[127] | 1 | package negotiator.boaframework.opponentmodel;
|
---|
| 2 |
|
---|
| 3 | import java.util.ArrayList;
|
---|
| 4 | import java.util.Map;
|
---|
| 5 |
|
---|
| 6 | import javax.swing.JOptionPane;
|
---|
| 7 |
|
---|
| 8 | import agents.bayesianopponentmodel.EvaluatorHypothesis;
|
---|
| 9 | import agents.bayesianopponentmodel.Hypothesis;
|
---|
| 10 | import genius.core.Bid;
|
---|
| 11 | import genius.core.Domain;
|
---|
| 12 | import genius.core.boaframework.NegotiationSession;
|
---|
| 13 | import genius.core.boaframework.OpponentModel;
|
---|
| 14 | import genius.core.issue.Issue;
|
---|
| 15 | import genius.core.issue.IssueDiscrete;
|
---|
| 16 | import genius.core.issue.IssueInteger;
|
---|
| 17 | import genius.core.issue.IssueReal;
|
---|
| 18 | import genius.core.issue.ValueDiscrete;
|
---|
| 19 | import genius.core.protocol.BilateralAtomicNegotiationSession;
|
---|
| 20 | import genius.core.tournament.TournamentConfiguration;
|
---|
| 21 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
| 22 | import genius.core.utility.EVALFUNCTYPE;
|
---|
| 23 | import genius.core.utility.Evaluator;
|
---|
| 24 | import genius.core.utility.EvaluatorDiscrete;
|
---|
| 25 | import genius.core.utility.EvaluatorInteger;
|
---|
| 26 | import genius.core.utility.EvaluatorReal;
|
---|
| 27 | import negotiator.boaframework.opponentmodel.iamhaggler.WeightHypothesis;
|
---|
| 28 | import negotiator.boaframework.opponentmodel.tools.UtilitySpaceAdapter;
|
---|
| 29 |
|
---|
| 30 | /**
|
---|
| 31 | * IAMhagglerModel by Colin Williams, adapted for the BOA framework. Modified
|
---|
| 32 | * such that it has perfect knowledge about the opponent's strategy.
|
---|
| 33 | *
|
---|
| 34 | * Tim Baarslag, Koen Hindriks, Mark Hendrikx, Alex Dirkzwager and Catholijn M.
|
---|
| 35 | * Jonker. Decoupling Negotiating Agents to Explore the Space of Negotiation
|
---|
| 36 | * Strategies
|
---|
| 37 | *
|
---|
| 38 | * @author Colin Williams, Mark Hendrikx
|
---|
| 39 | */
|
---|
| 40 | public class PerfectIAMhagglerBayesianModel extends OpponentModel {
|
---|
| 41 | private ArrayList<Bid> biddingHistory;
|
---|
| 42 | private ArrayList<ArrayList<EvaluatorHypothesis>> evaluatorHypotheses;
|
---|
| 43 | private ArrayList<ArrayList<WeightHypothesis>> weightHypotheses;
|
---|
| 44 | private double previousBidUtility;
|
---|
| 45 | private Double maxUtility;
|
---|
| 46 | private Double minUtility;
|
---|
| 47 | private double[] expectedWeights;
|
---|
| 48 | private double SIGMA = 0.25;
|
---|
| 49 | private final int totalTriangularFunctions = 4;
|
---|
| 50 | private Domain domain;
|
---|
| 51 | private AdditiveUtilitySpace utilitySpace;
|
---|
| 52 | private boolean useAll = false;
|
---|
| 53 | private int startingBidIssue = 0;
|
---|
| 54 |
|
---|
| 55 | @Override
|
---|
| 56 | public void setOpponentUtilitySpace(BilateralAtomicNegotiationSession session) {
|
---|
| 57 |
|
---|
| 58 | if (TournamentConfiguration.getBooleanOption("accessPartnerPreferences", false)) {
|
---|
| 59 | opponentUtilitySpace = (AdditiveUtilitySpace) session.getAgentAUtilitySpace();
|
---|
| 60 | if (negotiationSession.getUtilitySpace().getFileName().equals(opponentUtilitySpace.getFileName())) {
|
---|
| 61 | opponentUtilitySpace = (AdditiveUtilitySpace) session.getAgentBUtilitySpace();
|
---|
| 62 | }
|
---|
| 63 | } else {
|
---|
| 64 | JOptionPane.showMessageDialog(null,
|
---|
| 65 | "This opponent model needs access to the opponent's\npreferences. See tournament options.",
|
---|
| 66 | "Model error", 0);
|
---|
| 67 | System.err.println("Global.experimentalSetup should be enabled!");
|
---|
| 68 | }
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | @Override
|
---|
| 72 | public void init(NegotiationSession negotiationSession, Map<String, Double> parameters) {
|
---|
| 73 | this.negotiationSession = negotiationSession;
|
---|
| 74 | previousBidUtility = 1;
|
---|
| 75 | weightHypotheses = new ArrayList<ArrayList<WeightHypothesis>>();
|
---|
| 76 | evaluatorHypotheses = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
| 77 | this.domain = negotiationSession.getUtilitySpace().getDomain();
|
---|
| 78 | this.utilitySpace = (AdditiveUtilitySpace) negotiationSession.getUtilitySpace();
|
---|
| 79 | expectedWeights = new double[domain.getIssues().size()];
|
---|
| 80 | biddingHistory = new ArrayList<Bid>();
|
---|
| 81 |
|
---|
| 82 | while (!testIndexOfFirstIssue(negotiationSession.getUtilitySpace().getDomain().getRandomBid(null),
|
---|
| 83 | startingBidIssue)) {
|
---|
| 84 | startingBidIssue++;
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | initWeightHypotheses();
|
---|
| 88 | initEvaluatorHypotheses();
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | /**
|
---|
| 92 | * Just an auxiliary function to calculate the index where issues start on a
|
---|
| 93 | * bid because we found out that it depends on the domain.
|
---|
| 94 | *
|
---|
| 95 | * @return true when the received index is the proper index
|
---|
| 96 | */
|
---|
| 97 | private boolean testIndexOfFirstIssue(Bid bid, int i) {
|
---|
| 98 | try {
|
---|
| 99 | @SuppressWarnings("unused")
|
---|
| 100 | ValueDiscrete valueOfIssue = (ValueDiscrete) bid.getValue(i);
|
---|
| 101 | } catch (Exception e) {
|
---|
| 102 | return false;
|
---|
| 103 | }
|
---|
| 104 | return true;
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | /**
|
---|
| 108 | * Initialise the weight hypotheses.
|
---|
| 109 | */
|
---|
| 110 | private void initWeightHypotheses() {
|
---|
| 111 | int weightHypothesesNumber = 11;
|
---|
| 112 | for (int i = 0; i < domain.getIssues().size(); ++i) {
|
---|
| 113 | ArrayList<WeightHypothesis> weightHypothesis = new ArrayList<WeightHypothesis>();
|
---|
| 114 | for (int j = 0; j < weightHypothesesNumber; ++j) {
|
---|
| 115 | WeightHypothesis weight = new WeightHypothesis();
|
---|
| 116 | weight.setProbability((1.0 - (((double) j + 1.0) / weightHypothesesNumber))
|
---|
| 117 | * (1.0 - (((double) j + 1.0) / weightHypothesesNumber))
|
---|
| 118 | * (1.0 - (((double) j + 1.0D) / weightHypothesesNumber)));
|
---|
| 119 | weight.setWeight((double) j / (weightHypothesesNumber - 1));
|
---|
| 120 | weightHypothesis.add(weight);
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | // Normalization
|
---|
| 124 | double n = 0.0D;
|
---|
| 125 | for (int j = 0; j < weightHypothesesNumber; ++j) {
|
---|
| 126 | n += weightHypothesis.get(j).getProbability();
|
---|
| 127 | }
|
---|
| 128 | for (int j = 0; j < weightHypothesesNumber; ++j) {
|
---|
| 129 | weightHypothesis.get(j).setProbability(weightHypothesis.get(j).getProbability() / n);
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | weightHypotheses.add(weightHypothesis);
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | /**
|
---|
| 137 | * Initialise the evaluator hypotheses.
|
---|
| 138 | */
|
---|
| 139 | private void initEvaluatorHypotheses() {
|
---|
| 140 | evaluatorHypotheses = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
| 141 | for (int i = 0; i < utilitySpace.getNrOfEvaluators(); ++i) {
|
---|
| 142 | ArrayList<EvaluatorHypothesis> lEvalHyps;
|
---|
| 143 | EvaluatorReal lHypEvalReal;
|
---|
| 144 | EvaluatorInteger lHypEvalInteger;
|
---|
| 145 | EvaluatorHypothesis lEvaluatorHypothesis;
|
---|
| 146 | switch (utilitySpace.getEvaluator(utilitySpace.getIssue(i).getNumber()).getType()) {
|
---|
| 147 |
|
---|
| 148 | case REAL: {
|
---|
| 149 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
| 150 | evaluatorHypotheses.add(lEvalHyps);
|
---|
| 151 |
|
---|
| 152 | IssueReal lIssue = (IssueReal) utilitySpace.getIssue(i);
|
---|
| 153 |
|
---|
| 154 | /* Uphill */
|
---|
| 155 | lHypEvalReal = new EvaluatorReal();
|
---|
| 156 | lHypEvalReal.setUpperBound(lIssue.getUpperBound());
|
---|
| 157 | lHypEvalReal.setLowerBound(lIssue.getLowerBound());
|
---|
| 158 | lHypEvalReal.setType(EVALFUNCTYPE.LINEAR);
|
---|
| 159 | lHypEvalReal.addParam(1, 1.0 / (lHypEvalReal.getUpperBound() - lHypEvalReal.getLowerBound()));
|
---|
| 160 | lHypEvalReal.addParam(0,
|
---|
| 161 | -lHypEvalReal.getLowerBound() / (lHypEvalReal.getUpperBound() - lHypEvalReal.getLowerBound()));
|
---|
| 162 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEvalReal);
|
---|
| 163 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 164 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 165 |
|
---|
| 166 | /* Triangular */
|
---|
| 167 | for (int k = 1; k <= totalTriangularFunctions; ++k) {
|
---|
| 168 | lHypEvalReal = new EvaluatorReal();
|
---|
| 169 | lHypEvalReal.setUpperBound(lIssue.getUpperBound());
|
---|
| 170 | lHypEvalReal.setLowerBound(lIssue.getLowerBound());
|
---|
| 171 | lHypEvalReal.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
| 172 | lHypEvalReal.addParam(0, lHypEvalReal.getLowerBound());
|
---|
| 173 | lHypEvalReal.addParam(1, lHypEvalReal.getUpperBound());
|
---|
| 174 | double lMaxPoint = lHypEvalReal.getLowerBound()
|
---|
| 175 | + (double) k * (lHypEvalReal.getUpperBound() - lHypEvalReal.getLowerBound())
|
---|
| 176 | / (totalTriangularFunctions + 1);
|
---|
| 177 | lHypEvalReal.addParam(2, lMaxPoint);
|
---|
| 178 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEvalReal);
|
---|
| 179 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 180 | lEvaluatorHypothesis.setDesc("triangular " + String.format("%1.2f", lMaxPoint));
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | /* Downhill */
|
---|
| 184 | lHypEvalReal = new EvaluatorReal();
|
---|
| 185 | lHypEvalReal.setUpperBound(lIssue.getUpperBound());
|
---|
| 186 | lHypEvalReal.setLowerBound(lIssue.getLowerBound());
|
---|
| 187 | lHypEvalReal.setType(EVALFUNCTYPE.LINEAR);
|
---|
| 188 | lHypEvalReal.addParam(1, -1.0 / (lHypEvalReal.getUpperBound() - lHypEvalReal.getLowerBound()));
|
---|
| 189 | lHypEvalReal.addParam(0, 1.0
|
---|
| 190 | + lHypEvalReal.getLowerBound() / (lHypEvalReal.getUpperBound() - lHypEvalReal.getLowerBound()));
|
---|
| 191 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEvalReal);
|
---|
| 192 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
| 193 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 194 |
|
---|
| 195 | for (int k = 0; k < lEvalHyps.size(); ++k) {
|
---|
| 196 | lEvalHyps.get(k).setProbability(1.0 / lEvalHyps.size());
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | break;
|
---|
| 200 | }
|
---|
| 201 | case INTEGER: {
|
---|
| 202 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
| 203 | evaluatorHypotheses.add(lEvalHyps);
|
---|
| 204 |
|
---|
| 205 | IssueInteger lIssue = (IssueInteger) utilitySpace.getIssue(i);
|
---|
| 206 |
|
---|
| 207 | /* Uphill */
|
---|
| 208 | lHypEvalInteger = new EvaluatorInteger();
|
---|
| 209 | lHypEvalInteger.setUpperBound(lIssue.getUpperBound());
|
---|
| 210 | lHypEvalInteger.setLowerBound(lIssue.getLowerBound());
|
---|
| 211 | lHypEvalInteger.setOffset(-lHypEvalInteger.getLowerBound()
|
---|
| 212 | / (lHypEvalInteger.getUpperBound() - lHypEvalInteger.getLowerBound()));
|
---|
| 213 | lHypEvalInteger.setSlope(1.0 / (lHypEvalInteger.getUpperBound() - lHypEvalInteger.getLowerBound()));
|
---|
| 214 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEvalInteger);
|
---|
| 215 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 216 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 217 |
|
---|
| 218 | /* Downhill */
|
---|
| 219 | lHypEvalInteger = new EvaluatorInteger();
|
---|
| 220 | lHypEvalInteger.setUpperBound(lIssue.getUpperBound());
|
---|
| 221 | lHypEvalInteger.setLowerBound(lIssue.getLowerBound());
|
---|
| 222 | lHypEvalInteger.setOffset(1.0 + lHypEvalInteger.getLowerBound()
|
---|
| 223 | / (lHypEvalInteger.getUpperBound() - lHypEvalInteger.getLowerBound()));
|
---|
| 224 | lHypEvalInteger.setSlope(-1.0 / (lHypEvalInteger.getUpperBound() - lHypEvalInteger.getLowerBound()));
|
---|
| 225 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEvalInteger);
|
---|
| 226 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
| 227 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 228 |
|
---|
| 229 | for (int k = 0; k < lEvalHyps.size(); ++k) {
|
---|
| 230 | lEvalHyps.get(k).setProbability(1.0 / lEvalHyps.size());
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | break;
|
---|
| 234 | }
|
---|
| 235 | case DISCRETE: {
|
---|
| 236 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
| 237 | evaluatorHypotheses.add(lEvalHyps);
|
---|
| 238 |
|
---|
| 239 | IssueDiscrete lDiscIssue = (IssueDiscrete) utilitySpace.getIssue(i);
|
---|
| 240 |
|
---|
| 241 | /* Uphill */
|
---|
| 242 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 243 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); ++j)
|
---|
| 244 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j), Integer.valueOf(1000 * j + 1));
|
---|
| 245 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEval);
|
---|
| 246 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 247 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 248 |
|
---|
| 249 | /* Triangular */
|
---|
| 250 | if (lDiscIssue.getNumberOfValues() > 2) {
|
---|
| 251 | for (int k = 1; k < lDiscIssue.getNumberOfValues() - 1; ++k) {
|
---|
| 252 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 253 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); ++j) {
|
---|
| 254 | if (j < k) {
|
---|
| 255 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j), 1000 * j / k);
|
---|
| 256 | } else
|
---|
| 257 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
| 258 | 1000 * (lDiscIssue.getNumberOfValues() - j
|
---|
| 259 | - 1 / (lDiscIssue.getNumberOfValues() - k - 1) + 1));
|
---|
| 260 | }
|
---|
| 261 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEval);
|
---|
| 262 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 263 | lEvaluatorHypothesis.setDesc("triangular " + String.valueOf(k));
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | /* Downhill */
|
---|
| 268 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 269 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); ++j)
|
---|
| 270 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
| 271 | Integer.valueOf(1000 * (lDiscIssue.getNumberOfValues() - j - 1) + 1));
|
---|
| 272 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEval);
|
---|
| 273 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
| 274 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 275 |
|
---|
| 276 | for (int k = 0; k < lEvalHyps.size(); ++k) {
|
---|
| 277 | lEvalHyps.get(k).setProbability(1.0 / lEvalHyps.size());
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | break;
|
---|
| 281 | }
|
---|
| 282 | }
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | for (int i = 0; i < expectedWeights.length; ++i)
|
---|
| 286 | expectedWeights[i] = getExpectedWeight(i);
|
---|
| 287 |
|
---|
| 288 | normalize(expectedWeights);
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 | @Override
|
---|
| 292 | public double getBidEvaluation(Bid bid) {
|
---|
| 293 | try {
|
---|
| 294 | return getNormalizedUtility(bid);
|
---|
| 295 | } catch (Exception e) {
|
---|
| 296 | e.printStackTrace();
|
---|
| 297 | }
|
---|
| 298 | return 0;
|
---|
| 299 | }
|
---|
| 300 |
|
---|
| 301 | /**
|
---|
| 302 | * Get the normalised utility of a bid.
|
---|
| 303 | *
|
---|
| 304 | * @param bid
|
---|
| 305 | * The bid to get the normalised utility of.
|
---|
| 306 | * @return the normalised utility of a bid.
|
---|
| 307 | * @throws Exception
|
---|
| 308 | */
|
---|
| 309 | public double getNormalizedUtility(Bid bid) throws Exception {
|
---|
| 310 | return getNormalizedUtility(bid, false);
|
---|
| 311 | }
|
---|
| 312 |
|
---|
| 313 | /**
|
---|
| 314 | * Get the normalised utility of a bid.
|
---|
| 315 | *
|
---|
| 316 | * @param bid
|
---|
| 317 | * The bid to get the normalised utility of.
|
---|
| 318 | * @param debug
|
---|
| 319 | * Whether or not to output debugging information
|
---|
| 320 | * @return the normalised utility of a bid.
|
---|
| 321 | * @throws Exception
|
---|
| 322 | */
|
---|
| 323 | public double getNormalizedUtility(Bid bid, boolean debug) throws Exception {
|
---|
| 324 | double u = getExpectedUtility(bid);
|
---|
| 325 | if (minUtility == null || maxUtility == null)
|
---|
| 326 | findMinMaxUtility();
|
---|
| 327 | if (Double.isNaN(u)) {
|
---|
| 328 | return 0.0;
|
---|
| 329 | }
|
---|
| 330 | return (u - minUtility) / (maxUtility - minUtility);
|
---|
| 331 | }
|
---|
| 332 |
|
---|
| 333 | /**
|
---|
| 334 | * Get the expected utility of a bid.
|
---|
| 335 | *
|
---|
| 336 | * @param bid
|
---|
| 337 | * The bid to get the expected utility of.
|
---|
| 338 | * @return the expected utility of the bid.
|
---|
| 339 | * @throws Exception
|
---|
| 340 | */
|
---|
| 341 | public double getExpectedUtility(Bid bid) throws Exception {
|
---|
| 342 | double u = 0;
|
---|
| 343 | for (int i = 0; i < domain.getIssues().size(); i++) {
|
---|
| 344 | u += expectedWeights[i] * getExpectedEvaluationValue(bid, i);
|
---|
| 345 | }
|
---|
| 346 | return u;
|
---|
| 347 | }
|
---|
| 348 |
|
---|
| 349 | /**
|
---|
| 350 | * Update the beliefs about the opponent, based on an observation.
|
---|
| 351 | *
|
---|
| 352 | * @param opponentBid
|
---|
| 353 | * The opponent's bid that was observed.
|
---|
| 354 | * @throws Exception
|
---|
| 355 | */
|
---|
| 356 | public void updateModel(Bid opponentBid, double time) {
|
---|
| 357 | if (!useAll) {
|
---|
| 358 | if (biddingHistory.contains(opponentBid))
|
---|
| 359 | return;
|
---|
| 360 | }
|
---|
| 361 | biddingHistory.add(opponentBid);
|
---|
| 362 |
|
---|
| 363 | if (biddingHistory.size() > 1) {
|
---|
| 364 | try {
|
---|
| 365 | updateWeights();
|
---|
| 366 | } catch (Exception e) {
|
---|
| 367 | e.printStackTrace();
|
---|
| 368 | }
|
---|
| 369 | }
|
---|
| 370 | try {
|
---|
| 371 | updateEvaluationFunctions();
|
---|
| 372 | } catch (Exception e) {
|
---|
| 373 | e.printStackTrace();
|
---|
| 374 | }
|
---|
| 375 | try {
|
---|
| 376 | previousBidUtility = opponentUtilitySpace.getUtility(opponentBid);
|
---|
| 377 | } catch (Exception e) {
|
---|
| 378 | e.printStackTrace();
|
---|
| 379 | }
|
---|
| 380 |
|
---|
| 381 | for (int i = 0; i < expectedWeights.length; ++i)
|
---|
| 382 | expectedWeights[i] = getExpectedWeight(i);
|
---|
| 383 |
|
---|
| 384 | normalize(expectedWeights);
|
---|
| 385 |
|
---|
| 386 | try {
|
---|
| 387 | findMinMaxUtility();
|
---|
| 388 | } catch (Exception e) {
|
---|
| 389 | e.printStackTrace();
|
---|
| 390 | }
|
---|
| 391 |
|
---|
| 392 | }
|
---|
| 393 |
|
---|
| 394 | /**
|
---|
| 395 | * Normalise the values in an array so that they sum to 1.
|
---|
| 396 | *
|
---|
| 397 | * @param array
|
---|
| 398 | * The array to normalise;
|
---|
| 399 | */
|
---|
| 400 | private void normalize(double[] array) {
|
---|
| 401 | double n = 0;
|
---|
| 402 | for (int i = 0; i < array.length; ++i) {
|
---|
| 403 | n += array[i];
|
---|
| 404 | }
|
---|
| 405 | if (n == 0) {
|
---|
| 406 | for (int i = 0; i < array.length; ++i) {
|
---|
| 407 | array[i] = 1.0 / array.length;
|
---|
| 408 | }
|
---|
| 409 | return;
|
---|
| 410 | }
|
---|
| 411 |
|
---|
| 412 | for (int i = 0; i < array.length; ++i) {
|
---|
| 413 | array[i] = array[i] / n;
|
---|
| 414 | }
|
---|
| 415 | }
|
---|
| 416 |
|
---|
| 417 | /**
|
---|
| 418 | * Find the minimum and maximum utilities of the bids in the utility space.
|
---|
| 419 | *
|
---|
| 420 | * @throws Exception
|
---|
| 421 | */
|
---|
| 422 | protected void findMinMaxUtility() throws Exception {
|
---|
| 423 | maxUtility = getExtremeUtility(Extreme.MAX);
|
---|
| 424 | minUtility = getExtremeUtility(Extreme.MIN);
|
---|
| 425 | }
|
---|
| 426 |
|
---|
| 427 | public double getWeight(Issue issue) {
|
---|
| 428 | return getExpectedWeight(issue.getNumber() - startingBidIssue);
|
---|
| 429 | }
|
---|
| 430 |
|
---|
| 431 | public enum Extreme {
|
---|
| 432 | MIN, MAX
|
---|
| 433 | }
|
---|
| 434 |
|
---|
| 435 | private double getExtremeUtility(Extreme extreme) {
|
---|
| 436 | double u = 0;
|
---|
| 437 | for (int i = 0; i < domain.getIssues().size(); i++) {
|
---|
| 438 | u += expectedWeights[i] * getExtremeEvaluationValue(i, extreme);
|
---|
| 439 | }
|
---|
| 440 | return u;
|
---|
| 441 | }
|
---|
| 442 |
|
---|
| 443 | private double getExtremeEvaluationValue(int number, Extreme extreme) {
|
---|
| 444 | double expectedEval = 0;
|
---|
| 445 | for (EvaluatorHypothesis evaluatorHypothesis : evaluatorHypotheses.get(number)) {
|
---|
| 446 | expectedEval += evaluatorHypothesis.getProbability()
|
---|
| 447 | * getExtremeEvaluation(evaluatorHypothesis.getEvaluator(), extreme);
|
---|
| 448 | }
|
---|
| 449 | return expectedEval;
|
---|
| 450 | }
|
---|
| 451 |
|
---|
| 452 | public double getExtremeEvaluation(Evaluator evaluator, Extreme extreme) {
|
---|
| 453 | double extremeEval = initExtreme(extreme);
|
---|
| 454 | switch (evaluator.getType()) {
|
---|
| 455 | case DISCRETE:
|
---|
| 456 | EvaluatorDiscrete discreteEvaluator = (EvaluatorDiscrete) evaluator;
|
---|
| 457 | for (ValueDiscrete value : discreteEvaluator.getValues()) {
|
---|
| 458 | try {
|
---|
| 459 | switch (extreme) {
|
---|
| 460 | case MAX:
|
---|
| 461 | extremeEval = Math.max(extremeEval, discreteEvaluator.getEvaluation(value));
|
---|
| 462 | break;
|
---|
| 463 | case MIN:
|
---|
| 464 | extremeEval = Math.min(extremeEval, discreteEvaluator.getEvaluation(value));
|
---|
| 465 | break;
|
---|
| 466 | }
|
---|
| 467 | } catch (Exception e) {
|
---|
| 468 | e.printStackTrace();
|
---|
| 469 | }
|
---|
| 470 | }
|
---|
| 471 | break;
|
---|
| 472 | case INTEGER:
|
---|
| 473 | EvaluatorInteger integerEvaluator = (EvaluatorInteger) evaluator;
|
---|
| 474 | switch (extreme) {
|
---|
| 475 | case MAX:
|
---|
| 476 | extremeEval = Math.max(integerEvaluator.getEvaluation(integerEvaluator.getUpperBound()),
|
---|
| 477 | integerEvaluator.getEvaluation(integerEvaluator.getLowerBound()));
|
---|
| 478 | // if(integerEvaluator.getFuncType() == EVALFUNCTYPE.TRIANGULAR)
|
---|
| 479 | // {
|
---|
| 480 | // extremeEval = Math.max(extremeEval,
|
---|
| 481 | // integerEvaluator.getEvaluation(integerEvaluator.getTopParam()));
|
---|
| 482 | // }
|
---|
| 483 | break;
|
---|
| 484 | case MIN:
|
---|
| 485 | extremeEval = Math.min(integerEvaluator.getEvaluation(integerEvaluator.getUpperBound()),
|
---|
| 486 | integerEvaluator.getEvaluation(integerEvaluator.getLowerBound()));
|
---|
| 487 | // if(integerEvaluator.getFuncType() == EVALFUNCTYPE.TRIANGULAR)
|
---|
| 488 | // {
|
---|
| 489 | // extremeEval = Math.min(extremeEval,
|
---|
| 490 | // integerEvaluator.getEvaluation(integerEvaluator.getTopParam()));
|
---|
| 491 | // }
|
---|
| 492 | break;
|
---|
| 493 | }
|
---|
| 494 | break;
|
---|
| 495 | case REAL:
|
---|
| 496 | EvaluatorReal realEvaluator = (EvaluatorReal) evaluator;
|
---|
| 497 | switch (extreme) {
|
---|
| 498 | case MAX:
|
---|
| 499 | extremeEval = Math.max(realEvaluator.getEvaluation(realEvaluator.getUpperBound()),
|
---|
| 500 | realEvaluator.getEvaluation(realEvaluator.getLowerBound()));
|
---|
| 501 | if (realEvaluator.getFuncType() == EVALFUNCTYPE.TRIANGULAR) {
|
---|
| 502 | extremeEval = Math.max(extremeEval, realEvaluator.getEvaluation(realEvaluator.getTopParam()));
|
---|
| 503 | }
|
---|
| 504 | break;
|
---|
| 505 | case MIN:
|
---|
| 506 | extremeEval = Math.min(realEvaluator.getEvaluation(realEvaluator.getUpperBound()),
|
---|
| 507 | realEvaluator.getEvaluation(realEvaluator.getLowerBound()));
|
---|
| 508 | if (realEvaluator.getFuncType() == EVALFUNCTYPE.TRIANGULAR) {
|
---|
| 509 | extremeEval = Math.min(extremeEval, realEvaluator.getEvaluation(realEvaluator.getTopParam()));
|
---|
| 510 | }
|
---|
| 511 | break;
|
---|
| 512 | }
|
---|
| 513 | break;
|
---|
| 514 | }
|
---|
| 515 | return extremeEval;
|
---|
| 516 | }
|
---|
| 517 |
|
---|
| 518 | private double initExtreme(Extreme extreme) {
|
---|
| 519 | switch (extreme) {
|
---|
| 520 | case MAX:
|
---|
| 521 | return Double.MIN_VALUE;
|
---|
| 522 | case MIN:
|
---|
| 523 | return Double.MAX_VALUE;
|
---|
| 524 | }
|
---|
| 525 | return 0;
|
---|
| 526 | }
|
---|
| 527 |
|
---|
| 528 | /**
|
---|
| 529 | * Update the evaluation functions.
|
---|
| 530 | *
|
---|
| 531 | * @throws Exception
|
---|
| 532 | */
|
---|
| 533 | private void updateEvaluationFunctions() throws Exception {
|
---|
| 534 | maxUtility = null;
|
---|
| 535 | minUtility = null;
|
---|
| 536 |
|
---|
| 537 | Bid bid = biddingHistory.get(biddingHistory.size() - 1);
|
---|
| 538 | ArrayList<ArrayList<EvaluatorHypothesis>> evaluatorHypotheses = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
| 539 |
|
---|
| 540 | for (int i = 0; i < this.evaluatorHypotheses.size(); ++i) {
|
---|
| 541 | ArrayList<EvaluatorHypothesis> tmp = new ArrayList<EvaluatorHypothesis>();
|
---|
| 542 | for (int j = 0; j < this.evaluatorHypotheses.get(i).size(); ++j) {
|
---|
| 543 | EvaluatorHypothesis evaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 544 | this.evaluatorHypotheses.get(i).get(j).getEvaluator());
|
---|
| 545 | evaluatorHypothesis.setDesc(this.evaluatorHypotheses.get(i).get(j).getDesc());
|
---|
| 546 | evaluatorHypothesis.setProbability(this.evaluatorHypotheses.get(i).get(j).getProbability());
|
---|
| 547 | tmp.add(evaluatorHypothesis);
|
---|
| 548 | }
|
---|
| 549 | evaluatorHypotheses.add(tmp);
|
---|
| 550 | }
|
---|
| 551 |
|
---|
| 552 | for (int i = 0; i < this.domain.getIssues().size(); i++) {
|
---|
| 553 | double n = 0.0D;
|
---|
| 554 | double utility = 0.0D;
|
---|
| 555 | for (EvaluatorHypothesis evaluatorHypothesis : evaluatorHypotheses.get(i)) {
|
---|
| 556 | utility = getPartialUtility(bid, i) + getExpectedWeight(i) * evaluatorHypothesis.getEvaluator()
|
---|
| 557 | .getEvaluation(utilitySpace, bid, utilitySpace.getIssue(i).getNumber());
|
---|
| 558 | n += evaluatorHypothesis.getProbability() * conditionalDistribution(utility, previousBidUtility);
|
---|
| 559 | }
|
---|
| 560 |
|
---|
| 561 | for (EvaluatorHypothesis evaluatorHypothesis : evaluatorHypotheses.get(i)) {
|
---|
| 562 | utility = getPartialUtility(bid, i) + getExpectedWeight(i) * evaluatorHypothesis.getEvaluator()
|
---|
| 563 | .getEvaluation(utilitySpace, bid, utilitySpace.getIssue(i).getNumber());
|
---|
| 564 | evaluatorHypothesis.setProbability(evaluatorHypothesis.getProbability()
|
---|
| 565 | * conditionalDistribution(utility, previousBidUtility) / n);
|
---|
| 566 | }
|
---|
| 567 | }
|
---|
| 568 |
|
---|
| 569 | this.evaluatorHypotheses = evaluatorHypotheses;
|
---|
| 570 | }
|
---|
| 571 |
|
---|
| 572 | /**
|
---|
| 573 | * Update the weights.
|
---|
| 574 | *
|
---|
| 575 | * @throws Exception
|
---|
| 576 | */
|
---|
| 577 | private void updateWeights() throws Exception {
|
---|
| 578 | maxUtility = null;
|
---|
| 579 | minUtility = null;
|
---|
| 580 |
|
---|
| 581 | Bid bid = biddingHistory.get(biddingHistory.size() - 1);
|
---|
| 582 | ArrayList<ArrayList<WeightHypothesis>> weightHypotheses = new ArrayList<ArrayList<WeightHypothesis>>();
|
---|
| 583 |
|
---|
| 584 | for (int i = 0; i < this.weightHypotheses.size(); ++i) {
|
---|
| 585 | ArrayList<WeightHypothesis> tmp = new ArrayList<WeightHypothesis>();
|
---|
| 586 | for (int j = 0; j < this.weightHypotheses.get(i).size(); ++j) {
|
---|
| 587 | WeightHypothesis weightHypothesis = new WeightHypothesis();
|
---|
| 588 | weightHypothesis.setWeight(this.weightHypotheses.get(i).get(j).getWeight());
|
---|
| 589 | weightHypothesis.setProbability(this.weightHypotheses.get(i).get(j).getProbability());
|
---|
| 590 | tmp.add(weightHypothesis);
|
---|
| 591 | }
|
---|
| 592 | weightHypotheses.add(tmp);
|
---|
| 593 | }
|
---|
| 594 |
|
---|
| 595 | for (int i = 0; i < domain.getIssues().size(); i++) {
|
---|
| 596 | double n = 0.0D;
|
---|
| 597 | double utility = 0.0D;
|
---|
| 598 | for (WeightHypothesis weightHypothesis : weightHypotheses.get(i)) {
|
---|
| 599 | utility = getPartialUtility(bid, i) + weightHypothesis.getWeight() * getExpectedEvaluationValue(bid, i);
|
---|
| 600 | n += weightHypothesis.getProbability() * conditionalDistribution(utility, previousBidUtility);
|
---|
| 601 | }
|
---|
| 602 |
|
---|
| 603 | for (WeightHypothesis weightHypothesis : weightHypotheses.get(i)) {
|
---|
| 604 | utility = getPartialUtility(bid, i) + weightHypothesis.getWeight() * getExpectedEvaluationValue(bid, i);
|
---|
| 605 | weightHypothesis.setProbability(
|
---|
| 606 | weightHypothesis.getProbability() * conditionalDistribution(utility, previousBidUtility) / n);
|
---|
| 607 | }
|
---|
| 608 | }
|
---|
| 609 |
|
---|
| 610 | this.weightHypotheses = weightHypotheses;
|
---|
| 611 |
|
---|
| 612 | }
|
---|
| 613 |
|
---|
| 614 | /**
|
---|
| 615 | * The conditional distribution function.
|
---|
| 616 | *
|
---|
| 617 | * @param utility
|
---|
| 618 | * The utility.
|
---|
| 619 | * @param previousBidUtility
|
---|
| 620 | * The utility of the previous bid.
|
---|
| 621 | * @return
|
---|
| 622 | */
|
---|
| 623 | private double conditionalDistribution(double utility, double previousBidUtility) {
|
---|
| 624 | double x = (previousBidUtility - utility) / previousBidUtility;
|
---|
| 625 | return (1.0 / (SIGMA * Math.sqrt(2 * Math.PI))) * Math.exp(-(x * x) / (2 * SIGMA * SIGMA));
|
---|
| 626 | }
|
---|
| 627 |
|
---|
| 628 | /**
|
---|
| 629 | * Get the expected evaluation value of a bid for a particular issue.
|
---|
| 630 | *
|
---|
| 631 | * @param bid
|
---|
| 632 | * The bid to get the expected evaluation value of.
|
---|
| 633 | * @param number
|
---|
| 634 | * The number of the issue to get the expected evaluation value
|
---|
| 635 | * of.
|
---|
| 636 | * @return the expected evaluation value of a bid for a particular issue.
|
---|
| 637 | * @throws Exception
|
---|
| 638 | */
|
---|
| 639 | private double getExpectedEvaluationValue(Bid bid, int number) throws Exception {
|
---|
| 640 | double expectedEval = 0;
|
---|
| 641 | for (EvaluatorHypothesis evaluatorHypothesis : evaluatorHypotheses.get(number)) {
|
---|
| 642 | expectedEval += evaluatorHypothesis.getProbability() * evaluatorHypothesis.getEvaluator()
|
---|
| 643 | .getEvaluation(utilitySpace, bid, utilitySpace.getIssue(number).getNumber());
|
---|
| 644 | }
|
---|
| 645 | return expectedEval;
|
---|
| 646 | }
|
---|
| 647 |
|
---|
| 648 | /**
|
---|
| 649 | * Get the partial utility of a bid, excluding a specific issue.
|
---|
| 650 | *
|
---|
| 651 | * @param bid
|
---|
| 652 | * The bid to get the partial utility of.
|
---|
| 653 | * @param number
|
---|
| 654 | * The number of the issue to exclude.
|
---|
| 655 | * @return the partial utility of a bid, excluding a specific issue.
|
---|
| 656 | * @throws Exception
|
---|
| 657 | */
|
---|
| 658 | private double getPartialUtility(Bid bid, int number) throws Exception {
|
---|
| 659 | double u = 0;
|
---|
| 660 | for (int i = 0; i < domain.getIssues().size(); i++) {
|
---|
| 661 | if (number == i) {
|
---|
| 662 | continue;
|
---|
| 663 | }
|
---|
| 664 | double w = 0;
|
---|
| 665 | for (WeightHypothesis weightHypothesis : weightHypotheses.get(i))
|
---|
| 666 | w += weightHypothesis.getProbability() * weightHypothesis.getWeight();
|
---|
| 667 | u += w * getExpectedEvaluationValue(bid, i);
|
---|
| 668 | }
|
---|
| 669 | return u;
|
---|
| 670 | }
|
---|
| 671 |
|
---|
| 672 | /**
|
---|
| 673 | * Get the expected weight of a particular issue.
|
---|
| 674 | *
|
---|
| 675 | * @param number
|
---|
| 676 | * The issue number.
|
---|
| 677 | * @return the expected weight of a particular issue.
|
---|
| 678 | */
|
---|
| 679 | public double getExpectedWeight(int number) {
|
---|
| 680 | double expectedWeight = 0;
|
---|
| 681 | for (WeightHypothesis weightHypothesis : weightHypotheses.get(number)) {
|
---|
| 682 | expectedWeight += weightHypothesis.getProbability() * weightHypothesis.getWeight();
|
---|
| 683 | }
|
---|
| 684 | return expectedWeight;
|
---|
| 685 | }
|
---|
| 686 |
|
---|
| 687 | public EvaluatorHypothesis getBestHypothesis(int issue) {
|
---|
| 688 | double maxEvaluatorProbability = -1;
|
---|
| 689 | EvaluatorHypothesis bestEvaluatorHypothesis = null;
|
---|
| 690 | for (EvaluatorHypothesis evaluatorHypothesis : evaluatorHypotheses.get(issue)) {
|
---|
| 691 | if (evaluatorHypothesis.getProbability() > maxEvaluatorProbability) {
|
---|
| 692 | maxEvaluatorProbability = evaluatorHypothesis.getProbability();
|
---|
| 693 | bestEvaluatorHypothesis = evaluatorHypothesis;
|
---|
| 694 | }
|
---|
| 695 | }
|
---|
| 696 | return bestEvaluatorHypothesis;
|
---|
| 697 | }
|
---|
| 698 |
|
---|
| 699 | public Hypothesis getHypothesis(int index) {
|
---|
| 700 | return this.evaluatorHypotheses.get(index).get(index);
|
---|
| 701 | }
|
---|
| 702 |
|
---|
| 703 | @Override
|
---|
| 704 | public AdditiveUtilitySpace getOpponentUtilitySpace() {
|
---|
| 705 | return new UtilitySpaceAdapter(this, domain);
|
---|
| 706 | }
|
---|
| 707 |
|
---|
| 708 | public String getName() {
|
---|
| 709 | return "IAMhaggler Bayesian Model";
|
---|
| 710 | }
|
---|
| 711 |
|
---|
| 712 | public void cleanUp() {
|
---|
| 713 | super.cleanUp();
|
---|
| 714 | biddingHistory = null;
|
---|
| 715 | evaluatorHypotheses = null;
|
---|
| 716 | weightHypotheses = null;
|
---|
| 717 | expectedWeights = null;
|
---|
| 718 | opponentUtilitySpace = null;
|
---|
| 719 | domain = null;
|
---|
| 720 | utilitySpace = null;
|
---|
| 721 | }
|
---|
| 722 |
|
---|
| 723 | @Override
|
---|
| 724 | public void setOpponentUtilitySpace(AdditiveUtilitySpace opponentUtilitySpace) {
|
---|
| 725 | this.opponentUtilitySpace = opponentUtilitySpace;
|
---|
| 726 | }
|
---|
| 727 | }
|
---|