
Using the Genius Framework for Running Autonomous Negotiating Parties

T. Baarslag, W. Pasman, K. Hindriks, D. Tykhonov

September 27, 2018

Abstract

Genius [?] is a negotiation environment that implements an open architecture for heterogeneous negotiating parties.
Genius can be used to implement, or simulate, real life negotiations. This document describes how you can install the
environment, work with the provided scenarios and negotiation parties, and write, compile, and run an party yourself.

1

Contents

1 Theory Crash Course 4
1.1 Bids, Issues and Values . 4
1.2 Preference Profile, Utility Space . 4

1.2.1 Utility spaces . 4
1.2.2 Partially ordered profile . 5

1.3 Optimality of a Bid . 5
1.4 Negotiation Protocol . 5
1.5 Reservation Value . 6
1.6 Time Pressure . 6

2 Protocols 6
2.1 Stacked Alternating Offers Protocol . 7
2.2 Alternating Multiple Offers Protocol . 7
2.3 Alternating Majority Consensus Protocol . 7
2.4 Simple Mediator Based Protocol . 7
2.5 Mediator Feedback Based Protocol . 8
2.6 Beyond the Protocol . 8

3 Install and Run Genius 8

4 Scenario Creation 9
4.1 Creating a Domain . 9
4.2 Creating an AdditiveUtilitySpace . 10
4.3 Creating an UncertainAdditiveUtilitySpace . 11

5 Running Negotiations 11
5.1 Running a Session . 11
5.2 Running a Tournament . 12

5.2.1 Bilateral special options . 13
5.3 Running from the command line . 14

5.3.1 Prepare the XML settings file . 14
5.3.2 Run the tournament . 15

5.4 Tournament Session Generation . 15
5.4.1 Multilateral generation . 15
5.4.2 Bilateral generation . 15

6 Quality Measures 16
6.1 Session logs . 16

6.1.1 Session CSV file . 16
6.1.2 Session XML file . 16

6.2 Tournament logs . 17
6.2.1 Tournament log.csv file . 17
6.2.2 Tournament log.xml file . 18
6.2.3 Tournament logStats.xml file . 18

7 Creating a Negotiation Party 18
7.1 Example Parties . 18
7.2 Implementing NegotiationParty . 19

7.2.1 Receiving the Opponent’s Action . 20
7.2.2 Choosing an Action . 20

7.3 Implementing a party with uncertainty . 21
7.3.1 Overriding functions . 21
7.3.2 Bid Ranking . 22
7.3.3 Accessing the real utility space for debugging . 22
7.3.4 Uncertainty agent checklist . 22

7.4 Loading a NegotiationParty . 22
7.5 Third party code . 23

2

8 Creating a BOA Party 23
8.1 Components of the BOA Framework . 23
8.2 Create a BOA Party . 24
8.3 Creating BOA Components . 25

8.3.1 Set up a Workspace . 25
8.3.2 Add component to Genius . 25
8.3.3 Parameters . 25
8.3.4 Creating an Offering Strategy . 25
8.3.5 Creating an Acceptance Condition . 26
8.3.6 Creating an Opponent Model . 26
8.3.7 Creating an Opponent Model Strategy . 26

8.4 Advanced: Converting a BOA Party to a Party . 26
8.5 Advanced: Multi-Acceptance Criteria (MAC) . 27

9 Debugging 28
9.1 Source code and javadocs . 28

10 Conclusion 28

11 Appendix 29
11.1 Connect Genius to Eclipse . 29
11.2 Insert example party . 30
11.3 Debugging . 30

3

1 Theory Crash Course

This section provides a crash course on some essential theory needed to understand the negotiation system. Furthermore,
it provides an overview of the features of a negotiation implemented in Genius .

1.1 Bids, Issues and Values

Parties participating in a negotiation interact in a domain. The domain specifies the possible bids. The parties all have
their own preferences, which is reflected in their profile. Figure 1 shows a picture of a domain that describes the issues in
the negotiation.

Figure 1: An example domain for laptop negotiation. Issues are orange, values are green

The Domain describes which issues are the subject of the negotiation and which values an issue can attain. A domain
contains n issues: D = (I1, . . . , In). Each issue i consists of k values: Ii = (vi1, . . . , v

i
k). Combining these concepts, a party

can formulate a Bid : a mapping from each issue to a chosen value (denoted by c), b = (vic, . . . , v
n
c).

To give an example, in the laptop domain the issues are “laptop”, “harddisk” and “monitor”. In this domain the issues
can only attain discrete values, e.g. the “harddisk” issue can only have the values “60Gb”, “80Gb” and “120Gb”. These is-
sues are all instance of IssueDiscrete. A valid bid in the laptop domain is e.g. Laptop:Dell, Harddisk: 80Gb, monitor:17".
A bid Laptop Asus, Harddisk: 80Gb, monitor:17" is not a valid bid because Asus is not a valid issue value in the ex-
ample domain, and Laptop Asus, Harddisk: 80Gb, CPU:i7" is not valid because CPU is not an issue in this domain.

1.2 Preference Profile, Utility Space

The Preference Profile describes how bids are preferred over other bids. Typically, each participant in a negotiation has
his own preference profile. Genius supports utility spaces and partially ordered profiles.

1.2.1 Utility spaces

One form of profile is the UtilitySpace. The UtilitySpace specifies the preferences using an evaluator : a function that maps
bids into a real number in the range [0,1] where 0 is the minimum utility and 1 is the maximum utility of a bid. So a bid
is preferred if and only if it has a higher utility than another bid.

A common form of the Utility space is the Linear Additive Utility Space. This space is additive because each of the
issue values in the domain have their own utility of their own, and all the sub-utilities just add up for the total utility of
the bid. For instance, we like Apple with utility evaluation 0.7 and Dell with 0.4, completely independent of how much
memory the computer has. Figure 2 shows a picture of a utility space for the example domain that we gave above.

In an additive space the evaluator also specifies the importance of the issue relative to the other issues in the form of
a weight. The weights of all issues sum up to 1.0 to simplify calculating the utility of a bid. The utility is the weighted
sum of the scaled evaluation values.

U(vic, . . . , v
n
c) =

n∑
i=1

wi
eval(vic)

max(eval(Ii))
(1)

Other types of UtilitySpaces are the ConstraintUtilitySpace and the NonlinearUtilitySpace. These are more experimental
and not described here in more detail.

4

Figure 2: An example additive utility space for the laptop domain.

1.2.2 Partially ordered profile

The UncertainAdditiveUtilitySpace is a profile type uses partially ordering (instead of assigning a utility value to bids).
In a partial ordering, the available information is that bid X is preferred over bid Y for a subset of the possible bids.
For research purposes, this profile is generated from a AdditiveUtilitySpace as will be described in the section 4, but
the underlying AdditiveUtilitySpace is normally not visible for the party that uses the profile. The generation of the
partial ordering works as follows. The values comparisons, errors and experimental are additional parameters of the
UncertainAdditiveUtilitySpace that control the generation.

1. a subset of comparisons bids are selected randomly from all possible bids.

2. the selected bids are sorted in ascending utility

Notice: AbstractNegotiatonParty on initialization will do a simplistic attempt to convert an UncertainAdditiveUtili-
tySpace into an AdditiveLinearUtilitySpace.

Warning: if the number of possible bids is large, iterating over all bids in the space and sorting them can run out of
memory and crash Genius .

1.3 Optimality of a Bid

In general, given the set of all bids, there are a small subset of bids which are more preferred as outcomes by all parties
in the negotiation. Identifying these special bids may lead to a better agreement for both parties.

For a single party, the optimal bid is the bid that is most preferred / has maximum utility. Often this bid is not
preferred so much / has a low utility for other parties, and therefore the chance of agreement is low. A more general notion
of optimality of a negotiation involves the utility of all parties.

There are multiple ways to define a more global “optimum”. One approach to optimality is that a bid is not optimal
for both parties if there is another bid that has the higher utility for one party, and at least equal utility for the other
party. Thus, only bids in Figure 3 for which there is no other bid at the top right is optimal. This type of optimality is
called Pareto optimality and forms an important concept in automated negotiation. The collection of Pareto optimal bids
is called the Pareto optimal frontier.

A major challenge in a negotiation is that parties can hide their preferences. This entails that an party does not know
which bid the opponent prefers given a set of bids. This problem can be partly resolved by building an opponent model
of the opponent’s preferences by analyzing the negotiation trace. Each turn the party can now offer the best bid for the
opponent given a set of similar preferred bids. Genius provides a number of components that can estimate an opponent
model.

1.4 Negotiation Protocol

The negotiation protocol determines the overall order of actions during a negotiation. Parties are obliged to stick to
this protocol, as deviations from the protocol are caught and penalized. Genius supports multiple protocols. These are
discussed in detail in section 2.

5

Figure 3: A point indicates the utility for both parties of a bid. The red line is the Pareto optimal frontier.

1.5 Reservation Value

A reservation value is a real-valued constant that sets a threshold below which a rational party should not accept any offers.
Intuitively, a reservation value is the utility associated with the Best Alternative to a Negotiated Agreement (BATNA).

A reservation value is the minimum acceptable utility, offers with a utility would normally not be accepted by a party.
Reservation values typically differ for each negotiation party. In case no reservation value is set in a profile, it is assumed to
be 0. Notice that if a negotiation ends with no agreement, parties normally get a utility of 0, regardless of the reservation
value.

1.6 Time Pressure

A negotiation lasts a predefined time in seconds, or alternatively rounds. In Genius the time line is normalized, i.e.: time
t ∈ [0, 1], where t = 0 represents the start of the negotiation and t = 1 represents the deadline. Notice that manipulation
of the remaining time can be a factor influencing the outcome.

There is an important difference between a time-based and rounds-based protocol. In a time-based protocol the
computational cost of an party should be taken into account as it directly influences the amount of bids which can
be made. In contrast, for a rounds-based negotiation the time can be thought of as paused within a round; therefore
computational cost does not play a role.

Apart from a deadline, a scenario may also feature discount factors. Discount factors decrease the utility of the bids
under negotiation as time passes. While time is shared between both parties, the discount generally differs per party.
The default implementation of discount factors is as follows: let d in [0, 1] be the discount factor that is specified in the
preference profile of a party; let t in [0, 1] be the current normalized time, as defined by the timeline; we compute the
discounted utility U t

D of an outcome ω from the undiscounted utility function U as follows:

U t
D(ω) = U(ω) · dt (2)

If d = 1, the utility is not affected by time, and such a scenario is considered to be undiscounted, while if d is very small
there is high pressure on the parties to reach an agreement. Note that discount factors are part of the preference profiles
and therefore different parties may have a different discount factor.

If a discount factor is present, reservation values will be discounted in exactly the same way as the utility of any other
outcome. It is worth noting that, by having a discounted reservation value, it may be rational for parties to end the
negotiation early and thereby default to the reservation value.

Note: time pressure has little meaning if the profile is not defined in terms of utilities, eg a partially ordered profile.

2 Protocols

This section describes the various negotiation protocols. The protocol determines the overall order of actions during a
negotiation. This section focuses on the MultiParty protocols as these have been properly developed. There is also a
protocol class for the bilateral negotiation, but this is basically a hard coded Stacked Alternating Offers Protocol and not
further developed.

The (Multilateral) protocol describes if the negotiation is finished, what the agreement is, which actions can be done
in the next round. Briefly, to run a session the system checks with the protocol if the negotiation is already finished,
and if not which calls need to be made to the parties (both chooseAction and receiveMessage). We recommend checking
the javadoc of MultilateralProtocol for up-to-date detail information and how the protocol is used by the system to run
sessions.

The Multilateral protocol uses the notion of rounds and turns to describe the negotiation layout. A round is a part of
the negotiation where all participants get a turn to respond to the current state of the negotiation. A turn refers to the
opportunity of one party to make a response to the current state of the negotiation.

6

If a party violates the protocol – for instance by sending an action that is not one of the allowed ones, or by crashing,
the negotiation ends and the outcome usually is ’no agreement’ for all parties. In bilateral negotiation we have a special
case then: the party’s utility is set to its reservation value, whereas the opponent is awarded the utility of the last offer.

All protocols are found in the package genius.core.protocol and have the names matching the subsections below.

2.1 Stacked Alternating Offers Protocol

According to this protocol [?] , all of the participants around the table get a turn per round. Turns are taken clock-
wise around the table. One of the negotiating parties starts the negotiation with an offer that is observed by all others
immediately. Whenever an offer is made, the next party in line gets a call to receiveMessage containing the bid, followed
by a call to chooseAction from which it can return the following actions:

• Accept the offer (not available the very first turn).

• send an Offer to make a counter offer (thus rejecting and overriding the previous offer, if there was any)

• send an EndNegotiation and ending the negotiation without any agreement.

This protocol is the default protocol for Parties (as returned by getProtocol()).

2.2 Alternating Multiple Offers Protocol

According to this protocol [?] , all parties have a bid from all parties available to them, before they vote on these bids.
This implemented in the following way: The protocol has a bidding phase followed by voting phases. In the bidding phase
all participants put their offer on the table. These offers appear to all parties through receiveMessage() in a specific order.
In the voting phases all participants vote on all of the bids on the negotiation table, in the same order as received. For
each offer, the party’s chooseAction() is called. If one of the bids on the negotiation table is accepted by all of the parties,
then the negotiation ends with this bid.

In each even round (we start in round 0), each party gets only one turn for an OfferForVoting.
In each odd round there are N voting turns for each party (N being the number of offers), one for each offer in order

of reception. these are the available options:

• Accept the offer

• Reject the offer

2.3 Alternating Majority Consensus Protocol

This protocol is essentially equal to the Alternating Multiple Offers Protocol, but now an offer the protocol keeps track
of the acceptable offer that got most accepts. Initially, this may be the first offer that got one accept. After a number of
rounds, some offers receive multiple accepts and these then become the new acceptable offer.

If an offer is accepted by all parties, the negotiation ends. Otherwise, the negotiation continues (unless the deadline is
reached). If the deadline is reached, the acceptable offer becomes the agreement.

2.4 Simple Mediator Based Protocol

In this protocol, the parties do not hear the other parties directly. Instead, they only hear the mediator and the mediator
hears the bids of all the parties. The mediator determines which bid will be voted on, collects the votes and determines
the outcome. The mediator is just another NegotiationParty, but it extends Mediator.

The protocol requires that exactly one party is a Mediator. The Genius GUI enforces this presence of a Mediator.
When you run a negotiation from the command line you have to ensure the presence of a single Mediator.

This protocol uses the following turns in every round:

1. Mediator proposes an OfferForVoting

2. The other parties (not the mediator) place a VoteForOfferAcceptance on the OfferForVoting

3. The mediator makes a InformVotingResult that informs all parties about the outcome of this round.

With this protocol, the last InformVotingResult with an accept determines the current outcome.
As mentioned, you have to provide one mediator. There is the following options

• RandomFlippingMediator. This mediator generates random bids until all parties accept. Then, it randomly flips one
issue of the current offer to generate a new offer. It keeps going until the deadline is reached.

• FixedOrderFlippingMediator. This mediator behaves exactly like the RandomFlippingMediator, except that it uses
a fixed-seed Random generator for every run. This makes it easier for testing.

7

2.5 Mediator Feedback Based Protocol

Like the Simple Mediator Based Protocol, the parties do not hear the other parties directly. Instead, they only hear the
mediator and the mediator hears the bids of all the parties. The mediator determines which bid will be voted on, collects
the votes and determines the outcome. The mediator is just another NegotiationParty, but it extends Mediator.

The mediator generates its first bid randomly and sends it to the negotiating parties. After each bid, each party
compares the mediator's new bid with his previous bid and gives feedback (‘better’, ‘worse’ or ‘same’) to the mediator.
For its further bids, the mediator updates the previous bid, hopefully working towards some optimum. The negotiation
runs on until the deadline (unless some party crashes). This protocol is explained in detail in [?].

This protocol uses the following turns in every round:

1. Mediator proposes an OfferForFeedback.

2. The other parties (not the mediator) place a GiveFeedback, indicateing whether the last bid placed by the mediator
is better or worse than the previous bid.

The accepted bid is the last bid that was not receiving a ‘worse’ vote.

2.6 Beyond the Protocol

This section outlines the procedures for the parts of the session outside the scope of the protocol specification.
Before the protocol can be started, the parties have to be loaded and initialized. During initialization, the party’s

persistent data may have to be loaded from a file. If the persistent data can not be read, a default empty dataset is created
for the party. Then the party’s init code is called to set up the party. All the time spent in this initialization phase is
already being subtracted from the total available negotiation time.

After the protocol has been completed, the protocol is called a last time to determine the final outcome. The parties
are called to inform them that the negotiation ended, and what the outcome was. This happens even when parties crashed
or did illegal actions. The negotiation has already finished, so these calls are not weighing in on the total negotiation time.
Instead, these calls are typically limited to 1 second.

Finally, if the party has modified the persistent data, this data needs to be saved. Again, this action is limited to a 1
second duration.

Errors surrounding these out-of-protocol procedures are not part of the negotiation itself and therefore logged and
handled separately. These errors are printed only to the console/terminal 1 , and only from the single session runner.

3 Install and Run Genius

Genius can run on any machine running Java 8. Java 9 is not yet supported. Please report any bugs found to negotiation@

ii.tudelft.nl.
To install the environment, the file genius-XXX.zip can be downloaded from http://ii.tudelft.nl/genius/?q=

article/releases. Unzip the file at a convenient location on your machine. This will result in a folder “genius-XXX”
containing the following files:

• a userguide.pdf which is this document.

• genius-XXX.jar, the Genius negotiation simulator;

• a few example folders, containing ready-to-compile parties and components.

• a multilateraltournament.xml example file

You start Genius by double-clicking the genius-XXX.jar file, or using ”open with” and then selecting Java.
After starting the simulator a screen similar to Figure 4 is shown. This screen is divided in three portions:

• The Menubar allows us to start a new negotiation.

• The Components Window shows all available scenarios, parties, and BOA components.

• The Status Window shows the negotiation status or selected domain/preference profile.

Progress messages and error messages are printed mainly to the standard output. On Mac OSX you can view these
messages by opening the console window (double-click on Systemdisk/Applications/Utilities/Console.app). On Windows
this is not directly possible. Console output can be read only if you start the application from the console window by
hand, as follows. Go to the directory with the genius-XXX.jar and enter java -jar genius-XXX.jar. This will start the
simulator, and all messages will appear in the console window. You may see some errors and warnings that are non-critical.

In some rare cases, parties and scenarios require more memory than allocated by default to Java. This problem can
be resolved by using the Xmx and Xms parameters when launching the executable jar, for example java -Xmx1536M

-Xms1536M -jar genius-XXX.jar. But usually, if your party runs out of memory then there is some design flaw or bug.
Competitions usually are run with the default amount of java memory so it is recommended to ensure that your party
performs properly without requiring additional memory.

Please refer to chapter 9 for instructions on running Genius in debug mode to debug your party.

1To see the console output, run from Eclipse or start up Genius from a separate terminal.

8

negotiation@ii.tudelft.nl
negotiation@ii.tudelft.nl
http://ii.tudelft.nl/genius/?q=article/releases
http://ii.tudelft.nl/genius/?q=article/releases

Figure 4: Genius right after start-up. The left half is the components panel, the right half the status panel.

4 Scenario Creation

Genius offers tools to create Domains and Profiles. Currently Genius supports editing the Additive and the UncertainAd-
ditive utility space This section discusses how to create domains and preference profiles.

4.1 Creating a Domain

By right clicking on the list of available scenarios in the Domains panel a popup menu with the option to create a new
domain is shown. After clicking this option a pop-up appears requesting the name for the new domain. After you enter a
name and click ok, the new domain is created and a window similar to Figure 5 is shown. Initially, a domain contains zero
issues. We can simply add an issue by pressing the “Add issue” button. This results in the opening of a dialog similar to
Figure 6.

Figure 5: Genius after creating a new Example domain.

The current version of Genius supports the creation of discrete and integer issues. Starting with a discrete issue, the
values of the issue should be specified. In Figure 6 we show the values of the issue “Harddisk”. Note the empty evaluation
values window, later on when creating a preference profile we will use this tab to specify the preference of each value.

Instead of a discrete issue, we can also add an integer issue as shown in Figure 7. For an integer issue we first need to
specify the lowest possible value and the highest value, for example the price range for a second hand car may be [500, 700].
Next, when creating a preference profile we need to specify the utility of the lowest possible value (500) and the highest
value (700). During the negotiation we can offer any value for the issue within the specified range.

The next step is to press “Ok” to add the issue. Generally, a domain consists of multiple issues. We can simply add
the other issues by repeating the process above. If you are satisfied with the domain, you can save it by pressing “Save
changes”.

Finally, note that the issues of a domain can only be edited if the scenario does not (yet) specify preference profiles.
This is to avoid inconsistencies between the preference profiles and the domains.

9

Figure 6: Creating a discrete issue. Figure 7: Creating an integer issue.

4.2 Creating an AdditiveUtilitySpace

Now that we created a domain, the next step is to add a set of preference profiles. Make sure that your domain is correct
before proceeding, as the domain can not be changed when it contains profiles. By right clicking on the domain a popup
menu is opened which has an option to create a new preference profile. Selecting this option results in the opening of a
new window which looks similar to Figure 8.

Figure 8: Genius after creating a new utility space.

Now you are ready to start customizing the preference profile. There are three steps: setting the importance of the
issues, determining the preference of the values of the issues, and configuring the reservation value and discount. Make
sure that you leave the ”enable uncertainty” checkbox unchecked.

1. Adjust the relative weights of the issues by using the sliders next to that issue. Note that when you move a slider,
the weights of the other sliders are automatically updated such that the all weights still sum up to one. If you do
not want that the weight of another issue automatically changes, you can lock its weight by selecting the checkbox
behind it. Now that we set the weights of the issues, it is a good idea to save the utility space.

2. set the evaluation of the issues. To specify the evaluation of an issue you can double click it to open a new window
looking similar to Figure 6 or Figure 7 depending on the type of the issue.

For a discrete issue we need to specify the evaluation value of each discrete value. A specific value can be assigned
any positive non-zero integer as evaluation value. During the negotiation the utility of a value is determined by
dividing the value by the highest value for that particular issue. To illustrate, if we give 60 Gb evaluation 5, 80 Gb
evaluation 8, and 120 Gb evaluation 10; then the utilities of these values are respectively 0.5, 0.8, and 1.0.

Specifying the preference of a integer issue is even easier. In this case we simply need to specify the utility of the
lowest possible value and the highest possible value. The utility of a value in this range is calculated during the
negotiation by using linear interpolation of the utilities of both given utilities.

10

3. The final step is to set the reservation value and discount of a preference profile.

4. If you are satisfied with the profile you can save it by pressing “Save changes”.

4.3 Creating an UncertainAdditiveUtilitySpace

To create an uncertain additive utility space, first make an AdditiveUtilitySpace (section 4.2). Check the ”Enable uncer-
tainty” checkbox (figure 8).Set the nr of rankings and Nr. of errors as required. If your profile is for testing purposes, also
check ”Grant parties access to real utility functions”. The details of these settings are explained in section 1.2.2. Press
”Save changes” to store your profile.

5 Running Negotiations

This section discusses how to run a negotiation. There are two modes to run a negotiation:

• Session. A single negotiation session in which a number of parties negotiate.

• Tournament. A tournament of multiparty sessions.

you start one of these by selecting them from the Start menu (Figure 4).
Before going into detail on how each of these modes work, we first discuss the two types of parties that can be used:

automated parties and non-automated parties. Automated parties are parties that can compete against other parties in
a negotiation without relying on input by a user. In general, these parties are able to make a large amount of bids in a
limited amount of time.

In contrast, non-automated parties are parties that are fully controlled by the user. These types of parties ask the user
each round which action they should make. Genius by default includes the UIAgent – which has a simple user interface
– and the more extensive Extended UIAgent.

5.1 Running a Session

To run a negotiation session select the menu “Start” and then “Session”. This opens a window similar to Figure 9.

Figure 9: A multi-party negotiation session.

The following parameters need to be specified to run a negotiation:

11

• Negotiation protocol. The set of available protocols. See Chapter 2.

• Mediator. The mediator ID and strategy that is to be used for this session. This is only visible if
the protocol uses a mediator.

• Participant Information. The information (ID, strategy, profile) for the a party in the session.
This information is copied into the table of participants when you click ”Add Party”.

• A table with participants. This table shows all currently added participants. You can add a party
by setting the participant information above, and then clicking ”Add Party”. You can remove a party
by selecting the party to remove in the table, and then clicking ”Remove Party”.

• Deadline. The deadline to use. Can be ”Round” or ”Time”. This determines the maximum duration
of the session.

• Data Persistency. What kind of persistent data is available to the parties. The options are discussed
in section 5.4.

• Enable System.out print. If disabled, all system.out.print is suppressed during the negotiation.
This is useful if for instance parties are flooding the output console, slowing down the system.

• Enable progress graph. If enabled (default), a progress chart is shown during the negotiation. You
can disable this e.g. if the drawing is slowing down the system.

• Bilateral options These appear only if you have exactly 2 parties added. The sub-options of this
panel are

– Show Util-Util Graph. If enabled, the progress panel will show a graph where the utilities of
the 2 parties are set along the X and Y axes. Also, the pareto frontier and nash point are shown
in this graph. If disabled, it will show the default: a graph where the utilities of all parties are
along the Y axis, and the time along the X axis.

– Show all bids. If enabled, and if ’Show Util-Util Graph’ is enabled, this will show all the
possible bids in the Util-Util graph.

The negotiation is started when you press the start button. The tab contents will change to a progress overview panel
showing you the results of the negotiation (Figure 10 and Figure 11). The results are also stored in a log file. These results
can be easily analyzed by importing them into Excel (cf. Section ??)

Figure 10: Bilateral progress panel. Figure 11: Multilateral progress.

5.2 Running a Tournament

A tournament is a set of sessions. To prepare a tournament, select “Start” and then “Tournament”.
The Tournament tab will appear similar to Figure 12. This panel shows a set of tournament options. The detailed

meaning of all these settings is explained in 5.4.

• Protocol. The protocol to use for each session.

• Deadline. The limits on time and number of rounds for each session.

• Number of tournaments. The number of times the entire tournament will be run.

• Agents per Session. The number of agents N to use for each session.

• Agent Repetition. whether to draw parties with or without return.

• Randomize session order. whether to randomize the session order

• Data persistency. The type of persistent data available to the parties. Same options as in section 5.1.

12

Figure 12: Tournament

• Mediator. The mediator to use. This option is visible only if the selected protocol needs a mediator.

• Agents. The pool of agents to draw from. Click or drag in the agents area to (de)select agents. Click ”Clear” to
clear the pool.

• Profiles. The profiles pool. Click or drag in the profiles area to (de)select agents. Click ”Clear” to clear the pool.

• Special bilateral options. These options appear only if Agents per session is set to 2 and is discussed in below .

5.2.1 Bilateral special options

If you have set ’Agents per session’ to 2, and deselect ’Agent play both sides’, you get an additional panel where you can
select different Agents and Profiles for the B side of the 2-sided negotiation as in Figure 13.

Figure 13: Bilateral Tournament

13

After you click ”Start Tournament”, the tournament starts. The panel then is swapped for a tournament progress
panel (Figure 14). In the top there is a progress bar showing the total number of sessions and the current session. The
table shows all session results. The table is also saved to a .csv log file in the log directory.

Figure 14: Tournament Progress panel

The results of the tournament are shown on screen and also stored in a log file. These results can be easily analyzed
by importing them into Excel (cf. Section ??)

5.3 Running from the command line

You can run a multi-party tournament from the command line, as follows.

1. Prepare an xml file that describes the settings for the tournament

2. Run the command runner and give it the prepared file

5.3.1 Prepare the XML settings file

The first step is to create an xml file containing the values needed for session generation (Section 5.4). Make a copy
of the multilateraltournament.xml file inside your genius directory and edit it (with a plain text editor). Inside the
<tournaments> element you will find a number of <tournament> elements. Each of these <tournament> elements defines
a complete tournament so you can run multiple tournaments using one xml file.

The contents of each <tournament> element is as follows. The meaning of the fields is detailed in section 5.4.

• protocolItem. Contains the protocol to use, in the form of a protocolItem.

• deadline. the Deadline value.

• repeats. the repeats value.

• persistentDataType. The type of the persistent data.

• numberOfPartiesPerSession. the Parties per session value.

• repetitionAllowed. the value for the Party Repetition.

• partyRepItems. This element contains a number of <item> elements. Each of these party items contains a
description of a party as discussed below.

• mediator. the mediator, if needed. This is similar in contents to a party item discussed below.

• partyProfileItems. This element contains a number of items. There must be at least as much as numberOfNon-
MediatorsPerSession.

We have a number of items:

• A profile item : contains

– url that contains the description of that party profile. These URIs point to files and therefore are of the form
file:path/to/file.xml

• A party item (and mediator) contains:

– classPath the java.party.class.path to the main class. That class must implement the NegotiationParty interface

– properties can contain a number of <property> nodes with these values

∗ isMediator: this property indicates the party item is a mediator. If not set, the party will be run as a normal
party instead of a mediator, which will probably cause protocol violations

• protocol item. This item contains the protocol information:

– hasMediator which is true iff protocol requires mediator

– description a one-line textual description of the mediator

– classPath the java full.class.path of the protocol class

14

– protocolName a brief protocol name

The tournament will consist of sessions created creating all permutations of <numberOfNonMediatorsPerSession> from
the partyRepItems (with or without reuse, depending on repetitionAllowed. The randomization also is applied to the
profile items.

5.3.2 Run the tournament

To run the tournament, open a terminal/console and change the working directory to the genius directory. Then enter
this command (where yourfile.xml is the name of the file you just edited and XXX the version of genius that you use):

java -cp genius-XXX-jar-with-dependencies.jar genius.cli.Runner yourfile.xml

Press return if the app prompts you for the log file location to log to the default logs/...csv file.

5.4 Tournament Session Generation

Instead of manually setting all the setting, a tournament generates the exact session settings from the tournament settings.
These settings are specified either in the user interface settings, or in an XML file. The parameters are:

• Protocol The protocol value is used for all sessions. See section 2.

• Mediator The mediator to use for all sessions (ignored if the protocol does not need a mediator)

• Deadline The deadline is used for all sessions. A deadline contains two values:

– value. This is the maximum value determining the deadline. Must be an integer ≥ 1.

– type. Can be either ROUND or TIME. If ROUND, the value is the number of rounds. If TIME, value is a
time in seconds.

• Data persistency. The type of persistent data available to the parties. The next time a party of the same class
and same profile runs in a tournament, it will receive the previously stored data. The options are

– Disabled. Parties do not receive any persistent data. This is the default.

– Serializable. Parties can save anything serializable in the PersistentDataContainer.

– Standard. Parties receive a prepared, read only StandardInfo object inside the PersistentDataContainer..

• repeats This is also called ’number of tournaments’ and determines the number of times a complete tournament
will be run.

• Randomize Session Order Whether all generated sessions within a tournament must be randomized.

• Parties per session The number of parties to draw for each session. This excludes a possible mediator.

• Party Repetition true if parties are to be drawn from the parties pool with return, false if they are to be drawn
without return.

• Parties and Profile pool for side A A list from which parties and profiles will be drawn

• Parties and Profile pool for side B Another list of parties and profiles. Only used with bilateral generation (see
below).

The tournament generation works as follows.
If there are exactly 2 parties per session and the parties and profiles for side B have been set, then bilateral generation

is used. Otherwise, multilateral generation is used. This generation method creates an ordered list of sessions for 1
tournament. If the ’Randomize Session Order’ is set, the list is randomized. All sessions use the same protocol, mediator,
deadline and data persistency. This generation is called repeatedly, as set in ’repeats’, and all generated session lists are
accumulated in a big session list. This is the final result of the tournament generation.

5.4.1 Multilateral generation

In multilateral generation, all possible combinations of parties and profiles (using pool A) are generated as follows. the
indicated number of parties per session N are drawn from party pool A, with our without return as specified in ’Party
Repetition’. Also, N profile items are drawn, ordered without return, from the profiles pool. These two lists are then
paired into groups of N party-profile pairs.

5.4.2 Bilateral generation

In bilateral generation, first a set of participants P of all combinations of 1 party and 1 profile are drawn from the side A
pool. Similarly a set of participants Q is drawn for the B pool. Then, the sessions set consists of all combinations of one
participant from P and another participant from Q .

15

6 Quality Measures

Genius logs quality measures to log files. Logs are written both in .csv and .xml format. Logs are written to the log/

directory. Filenames contain the date and time the session/tournament started.
The output of the log files differs, depending on whether you ran a tournament or a single session. The following

subsections discuss the output for these.
Party names are printed as follows. If the party is a normal NegotiationParty, then the party will print out as something

like Atlas32016@2. The part before the ’@’ is the party’s name, the part after the ’@’ is added by the runner to make
the name unique. If the party is a BOA party, the name is ”boa-” followed by the concatenation of its offering strategy,
acceptance condition, opponentmodel and omstrategy. For example you may get this as boa party name:

boa-genkus.core.boaframework.offeringstrategy.anac2012.CUHKAgent_Offering-

genius.core.boaframework.acceptanceconditions.anac2012.AC_CUHKAgent-

genius.core.boaframework.opponentmodel.CUHKFrequencyModelV2-

genius.core.boaframework.omstrategy.TheFawkes_OMS@3

6.1 Session logs

Both the XML and CSV log files from a session get the filename Log-Session_ followed by day and time. The contents
however differ.

6.1.1 Session CSV file

The .csv file contains one line for each turn, like this: 1,1,0.0055248618784530384,AgentHP2_main@0,(Offer bid:Bid[Food: Chips and Nuts, ...ials,])

The columns are, in order:

1. round number.

2. turn number

3. the time of agreement, in the range [0,1] where 0 means the start of the session and 1 the maximum time/number of
rounds allowed for the negotiation.

4. the party that acted.

5. the action that the party did. The action consists of the action type name (”Offer”, ”Accept”, ”EndNegotiation”,
etc) and the bid details if available.

6.1.2 Session XML file

When running a session, the XML file contains only the details of the final outcome of the negotiation.
The fields in the NegotiationOutcome element:

1. currentTime: the moment when the final outcome was available.

2. timeOfAgreement, agreement time in the range [0,1] where 0 means the start of the session and 1 the maximum
time/number of rounds allowed for the negotiation.

3. lastAction: the last action that was done

4. the domain that was being run

5. bids: the total number of bids that have been done in this session

6. the total run time in seconds

7. the outcome : the final accepted bid , or ”-” if there was no final agreement

8. the startingAgent,

9. the deadline = maximum amount of time/rounds for this session.

and then, for each of the parties that participated a ”resultsOfAgent” element containing:

1. the party’s name.

2. the party’s description

3. the party’s utilityspace filename

4. the full party class path

5. the final utility (un-discounted) of this party, or 0 if there was no agreement

6. the final utility (discounted)

7. the value of discount(1,1). This is the remaining utility that a un-discounted utility of 1 would have at the end time
(t=1). For default discount formulas, this equals the ’discount factor’.

Here’s an example

16

<?xml version="1.0"?>

<Session>

<NegotiationOutcome currentTime="Thu Mar 08 12:50:33 CET 2018"

timeOfAgreement="0.3425414364640884"

lastAction="(Accept bid:Bid[Food: Chips and Nuts, Drinks: Handmade ...oap,])"

domain="etc/templates/partydomain/party_domain.xml" bids="175" runtime="0.652346172"

finalOutcome="Bid[Food: Chips and Nuts, Drinks:d Soap,]"

startingAgent="-" deadline="180rounds">

<resultsOfAgent agent="AgentHP2_main@0" agentDesc="ANAC2016 agenthp2"

utilspace="etc/templates/partydomain/party1_utility.xml"

agentClass="agents.anac.y2016.agenthp2.AgentHP2_main"

finalUtility="0.8483333333333334" discountedUtility="0.8483333333333334" discount="1.0">

</resultsOfAgent>

<resultsOfAgent agent="AgentLight@1" agentDesc="ANAC2016 agentLight"

utilspace="etc/templates/partydomain/party2_utility.xml"

agentClass="agents.anac.y2016.agentlight.AgentLight"

finalUtility="0.8564909885811369" discountedUtility="0.8564909885811369" discount="1.0">

</resultsOfAgent>

<resultsOfAgent agent="Atlas32016@2" agentDesc="ANAC2016 Atlas3"

utilspace="etc/templates/partydomain/party3_utility.xml"

agentClass="agents.anac.y2016.atlas3.Atlas32016"

finalUtility="0.6924080946242358"

discountedUtility="0.6924080946242358" discount="1.0">

</resultsOfAgent>

</NegotiationOutcome>

</Session>

6.2 Tournament logs

All log files from a tournament get the filename tournament- followed by day and time followed by the domain name and
an extension. There are 3 log files created: a log.csv file, a log.xml file and a logStats.xml file.

If you terminate a tournament before it completes, the .log. files will be written up to the last completed session and
there will be no logStats file.

6.2.1 Tournament log.csv file

tournament .csv files start with these a line containing sep=; indicating that we use the comma as separator character for
fields. Then there is a table header typically looking like this (if there are 3 parties in each session, and all this on 1 line)

Run time (s);Round;Exception;deadline;Agreement;Discounted;#agreeing;min.util.;max.util.;

Dist. to Pareto;Dist. to Nash;Social Welfare;

Agent 1;Agent 2;Agent 3;

Utility 1;Utility 2;Utility 3;

Disc. Util. 1;Disc. Util. 2;Disc. Util. 3;

Perceived. Util. 1;Perceived. Util. 2;Perceived. Util. 3;

Profile 1;Profile 2;Profile 3

The rest of the log file contains one line for each final session outcome, matching the columns in the header:

1. the run time of that session (seconds).

2. the number of rounds that were completed

3. the exception message, if an exception occured

4. the deadline = maximum amount of time/rounds for this session.

5. whether an agreement was reached (Yes) or not (No).

6. whether there was a discount factor (i.e. discount(1,1) is not 1) (Yes or No).

7. the final number of agreeing parties

8. the minimum utility achieved by the parties

9. the maximum utility achieved by the parties

10. the distance to the pareto curve (the nearest bidpoint on the pareto)

11. the distance to the nash optimum point

12. the distance to the social welfare point

13. the names of all parties

14. the un-discounted utilities of all parties.

15. the discounted utilities of all parties

17

16. the perceived utilities of all parties.

17. the profile names of all the parties

If the profile is a Utilityspace, then the discounted and un-discounted utilities are as in the original utilityspace provided
to the agent. The perceived utility in that case equals to the discounted utility. If the profile is a partially ordered profile,
the core (but not the agent) knows the utility in the AdditiveUtilitySpace that was used to create the profile. In that case,
the un-discounded and discounted utilities are utilities as in the AdditiveUtilitySpace. The agent is provided with another
AdditiveUtilitySpace that was generated based on the partially ordered profile, and usually will differ from the original
AdditiveUtilitySpace. The perceived utility is the (discounted) utility of the bid in that estimated space. The perceived
utility is available only in the CSV file in tournament logs, not in XML log files.

For example, one line of the output can look like this (all on 1 line)

4.965;173;;180rounds;Yes;No;3;0.58083;0.95256;0.00000;0.44991;2.13706;

ClockworkAgent@14;Farma@15;Caduceus@16;

0.5808333333333333;0.6036696609166442;0.9525594478616071;

0.5808333333333333;0.6036696609166442;0.9525594478616071;

0.5808333333333333;0.6036696609166442;0.9525594478616071;

party1_utility.xml;party2_utility.xml;party3_utility.xml

6.2.2 Tournament log.xml file

The .log.xml file contains one <NegotiationOutcome> element for each completed round. These elements are formatted
exactly as in 6.1.2.

6.2.3 Tournament logStats.xml file

The logStats.xml file contains for each of the parties that participated in the tournament statistical info:

1. agentname: the party’s name (full class path)

2. totalUndiscounted: the total sum of the un-discounted utilities that it achieved

3. totalDiscounted: the total sum of the discounted utilities that it achieved

4. numberOfSessions: the total number of sessions that it participated in

5. totalNashDist: the accumulated distances to the Nash Point

6. totalWelfare: the accumulated distances to the Social Welfare Point

7. totalParetoDistance: the accumulated distances to the Pareto frontier

8. meanDiscounted: totalDiscounted / numberOfSessions

9. meanUndiscounted: totalUndiscounted / numberOfSessions

10. meanNashDistance: totalNashDistance / numberOfSessions

11. meanWelfare: totalWelfare / numberOfSessions

12. meanPareto: totalPareto / numberOfSessions

7 Creating a Negotiation Party

To create an negotiation party, we suggest to follow the instructions in the Appendix and start with one of the examples.
You can then proceed by changing the example.

7.1 Example Parties

The Genius zip file contains three example parties: the multiparty example, the storage example and the uncertainty
example. To compile an example, set up your workspace as in the appendix (Section 11) and copy an example folder into
src/.

1. The multiparty example just accepts any acceptable bid with a random probability of 0.5.

2. The storage example demonstrates using the persistent data storage. This example is showing how the storage can
be used to wait a little longer every next time the party is in a negotiation.

To run this example, you need to set up Genius to allow persistent data storage (the default is off). In the Genius
tournament setup panel, use the following settings

• number of tournaments= 20

• agents per session =2

• persistency=standard

• agent side A: GroupX, party1_utility.xml

• agent side B: Random Party, party6_utility.xml

18

Method description

init Initializes the party, informing it of many ne-
gotiation details. This is be called exactly
once by the negotiation system, immediately
after construction of the class

chooseAction When this function is called, it is expected
that the Party chooses one of the actions from
the possible action list and returns an instance
of the chosen action.

receiveMessage This method is called to inform the party that
another NegotiationParty chose an Action.

getDescription Returns a human-readable description for this
party

getProtocol The actual supported MultilateralProto-
col. Usually this returns StackedAlternating-
OffersProtocol. Your party should override
this if it supports a another protocol

negotiationEnded This is called to inform the party that the
negotiation has been ended. This allows the
party to record some final conclusions about
the run

Table 1: Methods of NegotiationParty. Check the javadoc for all the details

and start the tournament and check the number of rounds till agreement: it will increase every session.

Now run another tournament with the same settings but pick select both party1_utility.xml and party2_utility.xml.
Run the tournament. Now you will see that the the number of rounds till agreement goes up every other run. This
is because your party gets a different profile every other run and thus there are persistent data stores, one for each
profile.

3. The uncertainty example is an example to illustrate the use of uncertainty in your negotiation party. You should run
this agent with an UncertainAdditiveutilitySpace.

7.2 Implementing NegotiationParty

This section discusses details of implementing a NegotiationParty.
Every party must at least implement the genius.core.parties.NegotiationParty interface (Table 1), Also the imple-

mentation must have a public default (no-argument) constructor. Please refer to the javadocs for details on the parameters.
For convenience, you can also extend the class genius.core.parties.AbstractNegotiationParty which is a basic

implementation of NegotiationParty. This class also provides convenient support functions for building your party.
Your party might need to check the exact type of the provided AbstractUtilitySpace (inside NegotiationInfo), for

instance if your party supports for example only AdditiveutilitySpace. Also check the provided UserModel, if that is set
(not null) then this overrides the value returned by getUtilitySpace..

A number of useful classes is given in 2. The javadoc contains the full details of all available classes. We recommend
to use the javadoc included with the distribution to check the details of all the involved classes. Notice that some classes,
e.g. SortedOutcomeSpace, may take a long time and large amounts of memory to sort a large bid space, which may exceed
the available time and space for your party. Therefore these methods should be used with caution.

19

NegotiationInfo

The context of the negotiation: the partial profile (”UserModel”), utility space, the timeline and deadline, the
agentID and persistent data container.
UtilitySpace

The preference profile of the scenario allocated to the party. It is recommended to use this class when imple-
menting a model of the opponent’s preference profile.
Timeline

Use timeline for every time-related by using getTime().
Action chooseAction(List<Class<? extends Action>> possibleActions)

This function should return the action your party wants to make next.

Action

Superclass of negotiation actions like Offer, Accept and EndNegotiation..

BidHistory

a structure to keep track of the bids presented by the party and the opponent.

SortedOutcomeSpace

a structure which stores all possible bids and their utilities by using BidIterator. In addition, it implements
search algorithms that can be used to search the space of possible bids for bids near a given utility or within a
given utility range. WARNING (1) SortedOutcomeSpace iterates over all bids and thus might be unusable in
large bidspaces (2) Some parties have created their own copy of SortedOutcomeSpace, so be careful to pick the
genius.core version.
BidIterator

a class used to enumerate all possible bids. Also refer to SortedOutcomeSpace.

BidDetails

a structure to store a bid and its utility.

Table 2: Important classes used for creating a NegotiationParty.

7.2.1 Receiving the Opponent’s Action

The ReceiveMessage(Action opponentAction) informs you that the opponent just performed the action opponentAction.
The opponentAction may be null if you are the first to place a bid, or an Offer, Accept or EndNegotiation action. The
chooseAction() asks you to specify an Action to send to the opponent.

In the SimpleAgent code, the following code is available for receiveMessage. The SimpleAgent stores the opponent’s
action to use it when choosing an action.

public void receiveMessage(Action opponentAction) {

actionOfPartner = opponentAction;

}

7.2.2 Choosing an Action

The code block below shows the code of the method chooseAction for SimpleAgent. For safety, all code was wrapped in
a try-catch block, because if our code would accidentally contain a bug we still want to return a good action (failure to do
so is a protocol error and results in a utility of 0.0).

The sample code works as follows. If we are the first to place a bid, we place a random bid with sufficient utility (see
the .java file for the details on that). Else, we determine the probability to accept the bid, depending on the utility of the
offered bid and the remaining time. Finally, we randomly accept or pose a new random bid.

While this strategy works, in general it will lead to suboptimal results as it does not take the opponent into account.
More advanced parties try to model the opponent’s strategy or preference profile.

public Action chooseAction () {

Action action = null;

Bid partnerBid = null;

try {

if (actionOfPartner == null)

action = chooseRandomBidAction ();

if (actionOfPartner instanceof Offer) {

partnerBid = ((Offer) actionOfPartner). getBid ();

double offeredUtilFromOpponent = getUtility(partnerBid);

double time = timeline.getTime ();

action = chooseRandomBidAction ();

Bid myBid = ((Offer) action). getBid ();

double myOfferedUtil = getUtility(myBid);

// accept under certain circumstances

20

if (isAcceptable(offeredUtilFromOpponent , myOfferedUtil , time))

action = new Accept(getAgentID (), partnerBid);

}

if (timeline.getType (). equals(Timeline.Type.Time)) {

sleep (0.005); // just for fun

}

} catch (Exception e) {

// best guess if things go wrong. Notice this may still fail

action = new Accept(getAgentID (), partnerBid);

}

return action;

}

The method isAcceptable implements the probabilistic acceptance functionPaccept:

Paccept =
u− 2ut + 2

(
t− 1 +

√
(t− 1)2 + u(2t− 1)

)
2t− 1

(3)

where u is the utility of the bid made by the opponent (as measured in our utility space), and t is the current time as a
fraction of the total available time. Figure 15 shows how this function behaves depending on the utility and remaining
time. Note that this function only decides if a bid is acceptable or not. More advanced acceptance strategies also use the
EndNegotiation action.

Figure 15: Paccept value as function of the utility and time (as a fraction of the total available time).

7.3 Implementing a party with uncertainty

In order to program an agent with uncertainty, we recommend that your agent extends the AbstractNegotiationParty class.
That class has some support functions that load the normal utilityspace with an approximation that is useful for plotting
outcomes.

7.3.1 Overriding functions

In order to change the way your agent handles the uncertainty, you can override the estimateUtilitySpace() function. This
function in AbstractNegotiationParty returns an AbstractUtilitySpace object. In the AbstractNegotiationParty class, this
code looks as follows:

public AbstractUtilitySpace estimateUtilitySpace () {

Domain domain = getDomain ();

AdditiveUtilitySpaceFactory factory

= new AdditiveUtilitySpaceFactory(domain);

BidRanking bidRanking = userModel.getBidRanking ();

factory.estimateUsingBidRanks(bidRanking);

return factory.getUtilitySpace ();

}

As can be seen from the function, a custom AbstractUtilitySpace is created using the domain and the bid ranking. This
function tries to approximate the utility function using a simple counting heuristic. This heuristic does not perform very
well, so there is need to implement your own function. An example is included in the UncertaintyAgentExample. In this
example, the AbstractNegotiationParty class is extended and the estimateUtilitySpace() function is overridden. Overriding
this function can be done as follows:

21

@Override

public AbstractUtilitySpace estimateUtilitySpace ()

{

return new AdditiveUtilitySpaceFactory(

getDomain ()). getUtilitySpace ();

}

This function overrides the standard function and implements its own method to estimate the Utility space. Currently,
this returns a utility function with equal weights and values set to zero. To estimate the utility function, you can use the
BidRanking class. The bid ranking for the current session can be accessed using userModel.getBidRanking(). The next
section will show what information is included in the BidRanking.

7.3.2 Bid Ranking

When running an uncertain agent, all utility information is given through a bid ranking. This bid ranking consists of an
ordering of different bids for the current domain. The ranking that the agent receives is ordered from low utility to high
utility. This ranking can be used to estimate a utility function.

The BidRanking class consists of a list of Bids To obtain the Bid classes from the Bidranking, you can use the
getBidOrder() function on the Bidranking object. This object is obtained in the agent using userModel.getBidRanking().
Check the javadoc for more details, and we suggest you check the source code of BidRanking.

To access the list of Bid objects directly, you can use the following snippet:

List <Bid > bids = userModel.getBidRanking (). getBidOrder ();

Note: The bids that are obtained from the BidRanking using the getBidOrder() function are listed from low utility to
high utility. This means that the first element in the list has the lowest utility score. When iterating over the list, every
next bid will be either valued higher or the same as the current bid in the list.

7.3.3 Accessing the real utility space for debugging

When the Experimental Setup checkbox is enabled (Figure 5), your agent can access the real utility function. This can
be used to verify the utility function that you have created. In order to get access to this function, the userModel should
be cast to an ExperimentalPairwiseComparisonUserModel object. This can be done as follows:

ExperimentalPairwiseComparisonUserModel e =

(ExperimentalPairwiseComparisonUserModel) userModel;

AbstractUtilitySpace realUSpace = e.getRealUSpace ();

Now, you will have access to the real utility space with realUSpace.

7.3.4 Uncertainty agent checklist

This section will give a short overview of what to do in order to enable your agent to work with uncertainty. You should
take the following steps:

1. Extend the AbstractNegotiationParty class.

2. Override the estimateUtilitySpace() function that returns an AbstractUtilitySpace class.

3. Using the getDomain() function and the BidRanking, create an estimation for the utility function. (E.g. Counting,
Machine Learning, Statistical methods, etc.)

4. Implement the normal methods necessary for the agent to do the bidding. This is the same as for normal agents, the
uncertainty is only used on startup of the agent in order to estimate the utility function.

7.4 Loading a NegotiationParty

You need to load your custom party into the Genius party repository in order to use it. After adding, your party will
appear in the combo boxes in the multilateral tournament runner and session runner where you can select the party to
use.

Locate the Parties repository tab in the GUI (Figure 16). Right click in this area and select ”Add Party”. A file browser
panel pops up. Browse to your compiled .class file that implements the NegotiationParty and select it. Typically Eclipse
compiles into bin. Your party will appear at the bottom of the parties repository. The partyrepository.xml file is
automatically updated accordingly.

To do this manually without using the GUI, quit Genius , open the partyrepository.xml file 2 and add a section like
this

<partyRepItem classPath="full.class.of.your.party" <properties/> />

After that you can restart Genius so that it loads the new party.

2This file is automatically created the first time you run Genius

22

Figure 16: The parties repository.

7.5 Third party code

You should not use maven or jars to add dependencies for your party. The reason is Genius or other parties might already
have another version of your library in use. Java 8 can not deal properly with multiple versions of the same library in
within a JVM. The result would be inconsistent, incorrect or buggy behaviour, or even crashes.

Instead, if you want to use a third party library, you will have to include all the source code of that library with your
code, including all sub-dependencies. The code should be copied inside the package name of your party, instead of using
the original package name of that library (so do not use ”org.apache” for instance). This is to ensure that we are really
running your party on the specific version of the library that your party needs and to avoid version conflicts (java will run
an unspecified version of the library in case of conficts).

8 Creating a BOA Party

Instead of implementing your negotiating party from scratch, you can create a BOA party using the BOA framework. The
BOA negotiation party architecture allows to reuse existing components from other BOA parties. Many of the sophisticated
party strategies that currently exist are comprised of a fixed set of modules. Generally, a distinction can be made between
four different modules: one module that decides whether the opponent’s bid is acceptable (acceptance strategy); one that
decides which set of bids could be proposed next (offering strategy); one that tries to guess the opponent’s preferences
(opponent model), and finally a component which specifies how the opponent model is used to select a bid for the opponent
(opponent model strategy). The overall negotiation strategy is a result of the interaction between these components.

The advantages of separating the negotiation strategy into these four components (or equivalently, fitting a party into
the BOA framework) are threefold: first, it allows to study the performance of individual components; second, it allows
to systematically explore the space of possible negotiation strategies; third, the reuse of existing components simplifies the
creation of new negotiation strategies.

WARNING
Many of the provided BOA components currently assume a single opponent party.
These will behave incorrectly when used with multiple opponents.
We recommend checking the source code of the BOA components you want to use,
or write your own components if you are creating a NegotiationParty.

8.1 Components of the BOA Framework

A negotiation party in the BOA framework, called a BOA party, consists of four components:

Offering strategy An offering strategy is a mapping which maps a negotiation trace to a bid. The offering strategy can
interact with the opponent model by consulting with it.

Opponent model An opponent model is in the BOA framework a learning technique that constructs a model of the
opponent’s preference profile.

Opponent model strategy An opponent model strategy specifies how the opponent model is used to select a bid for
the opponent and if the opponent model may be updated in a specific turn.

Acceptance strategy The acceptance strategy determines whether the opponent’s bid is acceptable and may even decide
to prematurely end the negotiation.

The components interact in the following way (the full process is visualized in Figure 17). When receiving a bid, the
BOA party first updates the bidding history. Next, the opponent model strategy is consulted if the opponent model may
be updated this turn. If so, the opponent model is updated.

Given the opponent’s bid, the offering strategy determines the counter offer by first generating a set of bids with a
similar preference for the party. The offering strategy uses the opponent model strategy to select a bid from this set taking
the opponent’s utility into account.

23

Figure 17: The BOA Framework Architecture.

Finally, the acceptance strategy decides whether the opponent’s action should be accepted. If the opponent’s bid is not
accepted by the acceptance strategy, then the generated bid is offered instead.

8.2 Create a BOA Party

A boa parties can be edited in the ”Boa Parties” repository tab (Figure 18). Right-click in the panel to add items. Select
an item and right-click to remove or edit an item.

Figure 18: The BOA Parties repository tab.

After you selected to add or edit a BOA party (Figure 19). Here you can select a different Offering Strategy, Acceptance
Strategy, Opponent Model and Opponent Model Strategy by selecting the appropriate strategy with the combo boxes. If
the strategy has parameters, the current parameter settings are shown and the respective ”Change” button enables.

Figure 19: Editing a BOA party.

If you click on the ”Change” button, another panel pops up where you can edit the parameters (Figure 20). You can
click directly in the table to edit values.

When you have correctly set all strategies and their parameters, you can click the ”OK” button in the BOA party
editor (Figure 19). Then, parties with the given name are generated, one for each permutation of the range of settings
you set in the parameters. For example, if you set you want parameter m to have values 0,1 and 2 and x to have values
7 and 8, there will appear 6 new parties, with settings [0,7],[0,8],[1,7],[1,8],[2,7], and [2,8]. Be careful with this generation
as it is easy to create an excessive amount of boa parties this way.

24

Figure 20: Editing the Parameters of a BOA party.

8.3 Creating BOA Components

This section discusses how create your own components. An example implementation of each component is included in
the “boaexamplepackage” folder. The next section discusses how these components can be added to the list of available
components in the BOA framework GUI.

The boaexample folder contains two acceptance components:

• AC_Next which will accept an opponent bid if the utility is higher than the bid the agent is ready to present

• AC_Uncertain which can handle both normal and uncertain profiles.

8.3.1 Set up a Workspace

BOA components must be compiled before they can be loaded into Genius. To compile a BOA component, follow the
steps in (Section 11). Then, create your BOA code into src. For a quick start, you can copy the boaexample folder into
src. Eclipse automatically compiles your BOA components into bin.

Please refer to chapter 9 for instructions on running Genius in debug mode to debug your components.

8.3.2 Add component to Genius

After your component has been compiled, you need to tell Genius where to find it. Go to the ”BOA Components” tab
and right click in the table. Select ”Add new component”. Enter the component name and click ”Open”. Browse to your
compiled component and click ”Open”. Click ””Add component”. After this, your component appears in the list and is
ready for use.

8.3.3 Parameters

All BOA components have the same mechanism to be tuned with parameters. They should have no constructor : the
default empty constructor will be called. They initialize through a call to init().

The parameters and their default parameters are indicated by the component by overriding the getParameters()
function. This function should return a set of BAOparameter objects, each parameter having a unique name, description
and default value.

public Set<BOAparameter> getParameterSpec()

Override this function to add parameters to the module.

Table 3: The getParameters method. Override if your component has parameters.

When the component is actually used, the actual values for the parameters (which may differ from the default) are
passed to the init function when the component is initialized.

8.3.4 Creating an Offering Strategy

An offering strategy can be easily created by extending the OfferingStrategy class. Table 4 depicts the methods which
need to be overridden. The init method of the offering strategy is automatically called by the BOA framework with
four parameters: the negotiation session, the opponent model, the opponent model strategy, and the parameters of the
component. The negotiation session object keeps track of the negotiation state, which includes all offers made by both
partiess, the timeline, the preference profile, and the domain. The parameters object specifies the parameters as specified
in the GUI. In the previous section we specified the parameter b for the acceptance strategy Other −Next to be 0.0. In
this case the party can retrieve the value of the parameter by calling parameters.get(“b”).

An approach often taken by many offering strategies is to first generate all possible bids. This can be efficiently done
by using the SortedOutcomeSpace class. For an example on using this class see the TimeDependent Offering class in the
boaexamplepackage directory.

25

void init(NegotiationSession negotiationSession, OpponentModel opponentModel, OMStrategy

omStrategy, Map<String, Double> parameters)

Method directly called after creating the party which should be used to initialize the component.

BidDetails determineOpeningBid()

Method which determines the first bid to be offered to the component.

BidDetails determineNextBid()

Method which determines the bids offered to the opponent after the first bid.

Table 4: The main methods of the offering strategy component.

8.3.5 Creating an Acceptance Condition

This section discusses how to create an acceptance strategy class by extending the abstract class AcceptanceStrategy.
Table 5 depicts the two methods which need to specified.

void init(NegotiationSession negotiationSession, OfferingStrategy offeringStrategy,

OpponentModel opponentModel, Map<String, Double> parameters)

Method directly called after creating the party which should be used to initialize the component.

Actions determineAcceptability()

Method which determines if the party should accept the opponent’s bid (Actions.Accept), reject it and send a
counter offer (Actions.Reject), or leave the negotiation (Actions.Break).

Table 5: The main methods of the acceptance strategy component.

8.3.6 Creating an Opponent Model

This section discusses how to create an opponent model by extending the abstract class OpponentModel. Table 6 provides an
overview of the main methods which need to specified. For performance reasons it is recommended to use the UtilitySpace
class.

void init(NegotiationSession negotiationSession, Map<String, Double> parameters)

Method directly called after creating the party which should be used to initialize the component.

double getBidEvaluation(Bid bid)

Returns the estimated utility of the given bid.

double updateModel(Bid bid)

Updates the opponent model using the given bid.

UtilitySpace getOpponentUtilitySpace()

Returns the opponent’s preference profile. Use the UtilitySpaceAdapter class when not using the UtilitySpace
class for the opponent’s preference profile.

Table 6: The main methods of the opponent model component.

8.3.7 Creating an Opponent Model Strategy

This section discusses how to create an opponent model strategy by extending the abstract class OMStrategy. Table 7
provides an overview of the main methods which need to specified.

void init(NegotiationSession negotiationSession, OpponentModel model, Map<String, Double>

parameters)

Method directly called after creating the party which should be used to initialize the component.

BidDetails getBid(List<BidDetails> bidsInRange);

This method returns a bid to be offered from a set of given similarly preferred bids by using the opponent model.

boolean canUpdateOM();

Determines if the opponent model may be updated this turn.

Table 7: The main methods of the opponent model strategy component.

8.4 Advanced: Converting a BOA Party to a Party

To convert a BOA party to a normal party you have to create a class that extends BoaParty and override the init method.
Below is an example of a BOA party wrapped as a normal party. It’s a bit hack-y because the BoaParty constructor

26

assumes all components known while an party often can decide this only at init time.

public class SimpleBoaParty extends BoaParty {

public SimpleBoaParty () {

super(null , new HashMap <String , Double >(), null ,

new HashMap <String , Double >(), null ,

new HashMap <String , Double >(), null ,

new HashMap <String , Double >());

}

@Override

public void init(NegotiationInfo info) {

SessionData sessionData = null;

if (info.getPersistentData ()

.getPersistentDataType () == PersistentDataType.SERIALIZABLE) {

sessionData = (SessionData) info.getPersistentData ().get();

}

if (sessionData == null) {

sessionData = new SessionData ();

}

negotiationSession = new NegotiationSession(sessionData ,

info.getUtilitySpace (), info.getTimeline ());

opponentModel = new MyrequencyModel ();

opponentModel.init(negotiationSession , new HashMap <String , Double >());

omStrategy = new NullStrategy(negotiationSession);

offeringStrategy = new MyBiddingStrategy(negotiationSession ,

opponentModel , omStrategy);

acceptConditions = new AC_Next(negotiationSession , offeringStrategy , 1,

0);

// we have init’d all params here , don’t call super init

}

@Override

public String getDescription () {

return "Simple BOA Party";

}

}

8.5 Advanced: Multi-Acceptance Criteria (MAC)

The BOA framework allows us to better explore a large space of negotiation strategies. MAC can be used to scale down
the negotiation space, and thereby make it better computationally explorable.

As discussed in the introduction of this chapter, the acceptance condition determines solely if a bid should be accepted.
This entails that it does not influence the bidding trace, except for when it is stopped. In fact, the only difference between
BOA parties where only the acceptance condition vary, is the time of agreement (assuming that the computational cost
of the acceptance conditions are negligible).

Given this property, multiple acceptance criteria can be tested in parallel during the same negotiation trace. In practice,
more than 50 variants of a simple acceptance condition as for example ACnext can be tested in the same negotiation at a
negligible computational cost.

To create a multi-acceptance condition component you first need to extend the class Mulit Acceptance Condition, this
gives access to the ACList which is a list of acceptance conditions to be tested in parallel. Furthermore, the method
isMac should be overwritten to return true and the name of the components in the repository should be Multi Acceptance
Criteria. An acceptance can be added to the MAC by appending it to the AClist as shown below.

Listing 1: Example code for Acceptance condition

public class AC_MAC extends Multi_AcceptanceCondition {

@Override

public void init(NegotiationSession negoSession ,

OfferingStrategy strat , OpponentModel opponentModel ,

HashMap <String , Double > parameters) throws Exception {

this.negotiationSession = negoSession;

this.offeringStrategy = strat;

outcomes = new ArrayList <OutcomeTuple > ();

27

ACList = new ArrayList <AcceptanceStrategy >();

for (int e = 0; e < 5; e++) {

ACList.add(new AC_Next(negotiationSession ,

offeringStrategy , 1, e * 0.01));

}

}

}

9 Debugging

This section explains how to debug your party using Eclipse. It is assumed you set up your party already as in Chapter 7.
To run or debug your party as it runs in Genius, right click on the project root and select Run As.../Java Application.

Then select Application - genius and click ok.
Once you have Genius running in Eclipse, you can simply place a breakpoint in your party and run Genius from Eclipse

in debug mode.

9.1 Source code and javadocs

The genius core source codes and javadocs are included in the genius.jar file. But if you like you can browse and download
all sources at https://tracinsy.ewi.tudelft.nl/pubtrac/Genius.

10 Conclusion

This concludes the manual of Genius . If you experience problems or have suggestions on how to improve Genius , please
send them to negotiation@ii.tudelft.nl.

Genius is actively used in academic research. If you want to cite Genius in your paper, please refer to [?].

28

https://tracinsy.ewi.tudelft.nl/pubtrac/Genius
negotiation@ii.tudelft.nl

11 Appendix

This appendix describes how to set up Eclipse to create and debug your own party.

11.1 Connect Genius to Eclipse

We expect that you installed Eclipse (Neon or higher) and Java version 8 on your computer.

1. Open the Eclipse Navigator with the menu Window/Show View/Navigator. You can close the Package Explorer.

2. Right click in the Navigator area and select New/Java Project. Create a new Java project. We name it Group3assignment
but you can use any convenient name. Make sure you select ”JavaSE-1.8” or equivalent to ensure your code will be
java 8 compatible (Figure 21). Click Finish.

Figure 21: Create a new java project with the proper name and settings.

3. Drag the genius.jar file (from your unzipped download) into the project in the Eclipse Navigator area. Select ”Copy
files” and press OK.

4. Connect genius Jar:

(a) Right click on the Group3assignment icon and select ”Properties”.

(b) Select the Java Build Path.

(c) Select the Libraries Tab.

(d) Select ”Add JARs”, in the JAR Selection window (Figure 22).

(e) Open the Group3assignment folder and scroll down to select genius.jar.

(f) click a few times ok to close all dialog boxes.

5. Now you can run Genius as a Java application, by launching it as a Application (Figure 23). To do this, right click
on the project, select Run As, select Java Application and then in the browser select Application - genius.

29

Figure 22: Attach the negosimulator jar to the project.

Figure 23: Starting Genius in Eclipse.

11.2 Insert example party

To compile an example party, just drag an example folder, eg storageexample, from your unzipped genius download entirely
into the src folder in Eclipse. Select ”Copy files and folders” and click ok.

11.3 Debugging

Once you have Genius running in Eclipse, you can simply place a breakpoint in your party and run Genius from Eclipse
in debug mode.

30

	Theory Crash Course
	Bids, Issues and Values
	Preference Profile, Utility Space
	Utility spaces
	Partially ordered profile

	Optimality of a Bid
	Negotiation Protocol
	Reservation Value
	Time Pressure

	Protocols
	Stacked Alternating Offers Protocol
	Alternating Multiple Offers Protocol
	Alternating Majority Consensus Protocol
	Simple Mediator Based Protocol
	Mediator Feedback Based Protocol
	Beyond the Protocol

	Install and Run Genius
	Scenario Creation
	Creating a Domain
	Creating an AdditiveUtilitySpace
	Creating an UncertainAdditiveUtilitySpace

	Running Negotiations
	Running a Session
	Running a Tournament
	Bilateral special options

	Running from the command line
	Prepare the XML settings file
	Run the tournament

	Tournament Session Generation
	Multilateral generation
	Bilateral generation

	Quality Measures
	Session logs
	Session CSV file
	Session XML file

	Tournament logs
	Tournament log.csv file
	Tournament log.xml file
	Tournament logStats.xml file

	Creating a Negotiation Party
	Example Parties
	Implementing NegotiationParty
	Receiving the Opponent's Action
	Choosing an Action

	Implementing a party with uncertainty
	Overriding functions
	Bid Ranking
	Accessing the real utility space for debugging
	Uncertainty agent checklist

	Loading a NegotiationParty
	Third party code

	Creating a BOA Party
	Components of the BOA Framework
	Create a BOA Party
	Creating BOA Components
	Set up a Workspace
	Add component to Genius
	Parameters
	Creating an Offering Strategy
	Creating an Acceptance Condition
	Creating an Opponent Model
	Creating an Opponent Model Strategy

	Advanced: Converting a BOA Party to a Party
	Advanced: Multi-Acceptance Criteria (MAC)

	Debugging
	Source code and javadocs

	Conclusion
	Appendix
	Connect Genius to Eclipse
	Insert example party
	Debugging

