
43 |
|
---|
44 | public double get_f(int index) {
|
---|
45 | if (input.solverName == SolverNames.ODPIP)
|
---|
46 | return result.idpSolver_whenRunning_ODPIP
|
---|
47 | .getValueOfBestPartitionFound(index);
|
---|
48 | else
|
---|
49 | return f[index];
|
---|
50 | }
|
---|
51 |
|
---|
52 | // *********************************************************************************************************
|
---|
53 |
|
---|
54 | public void setStop(boolean value) {
|
---|
55 | stop = value;
|
---|
56 | }
|
---|
57 |
|
---|
58 | public boolean getStop() {
|
---|
59 | return stop;
|
---|
60 | }
|
---|
61 |
|
---|
62 | // *********************************************************************************************************
|
---|
63 |
|
---|
64 | /**
|
---|
65 | * Run DP or IDP, or the IDP part of ODP-IP. To specify which algorithm to
|
---|
66 | * run, set input.solverName to either SolverNames.DP or SolverNames.IDP, or
|
---|
67 | * SolverNames.ODPIP
|
---|
68 | */
|
---|
69 | public void runDPorIDP() {
|
---|
70 | if (input.solverName != SolverNames.ODPIP) {
|
---|
71 | f = new double[input.coalitionValues.length];
|
---|
72 | for (int i = 0; i < f.length; i++)
|
---|
73 | set_f(i, input.coalitionValues[i]);
|
---|
74 | }
|
---|
75 | int numOfAgents = input.numOfAgents;
|
---|
76 | set_f(0, 0); // just in case, set the value of the empty set to 0
|
---|
77 |
|
---|
78 | // initialization
|
---|
79 | long[] requiredTimeForEachSize = new long[numOfAgents + 1];
|
---|
80 | requiredTimeForEachSize[1] = 0;
|
---|
81 | long[] startTimeForEachSize = new long[numOfAgents + 1];
|
---|
82 | int grandCoalition = (1 << numOfAgents) - 1;
|
---|
83 | int numOfCoalitions = 1 << numOfAgents;
|
---|
84 | int bestHalfOfGrandCoalition = -1;
|
---|
85 | long startTime = System.currentTimeMillis();
|
---|
86 | result.set_dpMaxSizeThatWasComputedSoFar(1);
|
---|
87 |
|
---|
88 | // Step 1 (initialization for step 2). Basically, initialize the t
|
---|
89 | // table.
|
---|
90 | if (input.solverName == SolverNames.DP) { // Initialize the best half of
|
---|
91 | // every coalition to be the
|
---|
92 | // coalition itself.
|
---|
93 | t = new int[numOfCoalitions];
|
---|
94 | for (int coalition = 0; coalition < numOfCoalitions; coalition++)
|
---|
95 | t[coalition] = coalition;
|
---|
96 | }
|
---|
97 | // Step 2 (evaluate the possible splits of every coalition of size 2, 3,
|
---|
98 | // 4, ...)
|
---|
99 | for (int curSize = 2; curSize <= numOfAgents; curSize++)// For every
|
---|
100 | // size
|
---|
101 | {
|
---|
102 | if ((input.solverName == SolverNames.IDP)
|
---|
103 | || (input.solverName == SolverNames.ODPIP))
|
---|
104 | if (((int) (Math
|
---|
105 | .floor((2 * numOfAgents) / (double) 3)) < curSize)
|
---|
106 | && (curSize < numOfAgents))
|
---|
107 | continue;
|
---|
108 |
|
---|
109 | // check if all splits of this size will be evaluated
|
---|
110 | boolean allSplitsOfCurSizeWillBeEvaluated = true;
|
---|
111 | for (int sizeOfFirstHalf = (int) Math.ceil(curSize
|
---|
112 | / (double) 2); sizeOfFirstHalf < curSize; sizeOfFirstHalf++)
|
---|
113 | if ((input.solverName == SolverNames.IDP)
|
---|
114 | || (input.solverName == SolverNames.ODPIP))
|
---|
115 | if ((sizeOfFirstHalf > numOfAgents - curSize)
|
---|
116 | && (curSize != numOfAgents)) {
|
---|
117 | allSplitsOfCurSizeWillBeEvaluated = false;
|
---|
118 | break;
|
---|
119 | }
|
---|
120 | startTimeForEachSize[curSize] = System.currentTimeMillis();
|
---|
121 |
|
---|
122 | // If the coalition happens to be the grand coalition, then deal
|
---|
123 | // with this case saperately
|
---|
124 | if (curSize < numOfAgents) {
|
---|
125 | int numOfCoalitionsOfCurSize = (int) Combinations
|
---|
126 | .binomialCoefficient(numOfAgents, curSize);
|
---|
127 |
|
---|
128 | if (allSplitsOfCurSizeWillBeEvaluated) // in this case, the
|
---|
129 | // evaluation of the
|
---|
130 | // splits can be done
|
---|
131 | // more efficiently
|
---|
132 | {
|
---|
133 | // Compute the number of possible splits of any coalition of
|
---|
134 | // size = "curSize"
|
---|
135 | int numOfPossibleSplits = 1 << curSize;
|
---|
136 | // Evaluate the possible splits of the current coalition
|
---|
137 | int[] curCoalition = Combinations
|
---|
138 | .getCombinationAtGivenIndex(curSize,
|
---|
139 | numOfCoalitionsOfCurSize - 1, numOfAgents);
|
---|
140 | evaluateSplitsEfficiently(curCoalition, curSize,
|
---|
141 | numOfPossibleSplits);
|
---|
142 | for (int i = 1; i < numOfCoalitionsOfCurSize; i++) {
|
---|
143 | Combinations.getPreviousCombination(numOfAgents,
|
---|
144 | curSize, curCoalition);
|
---|
145 | evaluateSplitsEfficiently(curCoalition, curSize,
|
---|
146 | numOfPossibleSplits);
|
---|
147 | if (getStop())
|
---|
148 | break;
|
---|
149 | }
|
---|
150 | } else {
|
---|
151 | // Compute the number of possible splits of any coalition of
|
---|
152 | // size = "curSize"
|
---|
153 | int numOfPossibleSplits = 1 << curSize;
|
---|
154 | // Compute the number of possible splits for every partition
|
---|
155 | // of "curSize" into "sizeOfFirstHalf" + "sizeOfSecondHalf"
|
---|
156 | long[] numOfPossibleSplitsBasedOnSizeOfFirstHalf = computeNumOfPossibleSplitsBasedOnSizeOfFirstHalf(
|
---|
157 | curSize);
|
---|
158 | // Evaluate the possible splits of the current coalition
|
---|
159 | int[] curCoalition = Combinations
|
---|
160 | .getCombinationAtGivenIndex(curSize,
|
---|
161 | numOfCoalitionsOfCurSize - 1, numOfAgents);
|
---|
162 | for (int i = 1; i < numOfCoalitionsOfCurSize; i++) {
|
---|
163 | Combinations.getPreviousCombination(numOfAgents,
|
---|
164 | curSize, curCoalition);
|
---|
165 | if ((input.solverName == SolverNames.DP)
|
---|
166 | || (input.useEfficientImplementationOfIDP))
|
---|
167 | evaluateSplitsEfficiently(curCoalition, curSize,
|
---|
168 | numOfPossibleSplits);
|
---|
169 | else
|
---|
170 | evaluateSplits(curCoalition, curSize,
|
---|
171 | numOfPossibleSplitsBasedOnSizeOfFirstHalf);
|
---|
172 |
|
---|
173 | if (getStop())
|
---|
174 | break;
|
---|
175 | }
|
---|
176 | }
|
---|
177 | if (getStop())
|
---|
178 | break;
|
---|
179 | } else
|
---|
180 | bestHalfOfGrandCoalition = evaluateSplitsOfGrandCoalition();
|
---|
181 |
|
---|
182 | // Update the value of the best CS found so far by IDP
|
---|
183 | if (curSize < numOfAgents) {
|
---|
184 | bestHalfOfGrandCoalition = evaluateSplitsOfGrandCoalition();
|
---|
185 | int[] bestCSFoundSoFar = getOptimalSplit(grandCoalition,
|
---|
186 | bestHalfOfGrandCoalition);
|
---|
187 | int[][] bestCSFoundSoFar_byteFormat = Combinations
|
---|
188 | .convertSetOfCombinationsFromBitToByteFormat(
|
---|
189 | bestCSFoundSoFar, numOfAgents);
|
---|
190 | result.updateDPSolution(bestCSFoundSoFar_byteFormat,
|
---|
191 | +input.getCoalitionStructureValue(
|
---|
192 | bestCSFoundSoFar_byteFormat));
|
---|
193 | if (input.solverName == SolverNames.ODPIP)
|
---|
194 | result.updateIPSolution(bestCSFoundSoFar_byteFormat,
|
---|
195 | input.getCoalitionStructureValue(
|
---|
196 | bestCSFoundSoFar_byteFormat));
|
---|
197 | }
|
---|
198 | // Print the time that was taken to perform this step
|
---|
199 | requiredTimeForEachSize[curSize] = System.currentTimeMillis()
|
---|
200 | - startTimeForEachSize[curSize];
|
---|
201 | if (input.solverName == SolverNames.DP) {
|
---|
202 | System.out.println(
|
---|
203 | " The time for DP to finish evaluating the splittings of coalitions of size "
|
---|
204 | + curSize + " is: "
|
---|
205 | + requiredTimeForEachSize[curSize]);
|
---|
206 | } else { // i.e., if it is IDP or ODP-IP
|
---|
207 | System.out.print(
|
---|
208 | " The time for IDP to finish evaluating the splittings of coalitions of size "
|
---|
209 | + curSize + " is: "
|
---|
210 | + requiredTimeForEachSize[curSize]);
|
---|
211 | System.out.println(". The best CS found so far by IDP is : "
|
---|
212 | + Arrays.deepToString(result.get_dpBestCSFound())
|
---|
213 | + " , its value is: "
|
---|
214 | + result.get_dpValueOfBestCSFound());
|
---|
215 | }
|
---|
216 | // Update the maximum size that DP has finished searching
|
---|
217 | result.set_dpMaxSizeThatWasComputedSoFar(curSize);
|
---|
218 | }
|
---|
219 | if (getStop())
|
---|
220 | return;
|
---|
221 |
|
---|
222 | // Initialize the result
|
---|
223 | result.dpTimeForEachSize = requiredTimeForEachSize;
|
---|
224 |
|
---|
225 | // Step 3 (divide the grand coalition in the optimal way using the f
|
---|
226 | // table)
|
---|
227 | int[] bestCSFound = getOptimalSplit(grandCoalition,
|
---|
228 | bestHalfOfGrandCoalition);
|
---|
229 |
|
---|
230 | // Set the final result
|
---|
231 | result.dpTime = System.currentTimeMillis() - startTime;
|
---|
232 | int[][] dpBestCSInByteFormat = Combinations
|
---|
233 | .convertSetOfCombinationsFromBitToByteFormat(bestCSFound,
|
---|
234 | numOfAgents);
|
---|
235 | result.updateDPSolution(dpBestCSInByteFormat,
|
---|
236 | input.getCoalitionStructureValue(dpBestCSInByteFormat));
|
---|
237 | if (input.solverName == SolverNames.ODPIP)
|
---|
238 | result.updateIPSolution(dpBestCSInByteFormat,
|
---|
239 | input.getCoalitionStructureValue(dpBestCSInByteFormat));
|
---|
240 |
|
---|
241 | // Print the distribution of f if required
|
---|
242 | if (input.printDistributionOfThefTable)
|
---|
243 | printDistributionOfThefTable();
|
---|
244 |
|
---|
245 | if (input.printPercentageOf_v_equals_f)
|
---|
246 | printPercentageOf_v_equals_f();
|
---|
247 | }
|
---|
248 |
|
---|
249 | // *********************************************************************************************************
|
---|
250 |
|
---|
251 | /**
|
---|
252 | * Given a size, we can split it into [size-1,1], and [size-2,2],and so on.
|
---|
253 | * Now suppose that there are 1000 possible splits that match [size-1,1],
|
---|
254 | * and 8700 splits that match [size-2,2], and so on. This method computes
|
---|
255 | * these numbers of possible splits.
|
---|
256 | *
|
---|
257 | * numOfPossibleSplitsBasedOnSizeOfFirstHalf[ 3 ] is the number of possible
|
---|
258 | * splits, where the first half is equals 3
|
---|
259 | */
|
---|
260 | private long[] computeNumOfPossibleSplitsBasedOnSizeOfFirstHalf(int size) {
|
---|
261 | long[] numOfPossibleSplitsBasedOnSizeOfFirstHalf = new long[size];
|
---|
262 | for (int sizeOfFirstHalf = (int) Math.ceil(
|
---|
263 | size / (double) 2); sizeOfFirstHalf < size; sizeOfFirstHalf++) {
|
---|
264 | int sizeOfSecondHalf = size - sizeOfFirstHalf;
|
---|
265 | if (((size % 2) == 0) && (sizeOfFirstHalf == sizeOfSecondHalf))
|
---|
266 | numOfPossibleSplitsBasedOnSizeOfFirstHalf[sizeOfFirstHalf] = Combinations
|
---|
267 | .binomialCoefficient(size, sizeOfFirstHalf) / 2;
|
---|
268 | else
|
---|
269 | numOfPossibleSplitsBasedOnSizeOfFirstHalf[sizeOfFirstHalf] = Combinations
|
---|
270 | .binomialCoefficient(size, sizeOfFirstHalf);
|
---|
271 | }
|
---|
272 | return (numOfPossibleSplitsBasedOnSizeOfFirstHalf);
|
---|
273 | }
|
---|
274 |
|
---|
275 | // *********************************************************************************************************
|
---|
276 |
|
---|
277 | /**
|
---|
278 | * Splits the given coalition in an optimal way using the f table (i.e., it
|
---|
279 | * makes the optimal movements in the coalition structure graph). Here,
|
---|
280 | * coalitions are represented IN BIT FORMAT.
|
---|
281 | */
|
---|
282 | private int[] getOptimalSplit(int coalitionInBitFormat,
|
---|
283 | int bestHalfOfCoalition) {
|
---|
284 | int[] optimalSplit;
|
---|
285 | if (bestHalfOfCoalition == coalitionInBitFormat) {
|
---|
286 | optimalSplit = new int[1];
|
---|
287 | optimalSplit[0] = coalitionInBitFormat;
|
---|
288 | } else {
|
---|
289 | // Initialization
|
---|
290 | int[] arrayOfBestHalf = new int[2];
|
---|
291 | int[][] arrayOfOptimalSplit = new int[2][];
|
---|
292 | int[] arrayOfCoalitionInBitFormat = new int[2];
|
---|
293 |
|
---|
294 | // Set the two halves
|
---|
295 | arrayOfCoalitionInBitFormat[0] = bestHalfOfCoalition;
|
---|
296 | arrayOfCoalitionInBitFormat[1] = coalitionInBitFormat
|
---|
297 | - bestHalfOfCoalition;
|
---|
298 |
|
---|
299 | // For each one of the two halves
|
---|
300 | for (int i = 0; i < 2; i++) {
|
---|
301 | if ((input.solverName == SolverNames.DP))
|
---|
302 | arrayOfBestHalf[i] = t[arrayOfCoalitionInBitFormat[i]];
|
---|
303 | else
|
---|
304 | arrayOfBestHalf[i] = getBestHalf(
|
---|
305 | arrayOfCoalitionInBitFormat[i]); // We need to
|
---|
306 | // recompute the
|
---|
307 | // best half
|
---|
308 |
|
---|
309 | arrayOfOptimalSplit[i] = getOptimalSplit(
|
---|
310 | arrayOfCoalitionInBitFormat[i], arrayOfBestHalf[i]);
|
---|
311 | }
|
---|
312 | // Set "optimalSplit" by combining "arrayOfOptimalSplit[0]" with
|
---|
313 | // "arrayOfOptimalSplit[1]"
|
---|
314 | optimalSplit = new int[arrayOfOptimalSplit[0].length
|
---|
315 | + arrayOfOptimalSplit[1].length];
|
---|
316 | int k = 0;
|
---|
317 | for (int i = 0; i < 2; i++)
|
---|
318 | for (int j = 0; j < arrayOfOptimalSplit[i].length; j++) {
|
---|
319 | optimalSplit[k] = arrayOfOptimalSplit[i][j];
|
---|
320 | k++;
|
---|
321 | }
|
---|
322 | }
|
---|
323 | return (optimalSplit);
|
---|
324 | }
|
---|
325 |
|
---|
326 | // *********************************************************************************************************
|
---|
327 |
|
---|
328 | /**
|
---|
329 | * @param CS an array of coalition structures.
|
---|
330 | * @return Split each coalition in the given structure in an optimal way
|
---|
331 | * using the f table (i.e., it makes the optimal movements in the
|
---|
332 | * coalition structure graph). Here, coalitions are represented IN
|
---|
333 | * BYTE FORMAT.
|
---|
334 | */
|
---|
335 | public int[][] getOptimalSplit(int[][] CS) {
|
---|
336 | // Initialization
|
---|
337 | int[][] optimalSplit = new int[CS.length][];
|
---|
338 | int numOfCoalitionsInFinalResult = 0;
|
---|
339 |
|
---|
340 | // For every coalition CS[i] in CS, find the optimal split of CS[i], and
|
---|
341 | // store it in "optimalSplit[i]"
|
---|
342 | for (int i = 0; i < CS.length; i++) {
|
---|
343 | int coalitionInBitFormat = Combinations
|
---|
344 | .convertCombinationFromByteToBitFormat(CS[i]);
|
---|
345 | int bestHalfOfCoalitionInBitFormat = getBestHalf(
|
---|
346 | coalitionInBitFormat);
|
---|
347 | optimalSplit[i] = getOptimalSplit(coalitionInBitFormat,
|
---|
348 | bestHalfOfCoalitionInBitFormat);
|
---|
349 | numOfCoalitionsInFinalResult += optimalSplit[i].length;
|
---|
350 | }
|
---|
351 | // Group the optimal splits of different coalitions into "finalResult"
|
---|
352 | int[][] finalResult = new int[numOfCoalitionsInFinalResult][];
|
---|
353 | int k = 0;
|
---|
354 | for (int i = 0; i < CS.length; i++) // For every coalition CS[i] in CS
|
---|
355 | {
|
---|
356 | for (int j = 0; j < optimalSplit[i].length; j++) // For every
|
---|
357 | // coalition in
|
---|
358 | // the optimal
|
---|
359 | // split of
|
---|
360 | // CS[i]
|
---|
361 | {
|
---|
362 | finalResult[k] = Combinations
|
---|
363 | .convertCombinationFromBitToByteFormat(
|
---|
364 | optimalSplit[i][j], input.numOfAgents);
|
---|
365 | k++;
|
---|
366 | }
|
---|
367 | }
|
---|
368 | return (finalResult);
|
---|
369 | }
|
---|
370 |
|
---|
371 | // *********************************************************************************************************
|
---|
372 |
|
---|
373 | /**
|
---|
374 | * Evaluate the possible splittings of the grand coalition. The way this is
|
---|
375 | * done is similar to the way IP searches the second layer while scanning
|
---|
376 | * the input.
|
---|
377 | */
|
---|
378 | private int evaluateSplitsOfGrandCoalition() {
|
---|
379 | // Initialization
|
---|
380 | double curValue = -1;
|
---|
381 | double bestValue = -1;
|
---|
382 | int bestHalfOfGrandCoalitionInBitFormat = -1;
|
---|
383 | int numOfCoalitions = 1 << input.numOfAgents;
|
---|
384 | int grandCoalition = (1 << input.numOfAgents) - 1;
|
---|
385 |
|
---|
386 | // Check the possible ways of splitting the grand coalition into two
|
---|
387 | // (non-empty) coalitions
|
---|
388 | for (int firstHalfOfGrandCoalition = (numOfCoalitions / 2)
|
---|
389 | - 1; firstHalfOfGrandCoalition < numOfCoalitions; firstHalfOfGrandCoalition++) {
|
---|
390 | int secondHalfOfGrandCoalition = numOfCoalitions - 1
|
---|
391 | - firstHalfOfGrandCoalition;
|
---|
392 | curValue = get_f(firstHalfOfGrandCoalition)
|
---|
393 | + get_f(secondHalfOfGrandCoalition);
|
---|
394 | if (curValue > bestValue) {
|
---|
395 | bestValue = curValue;
|
---|
396 | bestHalfOfGrandCoalitionInBitFormat = firstHalfOfGrandCoalition;
|
---|
397 | }
|
---|
398 | }
|
---|
399 | // Deal with the case where the first half is the grand coalition itself
|
---|
400 | int firstHalfOfGrandCoalition = grandCoalition;
|
---|
401 | curValue = get_f(firstHalfOfGrandCoalition);
|
---|
402 | if (curValue > bestValue) {
|
---|
403 | bestValue = curValue;
|
---|
404 | bestHalfOfGrandCoalitionInBitFormat = firstHalfOfGrandCoalition;
|
---|
405 | }
|
---|
406 | // Set t and f
|
---|
407 | set_f(grandCoalition, bestValue);
|
---|
408 | if (input.solverName == SolverNames.DP) // Then use the t table
|
---|
409 | t[grandCoalition] = bestHalfOfGrandCoalitionInBitFormat;
|
---|
410 |
|
---|
411 | return (bestHalfOfGrandCoalitionInBitFormat);
|
---|
412 | }
|
---|
413 |
|
---|
414 | // *********************************************************************************************************
|
---|
415 |
|
---|
416 | /**
|
---|
417 | * Given a coalition of a particular size, this method evaluates the
|
---|
418 | * possible splits of this coalition into two. Here, the evaluation is based
|
---|
419 | * on f (not v) of each of the two halves.
|
---|
420 | *
|
---|
421 | * NOTE: this will be called when running DP or IDP, but not when running
|
---|
422 | * ODP!!
|
---|
423 | */
|
---|
424 | private void evaluateSplits(int[] coalitionInByteFormat, int coalitionSize,
|
---|
425 | long[] numOfPossibleSplitsBasedOnSizeOfFirstHalf) {
|
---|
426 | double curValue = -1;
|
---|
427 | double bestValue = -1;
|
---|
428 | int bestHalfOfCoalitionInBitFormat = -1;
|
---|
429 | int numOfAgents = input.numOfAgents;
|
---|
430 | int coalitionInBitFormat = Combinations
|
---|
431 | .convertCombinationFromByteToBitFormat(coalitionInByteFormat);
|
---|
432 |
|
---|
433 | // bit[i] is the bit representing agent a_i (e.g. given 4 agents,
|
---|
434 | // bit[2]=2=0010, bit[3]=4=0100, etc.)
|
---|
435 | int[] bit = new int[numOfAgents + 1];
|
---|
436 | for (int i = 0; i < numOfAgents; i++)
|
---|
437 | bit[i + 1] = 1 << i;
|
---|
438 |
|
---|
439 | // Check the possible ways of splitting the coalition into two
|
---|
440 | // (non-empty) coalitions
|
---|
441 | for (int sizeOfFirstHalf = (int) Math.ceil(coalitionSize
|
---|
442 | / (double) 2); sizeOfFirstHalf < coalitionSize; sizeOfFirstHalf++) {
|
---|
443 | // int sizeOfSecondHalf = (int)(coalitionSize - sizeOfFirstHalf);
|
---|
444 |
|
---|
445 | // If we want to evaluate only the useful splits, and the size of
|
---|
446 | // the biggest half (which, here, happens to
|
---|
447 | // be the first half) is greater than the number of agents minus the
|
---|
448 | // size of the coalition, then continue.
|
---|
449 | if (((input.solverName == SolverNames.IDP)
|
---|
450 | || (input.solverName == SolverNames.ODPIP))
|
---|
451 | && (sizeOfFirstHalf > numOfAgents - coalitionSize)
|
---|
452 | && (coalitionSize != numOfAgents))
|
---|
453 | continue;
|
---|
454 |
|
---|
455 | // Set the initial indices of the members of the first half
|
---|
456 | int[] indicesOfMembersOfFirstHalf = new int[sizeOfFirstHalf];
|
---|
457 | for (int i = 0; i < sizeOfFirstHalf; i++)
|
---|
458 | indicesOfMembersOfFirstHalf[i] = i + 1;
|
---|
459 |
|
---|
460 | // Compute the first half (in bit format)
|
---|
461 | int firstHalfInBitFormat = 0;
|
---|
462 | for (int i = 0; i < sizeOfFirstHalf; i++)
|
---|
463 | firstHalfInBitFormat += bit[coalitionInByteFormat[indicesOfMembersOfFirstHalf[i]
|
---|
464 | - 1]];
|
---|
465 |
|
---|
466 | // Compute the second half (in bit format)
|
---|
467 | int secondHalfInBitFormat = (coalitionInBitFormat
|
---|
468 | - firstHalfInBitFormat);
|
---|
469 |
|
---|
470 | // Update the functions t and f
|
---|
471 | curValue = get_f(firstHalfInBitFormat)
|
---|
472 | + get_f(secondHalfInBitFormat);
|
---|
473 | if (bestValue < curValue) {
|
---|
474 | bestValue = curValue;
|
---|
475 | if (input.solverName == SolverNames.DP)
|
---|
476 | bestHalfOfCoalitionInBitFormat = firstHalfInBitFormat;
|
---|
477 | }
|
---|
478 | // Do the same for the remaining possibilities of the first and
|
---|
479 | // second halves
|
---|
480 | for (int j = 1; j < numOfPossibleSplitsBasedOnSizeOfFirstHalf[sizeOfFirstHalf]; j++) {
|
---|
481 | /**/
|
---|
482 | Combinations.getPreviousCombination(coalitionSize,
|
---|
483 | sizeOfFirstHalf, indicesOfMembersOfFirstHalf);
|
---|
484 |
|
---|
485 | // Compute the first half (in bit format)
|
---|
486 | firstHalfInBitFormat = 0;
|
---|
487 | for (int i = 0; i < sizeOfFirstHalf; i++)
|
---|
488 | firstHalfInBitFormat += bit[coalitionInByteFormat[indicesOfMembersOfFirstHalf[i]
|
---|
489 | - 1]];
|
---|
490 | /**/
|
---|
491 | // Combinations.getPreviousCombinationInBitFormat2(numOfAgents,
|
---|
492 | // sizeOfFirstHalf, firstHalfInBitFormat);
|
---|
493 |
|
---|
494 | // Compute the second half (in bit format)
|
---|
495 | secondHalfInBitFormat = (coalitionInBitFormat
|
---|
496 | - firstHalfInBitFormat);
|
---|
497 |
|
---|
498 | // Update the functions t and f
|
---|
499 | curValue = get_f(firstHalfInBitFormat)
|
---|
500 | + get_f(secondHalfInBitFormat);
|
---|
501 | if (bestValue < curValue) {
|
---|
502 | bestValue = curValue;
|
---|
503 | if (input.solverName == SolverNames.DP)
|
---|
504 | bestHalfOfCoalitionInBitFormat = firstHalfInBitFormat;
|
---|
505 | }
|
---|
506 | }
|
---|
507 | }
|
---|
508 | // Deal with the case where the first half is the coalition itself
|
---|
509 | int firstHalfInBitFormat = coalitionInBitFormat;
|
---|
510 | curValue = get_f(firstHalfInBitFormat);
|
---|
511 | if (bestValue < curValue) {
|
---|
512 | bestValue = curValue;
|
---|
513 | if (input.solverName == SolverNames.DP)
|
---|
514 | bestHalfOfCoalitionInBitFormat = firstHalfInBitFormat;
|
---|
515 | }
|
---|
516 |
|
---|
517 | // Update the maximum value of f for the size that is equal to
|
---|
518 | // "coalitionSize"
|
---|
519 | if (input.solverName == SolverNames.ODPIP)
|
---|
520 | if (result.get_max_f(coalitionSize - 1) < bestValue)
|
---|
521 | result.set_max_f(coalitionSize - 1, bestValue);
|
---|
522 |
|
---|
523 | // Finalizing
|
---|
524 | set_f(coalitionInBitFormat, bestValue);
|
---|
525 | if (input.solverName == SolverNames.DP)
|
---|
526 | t[coalitionInBitFormat] = bestHalfOfCoalitionInBitFormat;
|
---|
527 | }
|
---|
528 |
|
---|
529 | // *********************************************************************************************************
|
---|
530 |
|
---|
531 | /**
|
---|
532 | * Given a coalition of a particular size, this method evaluates the
|
---|
533 | * possible splits of this coalition into two. Here, the evaluation is based
|
---|
534 | * on f (not v) of each of the two halves. NOTE: here, the iteration over
|
---|
535 | * all splits is done efficiently
|
---|
536 | */
|
---|
537 | private void evaluateSplitsEfficiently(int[] coalitionInByteFormat,
|
---|
538 | int coalitionSize, int numOfPossibilities) {
|
---|
539 | double curValue = -1;
|
---|
540 | double bestValue = -1;
|
---|
541 | int bestHalfOfCoalitionInBitFormat = -1;
|
---|
542 | int coalitionInBitFormat = Combinations
|
---|
543 | .convertCombinationFromByteToBitFormat(coalitionInByteFormat);
|
---|
544 |
|
---|
545 | bestValue = input.getCoalitionValue(coalitionInBitFormat);
|
---|
546 | bestHalfOfCoalitionInBitFormat = coalitionInBitFormat;
|
---|
547 |
|
---|
548 | // Check the possible ways of splitting the grand coalition into two
|
---|
549 | // (non-empty) coalitions
|
---|
550 | for (int firstHalfInBitFormat = coalitionInBitFormat - 1
|
---|
551 | & coalitionInBitFormat; /* firstHalfInBitFormat > 0 */; firstHalfInBitFormat = firstHalfInBitFormat
|
---|
552 | - 1 & coalitionInBitFormat) {
|
---|
553 | int secondHalfInBitFormat = coalitionInBitFormat
|
---|
554 | ^ firstHalfInBitFormat;
|
---|
555 |
|
---|
556 | // Update the functions t and f
|
---|
557 | curValue = get_f(firstHalfInBitFormat)
|
---|
558 | + get_f(secondHalfInBitFormat);
|
---|
559 |
|
---|
560 | if (bestValue <= curValue) {
|
---|
561 | bestValue = curValue;
|
---|
562 | if (input.solverName == SolverNames.DP) { // i.e., if we are
|
---|
563 | // using the t table
|
---|
564 | if (Integer.bitCount(firstHalfInBitFormat) > Integer
|
---|
565 | .bitCount(secondHalfInBitFormat))
|
---|
566 | bestHalfOfCoalitionInBitFormat = firstHalfInBitFormat;
|
---|
567 | else
|
---|
568 | bestHalfOfCoalitionInBitFormat = secondHalfInBitFormat;
|
---|
569 | }
|
---|
570 | }
|
---|
571 | if ((firstHalfInBitFormat & (firstHalfInBitFormat - 1)) == 0)
|
---|
572 | break;
|
---|
573 | }
|
---|
574 | // Update the maximum value of f for the size that is equal to
|
---|
575 | // "coalitionSize"
|
---|
576 | if (input.solverName == SolverNames.ODPIP)
|
---|
577 | if (result.get_max_f(coalitionSize - 1) < bestValue)
|
---|
578 | result.set_max_f(coalitionSize - 1, bestValue);
|
---|
579 |
|
---|
580 | // Finalizing
|
---|
581 | set_f(coalitionInBitFormat, bestValue);
|
---|
582 | if (input.solverName == SolverNames.DP)
|
---|
583 | t[coalitionInBitFormat] = bestHalfOfCoalitionInBitFormat;
|
---|
584 | }
|
---|
585 |
|
---|
586 | // *********************************************************************************************************
|
---|
587 |
|
---|
588 | /**
|
---|
589 | * Given a non-empty coalition C \subset A\{1,2}, this method evaluates the
|
---|
590 | * possible splits of this coalition into two coalitions, C1 and C2
|
---|
591 | * (including the split {\emptyset,C}). For every such split, compute: f(C1
|
---|
592 | * U {1}) + f(C2 U {2}) f(C1 U {2}) + f(C2 U {1}) if( min agents in C1 < min
|
---|
593 | * agent in A \ (C U {1,2}) ) f(C2 U {1,2}) + f(C1) if( min agents in C2 <
|
---|
594 | * min agent in A \ (C U {1,2}) ) f(C1 U {1,2}) + f(C2)
|
---|
595 | */
|
---|
596 | private void evaluateSplitsOptimally(int C, int sizeOfC, int grandCoalition,
|
---|
597 | int numOfAgents) {
|
---|
598 | double bestValue = input.getCoalitionValue(C + 3); // curValue = v( C U
|
---|
599 | // {1,2} )
|
---|
600 |
|
---|
601 | // Compute the minimum agent in: "remainingAgents", which is: A \ ( C U
|
---|
602 | // {1,2} )
|
---|
603 | int remainingAgents = grandCoalition - C - 3;
|
---|
604 | int minAgent = 0; // here, I put "=0" just to stop the compiler from
|
---|
605 | // complaining
|
---|
606 | for (int i = 2; i < numOfAgents; i++)
|
---|
607 | if ((remainingAgents & (1 << i)) != 0) { // If agent "i+1" is a
|
---|
608 | // member of
|
---|
609 | // "remainingAgents"
|
---|
610 | minAgent = i + 1;
|
---|
611 | break;
|
---|
612 | }
|
---|
613 | // set "acceptableMinAgents" to be the set of all agents from 1 to
|
---|
614 | // minAgent-1
|
---|
615 | int acceptableMinAgents = (1 << (minAgent - 1)) - 1;
|
---|
616 |
|
---|
617 | // Check all splits of C into two coalitions, including the split
|
---|
618 | // {C,\emptyset}
|
---|
619 | double value;
|
---|
620 | for (int C1 = C & C; /* C1>0 */; C1 = C1 - 1 & C) {
|
---|
621 | int C2 = C - C1;
|
---|
622 |
|
---|
623 | value = input.coalitionValues[C1 + 1]
|
---|
624 | + input.coalitionValues[C2 + 2];
|
---|
625 | if (bestValue < value)
|
---|
626 | bestValue = value;
|
---|
627 |
|
---|
628 | value = input.coalitionValues[C1 + 2]
|
---|
629 | + input.coalitionValues[C2 + 1];
|
---|
630 | if (bestValue < value)
|
---|
631 | bestValue = value;
|
---|
632 |
|
---|
633 | if ((C1 & acceptableMinAgents) != 0) {
|
---|
634 | value = input.coalitionValues[C1] + get_f(C2 + 3);
|
---|
635 | if (bestValue < value)
|
---|
636 | bestValue = value;
|
---|
637 | }
|
---|
638 | if ((C2 & acceptableMinAgents) != 0) {
|
---|
639 | value = input.coalitionValues[C2] + get_f(C1 + 3);
|
---|
640 | if (bestValue < value)
|
---|
641 | bestValue = value;
|
---|
642 | }
|
---|
643 | if ((C1 & (C1 - 1)) == 0)
|
---|
644 | break; // check if we have seen all splits of C into two
|
---|
645 | // non-empty coalitions, {C1,C2}
|
---|
646 | }
|
---|
647 | set_f(C + 3, bestValue); // set f[ C U {1,2}] = bestValue
|
---|
648 |
|
---|
649 | // Update the maximum value of f for the size that is equal to "sizeOfC
|
---|
650 | // + 2"
|
---|
651 | if (input.solverName == SolverNames.ODPIP)
|
---|
652 | if (result.get_max_f((sizeOfC + 2) - 1) < bestValue) // we use:
|
---|
653 | // "sizeOfC+2"
|
---|
654 | // because
|
---|
655 | // we want:
|
---|
656 | // C U {1,2}
|
---|
657 | result.set_max_f((sizeOfC + 2) - 1, bestValue);
|
---|
658 | }
|
---|
659 |
|
---|
660 | // `*********************************************************************************************************
|
---|
661 |
|
---|
662 | /**
|
---|
663 | * Compute the optimal split of coalition {1,2}
|
---|
664 | */
|
---|
665 | private void evaluateSplitsOf12() {
|
---|
666 | int coalitionSize = 2;
|
---|
667 | int coalitionInBitFormat = 3;
|
---|
668 | int firstHalfInBitFormat = 1;
|
---|
669 | int secondHalfInBitFormat = 2;
|
---|
670 | double valueOfCoalition = input.getCoalitionValue(coalitionInBitFormat);
|
---|
671 | double valueOfSplit = get_f(firstHalfInBitFormat)
|
---|
672 | + get_f(secondHalfInBitFormat);
|
---|
673 | double bestValue = Math.max(valueOfCoalition, valueOfSplit);
|
---|
674 | set_f(coalitionInBitFormat, bestValue);
|
---|
675 | if (input.solverName == SolverNames.ODPIP)
|
---|
676 | result.set_max_f(coalitionSize - 1, bestValue);
|
---|
677 | }
|
---|
678 |
|
---|
679 | // *********************************************************************************************************
|
---|
680 |
|
---|
681 | /**
|
---|
682 | * Given a coalition, and given the value of the best split, find the best
|
---|
683 | * split, and return the first half
|
---|
684 | */
|
---|
685 | private int getBestHalf(int coalitionInBitFormat) {
|
---|
686 | double valueOfBestSplit = input.getCoalitionValue(coalitionInBitFormat);
|
---|
687 | int best_firstHalfInBitFormat = coalitionInBitFormat;
|
---|
688 |
|
---|
689 | // bit[i] is the bit representing agent a_i (e.g. given 4 agents,
|
---|
690 | // bit[2]=2=0010, bit[3]=4=0100, etc.)
|
---|
691 | int[] bit = new int[input.numOfAgents + 1];
|
---|
692 | for (int i = 0; i < input.numOfAgents; i++)
|
---|
693 | bit[i + 1] = 1 << i;
|
---|
694 |
|
---|
695 | // Convert the original coalition from bit format to int format
|
---|
696 | int[] coalitionInByteFormat = Combinations
|
---|
697 | .convertCombinationFromBitToByteFormat(coalitionInBitFormat,
|
---|
698 | input.numOfAgents);
|
---|
699 |
|
---|
700 | // Check the possible ways of splitting the coalition into two
|
---|
701 | // (non-empty) coalitions
|
---|
702 | int coalitionSize = coalitionInByteFormat.length;
|
---|
703 | for (int sizeOfFirstHalf = (int) Math.ceil(coalitionSize
|
---|
704 | / (double) 2); sizeOfFirstHalf < coalitionSize; sizeOfFirstHalf++) {
|
---|
705 | int sizeOfSecondHalf = coalitionSize - sizeOfFirstHalf;
|
---|
706 |
|
---|
707 | // Compute the number of possible splits
|
---|
708 | long numOfPossibleSplits;
|
---|
709 | if (((coalitionSize % 2) == 0)
|
---|
710 | && (sizeOfFirstHalf == sizeOfSecondHalf))
|
---|
711 | numOfPossibleSplits = Combinations.binomialCoefficient(
|
---|
712 | coalitionSize, sizeOfFirstHalf) / 2;
|
---|
713 | else
|
---|
714 | numOfPossibleSplits = Combinations
|
---|
715 | .binomialCoefficient(coalitionSize, sizeOfFirstHalf);
|
---|
716 |
|
---|
717 | // Set the initial indices of the members of the first half
|
---|
718 | int[] indicesOfMembersOfFirstHalf = new int[sizeOfFirstHalf];
|
---|
719 | for (int i = 0; i < sizeOfFirstHalf; i++)
|
---|
720 | indicesOfMembersOfFirstHalf[i] = i + 1;
|
---|
721 |
|
---|
722 | // Compute the first half (in bit format)
|
---|
723 | int firstHalfInBitFormat = 0;
|
---|
724 | for (int i = 0; i < sizeOfFirstHalf; i++)
|
---|
725 | firstHalfInBitFormat += bit[coalitionInByteFormat[indicesOfMembersOfFirstHalf[i]
|
---|
726 | - 1]];
|
---|
727 |
|
---|
728 | // Compute the second half (in bit format)
|
---|
729 | int secondHalfInBitFormat = (coalitionInBitFormat
|
---|
730 | - firstHalfInBitFormat);
|
---|
731 |
|
---|
732 | // Check if we have found a half that gives the value of the best
|
---|
733 | // split
|
---|
734 | if (get_f(firstHalfInBitFormat)
|
---|
735 | + get_f(secondHalfInBitFormat) > valueOfBestSplit) {
|
---|
736 | best_firstHalfInBitFormat = firstHalfInBitFormat;
|
---|
737 | valueOfBestSplit = get_f(firstHalfInBitFormat)
|
---|
738 | + get_f(secondHalfInBitFormat);
|
---|
739 | }
|
---|
740 | // Do the same for the remaining possibilities of the first and
|
---|
741 | // second halves
|
---|
742 | for (int j = 1; j < numOfPossibleSplits; j++) {
|
---|
743 | Combinations.getPreviousCombination(coalitionSize,
|
---|
744 | sizeOfFirstHalf, indicesOfMembersOfFirstHalf);
|
---|
745 |
|
---|
746 | // Compute the first half (in bit format)
|
---|
747 | firstHalfInBitFormat = 0;
|
---|
748 | for (int i = 0; i < sizeOfFirstHalf; i++)
|
---|
749 | firstHalfInBitFormat += bit[coalitionInByteFormat[indicesOfMembersOfFirstHalf[i]
|
---|
750 | - 1]];
|
---|
751 |
|
---|
752 | // Compute the second half (in bit format)
|
---|
753 | secondHalfInBitFormat = (coalitionInBitFormat
|
---|
754 | - firstHalfInBitFormat);
|
---|
755 |
|
---|
756 | // Check if we have found a half that gives the value of the
|
---|
757 | // best split
|
---|
758 | if (get_f(firstHalfInBitFormat)
|
---|
759 | + get_f(secondHalfInBitFormat) > valueOfBestSplit) {
|
---|
760 | best_firstHalfInBitFormat = firstHalfInBitFormat;
|
---|
761 | valueOfBestSplit = get_f(firstHalfInBitFormat)
|
---|
762 | + get_f(secondHalfInBitFormat);
|
---|
763 | }
|
---|
764 | }
|
---|
765 | }
|
---|
766 | // If we haven't found any split of which the value is equal to
|
---|
767 | // "valueOfBestSplit", then:
|
---|
768 | return (best_firstHalfInBitFormat);
|
---|
769 | }
|
---|
770 |
|
---|
771 | // ******************************************************************************************************
|
---|
772 |
|
---|
773 | /**
|
---|
774 | * Print the percentage of coalitions, C, for which: f(C) = v(C). Should be
|
---|
775 | * used with DP, not IDP or ODP
|
---|
776 | */
|
---|
777 | private void printPercentageOf_v_equals_f() {
|
---|
778 | int numOfAgents = input.numOfAgents;
|
---|
779 | int totalNumOfCoalitions = 1 << numOfAgents;
|
---|
780 | int totalCounter = 0;
|
---|
781 | long[] numOfCoalitionsOfParticularSize = new long[numOfAgents + 1];
|
---|
782 | int[] counter = new int[numOfAgents + 1];
|
---|
783 | for (int i = 1; i < numOfAgents + 1; i++) {
|
---|
784 | counter[i] = 0;
|
---|
785 | numOfCoalitionsOfParticularSize[i] = Combinations
|
---|
786 | .binomialCoefficient(numOfAgents, i);
|
---|
787 | }
|
---|
788 | for (int i = 1; i < totalNumOfCoalitions; i++)
|
---|
789 | if (input.getCoalitionValue(i) == get_f(i)) {
|
---|
790 | counter[Integer.bitCount(i)]++;
|
---|
791 | totalCounter++;
|
---|
792 | }
|
---|
793 | System.out.println(
|
---|
794 | "percentage of all coalitions of that are optimal partitions of themselves is: "
|
---|
795 | + ((double) totalCounter / totalNumOfCoalitions));
|
---|
796 | for (int i = 2; i <= numOfAgents; i++) {
|
---|
797 | System.out.println(
|
---|
798 | "size: " + i + " percentage: " + ((double) counter[i]
|
---|
799 | / numOfCoalitionsOfParticularSize[i]));
|
---|
800 | // System.out.println(" counter = "+counter[i]);
|
---|
801 | // System.out.println("numOfCoalitions =
|
---|
802 | // "+numOfCoalitionsOfParticularSize[i]);
|
---|
803 | }
|
---|
804 | }
|
---|
805 |
|
---|
806 | // ******************************************************************************************************
|
---|
807 |
|
---|
808 | /**
|
---|
809 | * Given the f values, get the "weighted" distribution. Meaning that every
|
---|
810 | * f(C) value is divided by the size of C
|
---|
811 | */
|
---|
812 | private void printDistributionOfThefTable() {
|
---|
813 | // Initialization
|
---|
814 | int totalNumOfCoalitions = 1 << input.numOfAgents;
|
---|
815 | int[] counter = new int[40];
|
---|
816 | for (int i = 0; i < counter.length; i++) {
|
---|
817 | counter[i] = 0;
|
---|
818 | }
|
---|
819 | // get the minimum and maximum values
|
---|
820 | long min = Integer.MAX_VALUE;
|
---|
821 | long max = Integer.MIN_VALUE;
|
---|
822 | for (int i = 1; i < totalNumOfCoalitions; i++) {
|
---|
823 | long currentWeightedValue = Math
|
---|
824 | .round(get_f(i) / Integer.bitCount(i));
|
---|
825 | if (min > currentWeightedValue)
|
---|
826 | min = currentWeightedValue;
|
---|
827 | if (max < currentWeightedValue)
|
---|
828 | max = currentWeightedValue;
|
---|
829 | }
|
---|
830 | System.out.println("The maximum weighted f value is " + max
|
---|
831 | + " and the minimum one is " + min);
|
---|
832 |
|
---|
833 | // get the distribution
|
---|
834 | for (int i = 1; i < totalNumOfCoalitions; i++) {
|
---|
835 | long currentWeightedValue = Math
|
---|
836 | .round(get_f(i) / Integer.bitCount(i));
|
---|
837 | int percentageOfMax = Math.round((currentWeightedValue - min)
|
---|
838 | * (counter.length - 1) / (max - min));
|
---|
839 | counter[percentageOfMax]++;
|
---|
840 | }
|
---|
841 | // Printing
|
---|
842 | System.out
|
---|
843 | .println("The distribution of the weighted coalition values:");
|
---|
844 | System.out.print(
|
---|
845 | ValueDistribution.toString(input.valueDistribution) + "_f = [");
|
---|
846 | for (int i = 0; i < counter.length; i++)
|
---|
847 | System.out.print(counter[i] + " ");
|
---|
848 | System.out.println("]");
|
---|
849 | }
|
---|
850 | } |
---|