[127] | 1 | package boaexample;
|
---|
| 2 |
|
---|
| 3 | import java.util.HashMap;
|
---|
| 4 | import java.util.HashSet;
|
---|
| 5 | import java.util.Map;
|
---|
| 6 | import java.util.Map.Entry;
|
---|
| 7 | import java.util.Set;
|
---|
| 8 |
|
---|
| 9 | import genius.core.Bid;
|
---|
| 10 | import genius.core.bidding.BidDetails;
|
---|
| 11 | import genius.core.boaframework.BOAparameter;
|
---|
| 12 | import genius.core.boaframework.NegotiationSession;
|
---|
| 13 | import genius.core.boaframework.OpponentModel;
|
---|
| 14 | import genius.core.issue.Issue;
|
---|
| 15 | import genius.core.issue.IssueDiscrete;
|
---|
| 16 | import genius.core.issue.Objective;
|
---|
| 17 | import genius.core.issue.Value;
|
---|
| 18 | import genius.core.issue.ValueDiscrete;
|
---|
| 19 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
| 20 | import genius.core.utility.Evaluator;
|
---|
| 21 | import genius.core.utility.EvaluatorDiscrete;
|
---|
| 22 |
|
---|
| 23 | /**
|
---|
| 24 | * BOA framework implementation of the HardHeaded Frequecy Model.
|
---|
| 25 | *
|
---|
| 26 | * Default: learning coef l = 0.2; learnValueAddition v = 1.0
|
---|
| 27 | *
|
---|
| 28 | * paper: https://ii.tudelft.nl/sites/default/files/boa.pdf
|
---|
| 29 | */
|
---|
| 30 | public class HardHeadedFrequencyModel extends OpponentModel {
|
---|
| 31 |
|
---|
| 32 | /*
|
---|
| 33 | * the learning coefficient is the weight that is added each turn to the
|
---|
| 34 | * issue weights which changed. It's a trade-off between concession speed
|
---|
| 35 | * and accuracy.
|
---|
| 36 | */
|
---|
| 37 | private double learnCoef;
|
---|
| 38 | /*
|
---|
| 39 | * value which is added to a value if it is found. Determines how fast the
|
---|
| 40 | * value weights converge.
|
---|
| 41 | */
|
---|
| 42 | private int learnValueAddition;
|
---|
| 43 | private int amountOfIssues;
|
---|
| 44 | private double goldenValue;
|
---|
| 45 |
|
---|
| 46 | @Override
|
---|
| 47 | public void init(NegotiationSession negotiationSession,
|
---|
| 48 | Map<String, Double> parameters) {
|
---|
| 49 | this.negotiationSession = negotiationSession;
|
---|
| 50 | if (parameters != null && parameters.get("l") != null) {
|
---|
| 51 | learnCoef = parameters.get("l");
|
---|
| 52 | } else {
|
---|
| 53 | learnCoef = 0.2;
|
---|
| 54 | }
|
---|
| 55 | learnValueAddition = 1;
|
---|
| 56 | opponentUtilitySpace = (AdditiveUtilitySpace) negotiationSession
|
---|
| 57 | .getUtilitySpace().copy();
|
---|
| 58 | amountOfIssues = opponentUtilitySpace.getDomain().getIssues().size();
|
---|
| 59 | /*
|
---|
| 60 | * This is the value to be added to weights of unchanged issues before
|
---|
| 61 | * normalization. Also the value that is taken as the minimum possible
|
---|
| 62 | * weight, (therefore defining the maximum possible also).
|
---|
| 63 | */
|
---|
| 64 | goldenValue = learnCoef / amountOfIssues;
|
---|
| 65 |
|
---|
| 66 | initializeModel();
|
---|
| 67 |
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | @Override
|
---|
| 71 | public void updateModel(Bid opponentBid, double time) {
|
---|
| 72 | if (negotiationSession.getOpponentBidHistory().size() < 2) {
|
---|
| 73 | return;
|
---|
| 74 | }
|
---|
| 75 | int numberOfUnchanged = 0;
|
---|
| 76 | BidDetails oppBid = negotiationSession.getOpponentBidHistory()
|
---|
| 77 | .getHistory()
|
---|
| 78 | .get(negotiationSession.getOpponentBidHistory().size() - 1);
|
---|
| 79 | BidDetails prevOppBid = negotiationSession.getOpponentBidHistory()
|
---|
| 80 | .getHistory()
|
---|
| 81 | .get(negotiationSession.getOpponentBidHistory().size() - 2);
|
---|
| 82 | HashMap<Integer, Integer> lastDiffSet = determineDifference(prevOppBid,
|
---|
| 83 | oppBid);
|
---|
| 84 |
|
---|
| 85 | // count the number of changes in value
|
---|
| 86 | for (Integer i : lastDiffSet.keySet()) {
|
---|
| 87 | if (lastDiffSet.get(i) == 0)
|
---|
| 88 | numberOfUnchanged++;
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | // The total sum of weights before normalization.
|
---|
| 92 | double totalSum = 1D + goldenValue * numberOfUnchanged;
|
---|
| 93 | // The maximum possible weight
|
---|
| 94 | double maximumWeight = 1D - (amountOfIssues) * goldenValue / totalSum;
|
---|
| 95 |
|
---|
| 96 | // re-weighing issues while making sure that the sum remains 1
|
---|
| 97 | for (Integer i : lastDiffSet.keySet()) {
|
---|
| 98 | Objective issue = opponentUtilitySpace.getDomain()
|
---|
| 99 | .getObjectivesRoot().getObjective(i);
|
---|
| 100 | double weight = opponentUtilitySpace.getWeight(i);
|
---|
| 101 | double newWeight;
|
---|
| 102 |
|
---|
| 103 | if (lastDiffSet.get(i) == 0 && weight < maximumWeight) {
|
---|
| 104 | newWeight = (weight + goldenValue) / totalSum;
|
---|
| 105 | } else {
|
---|
| 106 | newWeight = weight / totalSum;
|
---|
| 107 | }
|
---|
| 108 | opponentUtilitySpace.setWeight(issue, newWeight);
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | // Then for each issue value that has been offered last time, a constant
|
---|
| 112 | // value is added to its corresponding ValueDiscrete.
|
---|
| 113 | try {
|
---|
| 114 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace
|
---|
| 115 | .getEvaluators()) {
|
---|
| 116 | EvaluatorDiscrete value = (EvaluatorDiscrete) e.getValue();
|
---|
| 117 | IssueDiscrete issue = ((IssueDiscrete) e.getKey());
|
---|
| 118 | /*
|
---|
| 119 | * add constant learnValueAddition to the current preference of
|
---|
| 120 | * the value to make it more important
|
---|
| 121 | */
|
---|
| 122 | ValueDiscrete issuevalue = (ValueDiscrete) oppBid.getBid()
|
---|
| 123 | .getValue(issue.getNumber());
|
---|
| 124 | Integer eval = value.getEvaluationNotNormalized(issuevalue);
|
---|
| 125 | value.setEvaluation(issuevalue, (learnValueAddition + eval));
|
---|
| 126 | }
|
---|
| 127 | } catch (Exception ex) {
|
---|
| 128 | ex.printStackTrace();
|
---|
| 129 | }
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | @Override
|
---|
| 133 | public double getBidEvaluation(Bid bid) {
|
---|
| 134 | double result = 0;
|
---|
| 135 | try {
|
---|
| 136 | result = opponentUtilitySpace.getUtility(bid);
|
---|
| 137 | } catch (Exception e) {
|
---|
| 138 | e.printStackTrace();
|
---|
| 139 | }
|
---|
| 140 | return result;
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | @Override
|
---|
| 144 | public String getName() {
|
---|
| 145 | return "HardHeaded Frequency Model";
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 | @Override
|
---|
| 149 | public Set<BOAparameter> getParameterSpec() {
|
---|
| 150 | Set<BOAparameter> set = new HashSet<BOAparameter>();
|
---|
| 151 | set.add(new BOAparameter("l", 0.2,
|
---|
| 152 | "The learning coefficient determines how quickly the issue weights are learned"));
|
---|
| 153 | return set;
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | /**
|
---|
| 157 | * Init to flat weight and flat evaluation distribution
|
---|
| 158 | */
|
---|
| 159 | private void initializeModel() {
|
---|
| 160 | double commonWeight = 1D / amountOfIssues;
|
---|
| 161 |
|
---|
| 162 | for (Entry<Objective, Evaluator> e : opponentUtilitySpace
|
---|
| 163 | .getEvaluators()) {
|
---|
| 164 |
|
---|
| 165 | opponentUtilitySpace.unlock(e.getKey());
|
---|
| 166 | e.getValue().setWeight(commonWeight);
|
---|
| 167 | try {
|
---|
| 168 | // set all value weights to one (they are normalized when
|
---|
| 169 | // calculating the utility)
|
---|
| 170 | for (ValueDiscrete vd : ((IssueDiscrete) e.getKey())
|
---|
| 171 | .getValues())
|
---|
| 172 | ((EvaluatorDiscrete) e.getValue()).setEvaluation(vd, 1);
|
---|
| 173 | } catch (Exception ex) {
|
---|
| 174 | ex.printStackTrace();
|
---|
| 175 | }
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | /**
|
---|
| 180 | * Determines the difference between bids. For each issue, it is determined
|
---|
| 181 | * if the value changed. If this is the case, a 1 is stored in a hashmap for
|
---|
| 182 | * that issue, else a 0.
|
---|
| 183 | *
|
---|
| 184 | * @param a
|
---|
| 185 | * bid of the opponent
|
---|
| 186 | * @param another
|
---|
| 187 | * bid
|
---|
| 188 | * @return
|
---|
| 189 | */
|
---|
| 190 | private HashMap<Integer, Integer> determineDifference(BidDetails first,
|
---|
| 191 | BidDetails second) {
|
---|
| 192 |
|
---|
| 193 | HashMap<Integer, Integer> diff = new HashMap<Integer, Integer>();
|
---|
| 194 | try {
|
---|
| 195 | for (Issue i : opponentUtilitySpace.getDomain().getIssues()) {
|
---|
| 196 | Value value1 = first.getBid().getValue(i.getNumber());
|
---|
| 197 | Value value2 = second.getBid().getValue(i.getNumber());
|
---|
| 198 | diff.put(i.getNumber(), (value1.equals(value2)) ? 0 : 1);
|
---|
| 199 | }
|
---|
| 200 | } catch (Exception ex) {
|
---|
| 201 | ex.printStackTrace();
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 | return diff;
|
---|
| 205 | }
|
---|
| 206 |
|
---|
[1] | 207 | } |
---|