1 | package agents.rlboa;
|
---|
2 |
|
---|
3 | import genius.core.boaframework.NegotiationSession;
|
---|
4 | import genius.core.boaframework.OpponentModel;
|
---|
5 |
|
---|
6 | import java.util.ArrayList;
|
---|
7 | import java.util.Collections;
|
---|
8 | import java.util.HashMap;
|
---|
9 | import java.util.List;
|
---|
10 |
|
---|
11 | public class PriorBeliefQlearningStrategy extends QlearningStrategy {
|
---|
12 |
|
---|
13 | public PriorBeliefQlearningStrategy(NegotiationSession negotiationSession, OpponentModel opponentModel) {
|
---|
14 | super(negotiationSession, opponentModel);
|
---|
15 | }
|
---|
16 |
|
---|
17 | @Override
|
---|
18 | protected void initQTable() {
|
---|
19 | this.qTable = new HashMap<Integer, ArrayList<Double>>();
|
---|
20 |
|
---|
21 | ArrayList<Double> initialBelief = new ArrayList<Double>(Collections.nCopies(this.state.getActionSize(), 0.0));
|
---|
22 | initialBelief.set(this.state.getActionSize() - 1, 1.0);
|
---|
23 |
|
---|
24 | // Initial state has different action space
|
---|
25 | this.qTable.putIfAbsent(this.state.hash(), initialBelief);
|
---|
26 | }
|
---|
27 |
|
---|
28 | @Override
|
---|
29 | public String getName() {
|
---|
30 | return "Inverted Q-offering";
|
---|
31 | }
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * This is the general action function for the RL-agent. We determine a bin by either
|
---|
35 | * moving up (retracting offer), doing nothing or moving down (conceding offer).
|
---|
36 | * @param currentBin
|
---|
37 | * @return
|
---|
38 | */
|
---|
39 | @Override
|
---|
40 | protected int determineTargetBin(int currentBin) {
|
---|
41 | int targetBin = currentBin;
|
---|
42 | ArrayList<Double> defaultActionValues = new ArrayList<Double>(Collections.nCopies(this.state.getActionSize(), 1.0));
|
---|
43 |
|
---|
44 | List<Double> qValues = this.qTable.getOrDefault(this.state.hash(), defaultActionValues);
|
---|
45 | int action = this.epsilonGreedy(qValues);
|
---|
46 | this.actions.add(action);
|
---|
47 |
|
---|
48 | // Apply action current bin (ie. move up, down or stay)
|
---|
49 | switch (action) {
|
---|
50 | case 0: targetBin--;
|
---|
51 | break;
|
---|
52 | case 1: targetBin++;
|
---|
53 | break;
|
---|
54 | case 2: break;
|
---|
55 | }
|
---|
56 |
|
---|
57 | System.out.println("Reactive bid:");
|
---|
58 | System.out.println(action);
|
---|
59 |
|
---|
60 | // Can't go out of bounds
|
---|
61 | // TODO: Discuss impact on learning algorithm
|
---|
62 | targetBin = Math.min(targetBin, this.getNBins() - 1);
|
---|
63 | targetBin = Math.max(targetBin, 0);
|
---|
64 |
|
---|
65 | return targetBin;
|
---|
66 |
|
---|
67 |
|
---|
68 | }
|
---|
69 |
|
---|
70 | @Override
|
---|
71 | protected int determineOpeningBin() {
|
---|
72 | ArrayList<Double> defaultInitialActionValues = new ArrayList<Double>(Collections.nCopies(this.state.getActionSize(), 1.0));
|
---|
73 | List<Double> qValues = this.qTable.getOrDefault(this.state.hash(), defaultInitialActionValues);
|
---|
74 | int action = this.epsilonGreedy(qValues);
|
---|
75 | this.actions.add(action);
|
---|
76 |
|
---|
77 | System.out.println("Opening bid:");
|
---|
78 | System.out.println(action);
|
---|
79 |
|
---|
80 | return action;
|
---|
81 | }
|
---|
82 |
|
---|
83 | @Override
|
---|
84 | protected void updateQFuction(AbstractState state, int action, double reward, AbstractState newState) {
|
---|
85 | // initialize state if it is new
|
---|
86 |
|
---|
87 | // If agent hasn't done a opening bid, initialize action values to number of bins, otherwise
|
---|
88 | // just 3 values (up/down/nothing).
|
---|
89 | ArrayList<Double> stateDefaultActionValues = new ArrayList<Double>(Collections.nCopies(state.getActionSize(), 0.0));
|
---|
90 | ArrayList<Double> newStateDefaultActionValues = new ArrayList<Double>(Collections.nCopies(newState.getActionSize(), 1.0));
|
---|
91 |
|
---|
92 | if (state.getActionSize() == this.getNBins()) {
|
---|
93 | stateDefaultActionValues.set(state.getActionSize() - 1, 1.0);
|
---|
94 | }
|
---|
95 | if (newState.getActionSize() == this.getNBins()) {
|
---|
96 | newStateDefaultActionValues.set(newState.getActionSize() - 1, 1.0);
|
---|
97 | }
|
---|
98 |
|
---|
99 | // Make entries in qTable if they don't exist yet
|
---|
100 | this.qTable.putIfAbsent(state.hash(), stateDefaultActionValues);
|
---|
101 | this.qTable.putIfAbsent(newState.hash(), newStateDefaultActionValues);
|
---|
102 |
|
---|
103 | // Perform update
|
---|
104 | Double Qnext = this.maxActionValue(newState);
|
---|
105 | Double newActionValue = this.qFunction(state, action) + this.alpha * (reward + this.gamma * Qnext - this.qFunction(state, action));
|
---|
106 | this.qTable.get(state.hash()).set(action, newActionValue);
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|