1 | package agents.rlboa;
|
---|
2 |
|
---|
3 | import genius.core.boaframework.NegotiationSession;
|
---|
4 | import genius.core.boaframework.OpponentModel;
|
---|
5 |
|
---|
6 | import java.util.ArrayList;
|
---|
7 | import java.util.Collections;
|
---|
8 | import java.util.HashMap;
|
---|
9 | import java.util.List;
|
---|
10 |
|
---|
11 | public class InvertedQlearningStrategy extends QlearningStrategy {
|
---|
12 |
|
---|
13 | public InvertedQlearningStrategy(NegotiationSession negotiationSession, OpponentModel opponentModel) {
|
---|
14 | super(negotiationSession, opponentModel);
|
---|
15 | }
|
---|
16 |
|
---|
17 | @Override
|
---|
18 | protected void initQTable() {
|
---|
19 | this.qTable = new HashMap<Integer, ArrayList<Double>>();
|
---|
20 |
|
---|
21 | // Initial state has different action space
|
---|
22 | this.qTable.putIfAbsent(this.state.hash(), new ArrayList<Double>(Collections.nCopies(this.state.getActionSize(), 1.0)));
|
---|
23 | }
|
---|
24 |
|
---|
25 | @Override
|
---|
26 | public String getName() {
|
---|
27 | return "Inverted Q-offering";
|
---|
28 | }
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * This is the general action function for the RL-agent. We determine a bin by either
|
---|
32 | * moving up (retracting offer), doing nothing or moving down (conceding offer).
|
---|
33 | * @param currentBin
|
---|
34 | * @return
|
---|
35 | */
|
---|
36 | @Override
|
---|
37 | protected int determineTargetBin(int currentBin) {
|
---|
38 | int targetBin = currentBin;
|
---|
39 | ArrayList<Double> defaultActionValues = new ArrayList<Double>(Collections.nCopies(this.state.getActionSize(), 1.0));
|
---|
40 |
|
---|
41 | List<Double> qValues = this.qTable.getOrDefault(this.state.hash(), defaultActionValues);
|
---|
42 | int action = this.epsilonGreedy(qValues);
|
---|
43 | this.actions.add(action);
|
---|
44 |
|
---|
45 | // Apply action current bin (ie. move up, down or stay)
|
---|
46 | switch (action) {
|
---|
47 | case 0: targetBin--;
|
---|
48 | break;
|
---|
49 | case 1: targetBin++;
|
---|
50 | break;
|
---|
51 | case 2: break;
|
---|
52 | }
|
---|
53 |
|
---|
54 | // Can't go out of bounds
|
---|
55 | // TODO: Discuss impact on learning algorithm
|
---|
56 | targetBin = Math.min(targetBin, this.getNBins() - 1);
|
---|
57 | targetBin = Math.max(targetBin, 0);
|
---|
58 |
|
---|
59 | return targetBin;
|
---|
60 | }
|
---|
61 |
|
---|
62 | @Override
|
---|
63 | protected int determineOpeningBin() {
|
---|
64 | ArrayList<Double> defaultInitialActionValues = new ArrayList<Double>(Collections.nCopies(this.state.getActionSize(), 1.0));
|
---|
65 | List<Double> qValues = this.qTable.getOrDefault(this.state.hash(), defaultInitialActionValues);
|
---|
66 | int action = this.epsilonGreedy(qValues);
|
---|
67 | this.actions.add(action);
|
---|
68 |
|
---|
69 | return action;
|
---|
70 | }
|
---|
71 |
|
---|
72 | @Override
|
---|
73 | protected void updateQFuction(AbstractState state, int action, double reward, AbstractState newState) {
|
---|
74 | // initialize state if it is new
|
---|
75 |
|
---|
76 | // If agent hasn't done a opening bid, initialize action values to number of bins, otherwise
|
---|
77 | // just 3 values (up/down/nothing).
|
---|
78 | ArrayList<Double> stateDefaultActionValues = new ArrayList<Double>(Collections.nCopies(state.getActionSize(), 1.0));
|
---|
79 | ArrayList<Double> newStateDefaultActionValues = new ArrayList<Double>(Collections.nCopies(newState.getActionSize(), 1.0));
|
---|
80 |
|
---|
81 | // Make entries in qTable if they don't exist yet
|
---|
82 | this.qTable.putIfAbsent(state.hash(), stateDefaultActionValues);
|
---|
83 | this.qTable.putIfAbsent(newState.hash(), newStateDefaultActionValues);
|
---|
84 |
|
---|
85 | // Perform update
|
---|
86 | Double Qnext = this.maxActionValue(newState);
|
---|
87 | Double newActionValue = this.qFunction(state, action) + this.alpha * (reward + this.gamma * Qnext - this.qFunction(state, action));
|
---|
88 | this.qTable.get(state.hash()).set(action, newActionValue);
|
---|
89 | }
|
---|
90 | }
|
---|
91 |
|
---|