1 | package boaexample;
|
---|
2 |
|
---|
3 | import java.util.HashMap;
|
---|
4 | import java.util.HashSet;
|
---|
5 | import java.util.Map;
|
---|
6 | import java.util.Map.Entry;
|
---|
7 | import java.util.Set;
|
---|
8 |
|
---|
9 | import genius.core.Bid;
|
---|
10 | import genius.core.bidding.BidDetails;
|
---|
11 | import genius.core.boaframework.BOAparameter;
|
---|
12 | import genius.core.boaframework.NegotiationSession;
|
---|
13 | import genius.core.boaframework.OpponentModel;
|
---|
14 | import genius.core.issue.Issue;
|
---|
15 | import genius.core.issue.IssueDiscrete;
|
---|
16 | import genius.core.issue.Objective;
|
---|
17 | import genius.core.issue.Value;
|
---|
18 | import genius.core.issue.ValueDiscrete;
|
---|
19 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
20 | import genius.core.utility.Evaluator;
|
---|
21 | import genius.core.utility.EvaluatorDiscrete;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * BOA framework implementation of the HardHeaded Frequecy Model.
|
---|
25 | *
|
---|
26 | * Default: learning coef l = 0.2; learnValueAddition v = 1.0
|
---|
27 | *
|
---|
28 | * paper: https://ii.tudelft.nl/sites/default/files/boa.pdf
|
---|
29 | */
|
---|
30 | public class HardHeadedFrequencyModel extends OpponentModel {
|
---|
31 |
|
---|
32 | /*
|
---|
33 | * the learning coefficient is the weight that is added each turn to the
|
---|
34 | * issue weights which changed. It's a trade-off between concession speed
|
---|
35 | * and accuracy.
|
---|
36 | */
|
---|
37 | private double learnCoef;
|
---|
38 | /*
|
---|
39 | * value which is added to a value if it is found. Determines how fast the
|
---|
40 | * value weights converge.
|
---|
41 | */
|
---|
42 | private int learnValueAddition;
|
---|
43 | private int amountOfIssues;
|
---|
44 | private double goldenValue;
|
---|
45 |
|
---|
46 | @Override
|
---|
47 | public void init(NegotiationSession negotiationSession,
|
---|
48 | Map<String, Double> parameters) {
|
---|
49 | this.negotiationSession = negotiationSession;
|
---|
50 | if (parameters != null && parameters.get("l") != null) {
|
---|
51 | learnCoef = parameters.get("l");
|
---|
52 | } else {
|
---|
53 | learnCoef = 0.2;
|
---|
54 | }
|
---|
55 | learnValueAddition = 1;
|
---|
56 | opponentUtilitySpace = (AdditiveUtilitySpace) negotiationSession
|
---|
57 | .getUtilitySpace().copy();
|
---|
58 | amountOfIssues = opponentUtilitySpace.getDomain().getIssues().size();
|
---|
59 | /*
|
---|
60 | * This is the value to be added to weights of unchanged issues before
|
---|
61 | * normalization. Also the value that is taken as the minimum possible
|
---|
62 | * weight, (therefore defining the maximum possible also).
|
---|
63 | */
|
---|
64 | goldenValue = learnCoef / amountOfIssues;
|
---|
65 |
|
---|
66 | initializeModel();
|
---|
67 |
|
---|
68 | }
|
---|
69 |
|
---|
70 | @Override
|
---|
71 | public void updateModel(Bid opponentBid, double time) {
|
---|
72 | if (negotiationSession.getOpponentBidHistory().size() < 2) {
|
---|
73 | return;
|
---|
74 | }
|
---|
75 | int numberOfUnchanged = 0;
|
---|
76 | BidDetails oppBid = negotiationSession.getOpponentBidHistory()
|
---|
77 | .getHistory()
|
---|
78 | .get(negotiationSession.getOpponentBidHistory().size() - 1);
|
---|
79 | BidDetails prevOppBid = negotiationSession.getOpponentBidHistory()
|
---|
80 | .getHistory()
|
---|
81 | .get(negotiationSession.getOpponentBidHistory().size() - 2);
|
---|
82 | HashMap<Integer, Integer> lastDiffSet = determineDifference(prevOppBid,
|
---|
83 | oppBid);
|
---|
84 |
|
---|
85 | // count the number of changes in value
|
---|
86 | for (Integer i : lastDiffSet.keySet()) {
|
---|
87 | if (lastDiffSet.get(i) == 0)
|
---|
88 | numberOfUnchanged++;
|
---|
89 | }
|
---|
90 |
|
---|
91 | // The total sum of weights before normalization.
|
---|
92 | double totalSum = 1D + goldenValue * numberOfUnchanged;
|
---|
93 | // The maximum possible weight
|
---|
94 | double maximumWeight = 1D - (amountOfIssues) * goldenValue / totalSum;
|
---|
95 |
|
---|
96 | // re-weighing issues while making sure that the sum remains 1
|
---|
97 | for (Integer i : lastDiffSet.keySet()) {
|
---|
98 | Objective issue = opponentUtilitySpace.getDomain()
|
---|
99 | .getObjectivesRoot().getObjective(i);
|
---|
100 | double weight = opponentUtilitySpace.getWeight(i);
|
---|
101 | double newWeight;
|
---|
102 |
|
---|
103 | if (lastDiffSet.get(i) == 0 && weight < maximumWeight) {
|
---|
104 | newWeight = (weight + goldenValue) / totalSum;
|
---|
105 | } else {
|
---|
106 | newWeight = weight / totalSum;
|
---|
107 | }
|
---|
108 | opponentUtilitySpace.setWeight(issue, newWeight);
|
---|
109 | }
|
---|
110 |
|
---|
111 | // Then for each issue value that has been offered last time, a constant
|
---|
112 | // value is added to its corresponding ValueDiscrete.
|
---|
113 | try {
|
---|
114 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace
|
---|
115 | .getEvaluators()) {
|
---|
116 | EvaluatorDiscrete value = (EvaluatorDiscrete) e.getValue();
|
---|
117 | IssueDiscrete issue = ((IssueDiscrete) e.getKey());
|
---|
118 | /*
|
---|
119 | * add constant learnValueAddition to the current preference of
|
---|
120 | * the value to make it more important
|
---|
121 | */
|
---|
122 | ValueDiscrete issuevalue = (ValueDiscrete) oppBid.getBid()
|
---|
123 | .getValue(issue.getNumber());
|
---|
124 | Integer eval = value.getEvaluationNotNormalized(issuevalue);
|
---|
125 | value.setEvaluation(issuevalue, (learnValueAddition + eval));
|
---|
126 | }
|
---|
127 | } catch (Exception ex) {
|
---|
128 | ex.printStackTrace();
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 | @Override
|
---|
133 | public double getBidEvaluation(Bid bid) {
|
---|
134 | double result = 0;
|
---|
135 | try {
|
---|
136 | result = opponentUtilitySpace.getUtility(bid);
|
---|
137 | } catch (Exception e) {
|
---|
138 | e.printStackTrace();
|
---|
139 | }
|
---|
140 | return result;
|
---|
141 | }
|
---|
142 |
|
---|
143 | @Override
|
---|
144 | public String getName() {
|
---|
145 | return "HardHeaded Frequency Model";
|
---|
146 | }
|
---|
147 |
|
---|
148 | @Override
|
---|
149 | public Set<BOAparameter> getParameterSpec() {
|
---|
150 | Set<BOAparameter> set = new HashSet<BOAparameter>();
|
---|
151 | set.add(new BOAparameter("l", 0.2,
|
---|
152 | "The learning coefficient determines how quickly the issue weights are learned"));
|
---|
153 | return set;
|
---|
154 | }
|
---|
155 |
|
---|
156 | /**
|
---|
157 | * Init to flat weight and flat evaluation distribution
|
---|
158 | */
|
---|
159 | private void initializeModel() {
|
---|
160 | double commonWeight = 1D / amountOfIssues;
|
---|
161 |
|
---|
162 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace
|
---|
163 | .getEvaluators()) {
|
---|
164 |
|
---|
165 | opponentUtilitySpace.unlock(e.getKey());
|
---|
166 | e.getValue().setWeight(commonWeight);
|
---|
167 | try {
|
---|
168 | // set all value weights to one (they are normalized when
|
---|
169 | // calculating the utility)
|
---|
170 | for (ValueDiscrete vd : ((IssueDiscrete) e.getKey())
|
---|
171 | .getValues())
|
---|
172 | ((EvaluatorDiscrete) e.getValue()).setEvaluation(vd, 1);
|
---|
173 | } catch (Exception ex) {
|
---|
174 | ex.printStackTrace();
|
---|
175 | }
|
---|
176 | }
|
---|
177 | }
|
---|
178 |
|
---|
179 | /**
|
---|
180 | * Determines the difference between bids. For each issue, it is determined
|
---|
181 | * if the value changed. If this is the case, a 1 is stored in a hashmap for
|
---|
182 | * that issue, else a 0.
|
---|
183 | *
|
---|
184 | * @param a
|
---|
185 | * bid of the opponent
|
---|
186 | * @param another
|
---|
187 | * bid
|
---|
188 | * @return
|
---|
189 | */
|
---|
190 | private HashMap<Integer, Integer> determineDifference(BidDetails first,
|
---|
191 | BidDetails second) {
|
---|
192 |
|
---|
193 | HashMap<Integer, Integer> diff = new HashMap<Integer, Integer>();
|
---|
194 | try {
|
---|
195 | for (Issue i : opponentUtilitySpace.getDomain().getIssues()) {
|
---|
196 | Value value1 = first.getBid().getValue(i.getNumber());
|
---|
197 | Value value2 = second.getBid().getValue(i.getNumber());
|
---|
198 | diff.put(i.getNumber(), (value1.equals(value2)) ? 0 : 1);
|
---|
199 | }
|
---|
200 | } catch (Exception ex) {
|
---|
201 | ex.printStackTrace();
|
---|
202 | }
|
---|
203 |
|
---|
204 | return diff;
|
---|
205 | }
|
---|
206 |
|
---|
207 | } |
---|