1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.util;
|
---|
19 |
|
---|
20 | import java.math.BigDecimal;
|
---|
21 | import java.math.BigInteger;
|
---|
22 | import java.util.Arrays;
|
---|
23 |
|
---|
24 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
25 | import agents.org.apache.commons.math.exception.NonMonotonousSequenceException;
|
---|
26 | import agents.org.apache.commons.math.exception.util.Localizable;
|
---|
27 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * Some useful additions to the built-in functions in {@link Math}.
|
---|
31 | * @version $Revision: 1073472 $ $Date: 2011-02-22 20:49:07 +0100 (mar. 22 févr. 2011) $
|
---|
32 | */
|
---|
33 | public final class MathUtils {
|
---|
34 |
|
---|
35 | /** Smallest positive number such that 1 - EPSILON is not numerically equal to 1. */
|
---|
36 | public static final double EPSILON = 0x1.0p-53;
|
---|
37 |
|
---|
38 | /** Safe minimum, such that 1 / SAFE_MIN does not overflow.
|
---|
39 | * <p>In IEEE 754 arithmetic, this is also the smallest normalized
|
---|
40 | * number 2<sup>-1022</sup>.</p>
|
---|
41 | */
|
---|
42 | public static final double SAFE_MIN = 0x1.0p-1022;
|
---|
43 |
|
---|
44 | /**
|
---|
45 | * 2 π.
|
---|
46 | * @since 2.1
|
---|
47 | */
|
---|
48 | public static final double TWO_PI = 2 * FastMath.PI;
|
---|
49 |
|
---|
50 | /** -1.0 cast as a byte. */
|
---|
51 | private static final byte NB = (byte)-1;
|
---|
52 |
|
---|
53 | /** -1.0 cast as a short. */
|
---|
54 | private static final short NS = (short)-1;
|
---|
55 |
|
---|
56 | /** 1.0 cast as a byte. */
|
---|
57 | private static final byte PB = (byte)1;
|
---|
58 |
|
---|
59 | /** 1.0 cast as a short. */
|
---|
60 | private static final short PS = (short)1;
|
---|
61 |
|
---|
62 | /** 0.0 cast as a byte. */
|
---|
63 | private static final byte ZB = (byte)0;
|
---|
64 |
|
---|
65 | /** 0.0 cast as a short. */
|
---|
66 | private static final short ZS = (short)0;
|
---|
67 |
|
---|
68 | /** Gap between NaN and regular numbers. */
|
---|
69 | private static final int NAN_GAP = 4 * 1024 * 1024;
|
---|
70 |
|
---|
71 | /** Offset to order signed double numbers lexicographically. */
|
---|
72 | private static final long SGN_MASK = 0x8000000000000000L;
|
---|
73 |
|
---|
74 | /** Offset to order signed double numbers lexicographically. */
|
---|
75 | private static final int SGN_MASK_FLOAT = 0x80000000;
|
---|
76 |
|
---|
77 | /** All long-representable factorials */
|
---|
78 | private static final long[] FACTORIALS = new long[] {
|
---|
79 | 1l, 1l, 2l,
|
---|
80 | 6l, 24l, 120l,
|
---|
81 | 720l, 5040l, 40320l,
|
---|
82 | 362880l, 3628800l, 39916800l,
|
---|
83 | 479001600l, 6227020800l, 87178291200l,
|
---|
84 | 1307674368000l, 20922789888000l, 355687428096000l,
|
---|
85 | 6402373705728000l, 121645100408832000l, 2432902008176640000l };
|
---|
86 |
|
---|
87 | /**
|
---|
88 | * Private Constructor
|
---|
89 | */
|
---|
90 | private MathUtils() {
|
---|
91 | super();
|
---|
92 | }
|
---|
93 |
|
---|
94 | /**
|
---|
95 | * Add two integers, checking for overflow.
|
---|
96 | *
|
---|
97 | * @param x an addend
|
---|
98 | * @param y an addend
|
---|
99 | * @return the sum <code>x+y</code>
|
---|
100 | * @throws ArithmeticException if the result can not be represented as an
|
---|
101 | * int
|
---|
102 | * @since 1.1
|
---|
103 | */
|
---|
104 | public static int addAndCheck(int x, int y) {
|
---|
105 | long s = (long)x + (long)y;
|
---|
106 | if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
|
---|
107 | throw MathRuntimeException.createArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, x, y);
|
---|
108 | }
|
---|
109 | return (int)s;
|
---|
110 | }
|
---|
111 |
|
---|
112 | /**
|
---|
113 | * Add two long integers, checking for overflow.
|
---|
114 | *
|
---|
115 | * @param a an addend
|
---|
116 | * @param b an addend
|
---|
117 | * @return the sum <code>a+b</code>
|
---|
118 | * @throws ArithmeticException if the result can not be represented as an
|
---|
119 | * long
|
---|
120 | * @since 1.2
|
---|
121 | */
|
---|
122 | public static long addAndCheck(long a, long b) {
|
---|
123 | return addAndCheck(a, b, LocalizedFormats.OVERFLOW_IN_ADDITION);
|
---|
124 | }
|
---|
125 |
|
---|
126 | /**
|
---|
127 | * Add two long integers, checking for overflow.
|
---|
128 | *
|
---|
129 | * @param a an addend
|
---|
130 | * @param b an addend
|
---|
131 | * @param pattern the pattern to use for any thrown exception.
|
---|
132 | * @return the sum <code>a+b</code>
|
---|
133 | * @throws ArithmeticException if the result can not be represented as an
|
---|
134 | * long
|
---|
135 | * @since 1.2
|
---|
136 | */
|
---|
137 | private static long addAndCheck(long a, long b, Localizable pattern) {
|
---|
138 | long ret;
|
---|
139 | if (a > b) {
|
---|
140 | // use symmetry to reduce boundary cases
|
---|
141 | ret = addAndCheck(b, a, pattern);
|
---|
142 | } else {
|
---|
143 | // assert a <= b
|
---|
144 |
|
---|
145 | if (a < 0) {
|
---|
146 | if (b < 0) {
|
---|
147 | // check for negative overflow
|
---|
148 | if (Long.MIN_VALUE - b <= a) {
|
---|
149 | ret = a + b;
|
---|
150 | } else {
|
---|
151 | throw MathRuntimeException.createArithmeticException(pattern, a, b);
|
---|
152 | }
|
---|
153 | } else {
|
---|
154 | // opposite sign addition is always safe
|
---|
155 | ret = a + b;
|
---|
156 | }
|
---|
157 | } else {
|
---|
158 | // assert a >= 0
|
---|
159 | // assert b >= 0
|
---|
160 |
|
---|
161 | // check for positive overflow
|
---|
162 | if (a <= Long.MAX_VALUE - b) {
|
---|
163 | ret = a + b;
|
---|
164 | } else {
|
---|
165 | throw MathRuntimeException.createArithmeticException(pattern, a, b);
|
---|
166 | }
|
---|
167 | }
|
---|
168 | }
|
---|
169 | return ret;
|
---|
170 | }
|
---|
171 |
|
---|
172 | /**
|
---|
173 | * Returns an exact representation of the <a
|
---|
174 | * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
|
---|
175 | * Coefficient</a>, "<code>n choose k</code>", the number of
|
---|
176 | * <code>k</code>-element subsets that can be selected from an
|
---|
177 | * <code>n</code>-element set.
|
---|
178 | * <p>
|
---|
179 | * <Strong>Preconditions</strong>:
|
---|
180 | * <ul>
|
---|
181 | * <li> <code>0 <= k <= n </code> (otherwise
|
---|
182 | * <code>IllegalArgumentException</code> is thrown)</li>
|
---|
183 | * <li> The result is small enough to fit into a <code>long</code>. The
|
---|
184 | * largest value of <code>n</code> for which all coefficients are
|
---|
185 | * <code> < Long.MAX_VALUE</code> is 66. If the computed value exceeds
|
---|
186 | * <code>Long.MAX_VALUE</code> an <code>ArithMeticException</code> is
|
---|
187 | * thrown.</li>
|
---|
188 | * </ul></p>
|
---|
189 | *
|
---|
190 | * @param n the size of the set
|
---|
191 | * @param k the size of the subsets to be counted
|
---|
192 | * @return <code>n choose k</code>
|
---|
193 | * @throws IllegalArgumentException if preconditions are not met.
|
---|
194 | * @throws ArithmeticException if the result is too large to be represented
|
---|
195 | * by a long integer.
|
---|
196 | */
|
---|
197 | public static long binomialCoefficient(final int n, final int k) {
|
---|
198 | checkBinomial(n, k);
|
---|
199 | if ((n == k) || (k == 0)) {
|
---|
200 | return 1;
|
---|
201 | }
|
---|
202 | if ((k == 1) || (k == n - 1)) {
|
---|
203 | return n;
|
---|
204 | }
|
---|
205 | // Use symmetry for large k
|
---|
206 | if (k > n / 2)
|
---|
207 | return binomialCoefficient(n, n - k);
|
---|
208 |
|
---|
209 | // We use the formula
|
---|
210 | // (n choose k) = n! / (n-k)! / k!
|
---|
211 | // (n choose k) == ((n-k+1)*...*n) / (1*...*k)
|
---|
212 | // which could be written
|
---|
213 | // (n choose k) == (n-1 choose k-1) * n / k
|
---|
214 | long result = 1;
|
---|
215 | if (n <= 61) {
|
---|
216 | // For n <= 61, the naive implementation cannot overflow.
|
---|
217 | int i = n - k + 1;
|
---|
218 | for (int j = 1; j <= k; j++) {
|
---|
219 | result = result * i / j;
|
---|
220 | i++;
|
---|
221 | }
|
---|
222 | } else if (n <= 66) {
|
---|
223 | // For n > 61 but n <= 66, the result cannot overflow,
|
---|
224 | // but we must take care not to overflow intermediate values.
|
---|
225 | int i = n - k + 1;
|
---|
226 | for (int j = 1; j <= k; j++) {
|
---|
227 | // We know that (result * i) is divisible by j,
|
---|
228 | // but (result * i) may overflow, so we split j:
|
---|
229 | // Filter out the gcd, d, so j/d and i/d are integer.
|
---|
230 | // result is divisible by (j/d) because (j/d)
|
---|
231 | // is relative prime to (i/d) and is a divisor of
|
---|
232 | // result * (i/d).
|
---|
233 | final long d = gcd(i, j);
|
---|
234 | result = (result / (j / d)) * (i / d);
|
---|
235 | i++;
|
---|
236 | }
|
---|
237 | } else {
|
---|
238 | // For n > 66, a result overflow might occur, so we check
|
---|
239 | // the multiplication, taking care to not overflow
|
---|
240 | // unnecessary.
|
---|
241 | int i = n - k + 1;
|
---|
242 | for (int j = 1; j <= k; j++) {
|
---|
243 | final long d = gcd(i, j);
|
---|
244 | result = mulAndCheck(result / (j / d), i / d);
|
---|
245 | i++;
|
---|
246 | }
|
---|
247 | }
|
---|
248 | return result;
|
---|
249 | }
|
---|
250 |
|
---|
251 | /**
|
---|
252 | * Returns a <code>double</code> representation of the <a
|
---|
253 | * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
|
---|
254 | * Coefficient</a>, "<code>n choose k</code>", the number of
|
---|
255 | * <code>k</code>-element subsets that can be selected from an
|
---|
256 | * <code>n</code>-element set.
|
---|
257 | * <p>
|
---|
258 | * <Strong>Preconditions</strong>:
|
---|
259 | * <ul>
|
---|
260 | * <li> <code>0 <= k <= n </code> (otherwise
|
---|
261 | * <code>IllegalArgumentException</code> is thrown)</li>
|
---|
262 | * <li> The result is small enough to fit into a <code>double</code>. The
|
---|
263 | * largest value of <code>n</code> for which all coefficients are <
|
---|
264 | * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
|
---|
265 | * Double.POSITIVE_INFINITY is returned</li>
|
---|
266 | * </ul></p>
|
---|
267 | *
|
---|
268 | * @param n the size of the set
|
---|
269 | * @param k the size of the subsets to be counted
|
---|
270 | * @return <code>n choose k</code>
|
---|
271 | * @throws IllegalArgumentException if preconditions are not met.
|
---|
272 | */
|
---|
273 | public static double binomialCoefficientDouble(final int n, final int k) {
|
---|
274 | checkBinomial(n, k);
|
---|
275 | if ((n == k) || (k == 0)) {
|
---|
276 | return 1d;
|
---|
277 | }
|
---|
278 | if ((k == 1) || (k == n - 1)) {
|
---|
279 | return n;
|
---|
280 | }
|
---|
281 | if (k > n/2) {
|
---|
282 | return binomialCoefficientDouble(n, n - k);
|
---|
283 | }
|
---|
284 | if (n < 67) {
|
---|
285 | return binomialCoefficient(n,k);
|
---|
286 | }
|
---|
287 |
|
---|
288 | double result = 1d;
|
---|
289 | for (int i = 1; i <= k; i++) {
|
---|
290 | result *= (double)(n - k + i) / (double)i;
|
---|
291 | }
|
---|
292 |
|
---|
293 | return FastMath.floor(result + 0.5);
|
---|
294 | }
|
---|
295 |
|
---|
296 | /**
|
---|
297 | * Returns the natural <code>log</code> of the <a
|
---|
298 | * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
|
---|
299 | * Coefficient</a>, "<code>n choose k</code>", the number of
|
---|
300 | * <code>k</code>-element subsets that can be selected from an
|
---|
301 | * <code>n</code>-element set.
|
---|
302 | * <p>
|
---|
303 | * <Strong>Preconditions</strong>:
|
---|
304 | * <ul>
|
---|
305 | * <li> <code>0 <= k <= n </code> (otherwise
|
---|
306 | * <code>IllegalArgumentException</code> is thrown)</li>
|
---|
307 | * </ul></p>
|
---|
308 | *
|
---|
309 | * @param n the size of the set
|
---|
310 | * @param k the size of the subsets to be counted
|
---|
311 | * @return <code>n choose k</code>
|
---|
312 | * @throws IllegalArgumentException if preconditions are not met.
|
---|
313 | */
|
---|
314 | public static double binomialCoefficientLog(final int n, final int k) {
|
---|
315 | checkBinomial(n, k);
|
---|
316 | if ((n == k) || (k == 0)) {
|
---|
317 | return 0;
|
---|
318 | }
|
---|
319 | if ((k == 1) || (k == n - 1)) {
|
---|
320 | return FastMath.log(n);
|
---|
321 | }
|
---|
322 |
|
---|
323 | /*
|
---|
324 | * For values small enough to do exact integer computation,
|
---|
325 | * return the log of the exact value
|
---|
326 | */
|
---|
327 | if (n < 67) {
|
---|
328 | return FastMath.log(binomialCoefficient(n,k));
|
---|
329 | }
|
---|
330 |
|
---|
331 | /*
|
---|
332 | * Return the log of binomialCoefficientDouble for values that will not
|
---|
333 | * overflow binomialCoefficientDouble
|
---|
334 | */
|
---|
335 | if (n < 1030) {
|
---|
336 | return FastMath.log(binomialCoefficientDouble(n, k));
|
---|
337 | }
|
---|
338 |
|
---|
339 | if (k > n / 2) {
|
---|
340 | return binomialCoefficientLog(n, n - k);
|
---|
341 | }
|
---|
342 |
|
---|
343 | /*
|
---|
344 | * Sum logs for values that could overflow
|
---|
345 | */
|
---|
346 | double logSum = 0;
|
---|
347 |
|
---|
348 | // n!/(n-k)!
|
---|
349 | for (int i = n - k + 1; i <= n; i++) {
|
---|
350 | logSum += FastMath.log(i);
|
---|
351 | }
|
---|
352 |
|
---|
353 | // divide by k!
|
---|
354 | for (int i = 2; i <= k; i++) {
|
---|
355 | logSum -= FastMath.log(i);
|
---|
356 | }
|
---|
357 |
|
---|
358 | return logSum;
|
---|
359 | }
|
---|
360 |
|
---|
361 | /**
|
---|
362 | * Check binomial preconditions.
|
---|
363 | * @param n the size of the set
|
---|
364 | * @param k the size of the subsets to be counted
|
---|
365 | * @exception IllegalArgumentException if preconditions are not met.
|
---|
366 | */
|
---|
367 | private static void checkBinomial(final int n, final int k)
|
---|
368 | throws IllegalArgumentException {
|
---|
369 | if (n < k) {
|
---|
370 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
371 | LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER,
|
---|
372 | n, k);
|
---|
373 | }
|
---|
374 | if (n < 0) {
|
---|
375 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
376 | LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER,
|
---|
377 | n);
|
---|
378 | }
|
---|
379 | }
|
---|
380 |
|
---|
381 | /**
|
---|
382 | * Compares two numbers given some amount of allowed error.
|
---|
383 | *
|
---|
384 | * @param x the first number
|
---|
385 | * @param y the second number
|
---|
386 | * @param eps the amount of error to allow when checking for equality
|
---|
387 | * @return <ul><li>0 if {@link #equals(double, double, double) equals(x, y, eps)}</li>
|
---|
388 | * <li>< 0 if !{@link #equals(double, double, double) equals(x, y, eps)} && x < y</li>
|
---|
389 | * <li>> 0 if !{@link #equals(double, double, double) equals(x, y, eps)} && x > y</li></ul>
|
---|
390 | */
|
---|
391 | public static int compareTo(double x, double y, double eps) {
|
---|
392 | if (equals(x, y, eps)) {
|
---|
393 | return 0;
|
---|
394 | } else if (x < y) {
|
---|
395 | return -1;
|
---|
396 | }
|
---|
397 | return 1;
|
---|
398 | }
|
---|
399 |
|
---|
400 | /**
|
---|
401 | * Returns the <a href="http://mathworld.wolfram.com/HyperbolicCosine.html">
|
---|
402 | * hyperbolic cosine</a> of x.
|
---|
403 | *
|
---|
404 | * @param x double value for which to find the hyperbolic cosine
|
---|
405 | * @return hyperbolic cosine of x
|
---|
406 | */
|
---|
407 | public static double cosh(double x) {
|
---|
408 | return (FastMath.exp(x) + FastMath.exp(-x)) / 2.0;
|
---|
409 | }
|
---|
410 |
|
---|
411 | /**
|
---|
412 | * Returns true iff they are strictly equal.
|
---|
413 | *
|
---|
414 | * @param x first value
|
---|
415 | * @param y second value
|
---|
416 | * @return {@code true} if the values are equal.
|
---|
417 | * @deprecated as of 2.2 his method considers that {@code NaN == NaN}. In release
|
---|
418 | * 3.0, the semantics will change in order to comply with IEEE754 where it
|
---|
419 | * is specified that {@code NaN != NaN}.
|
---|
420 | * New methods have been added for those cases wher the old semantics is
|
---|
421 | * useful (see e.g. {@link #equalsIncludingNaN(float,float)
|
---|
422 | * equalsIncludingNaN}.
|
---|
423 | */
|
---|
424 | @Deprecated
|
---|
425 | public static boolean equals(float x, float y) {
|
---|
426 | return (Float.isNaN(x) && Float.isNaN(y)) || x == y;
|
---|
427 | }
|
---|
428 |
|
---|
429 | /**
|
---|
430 | * Returns true if both arguments are NaN or neither is NaN and they are
|
---|
431 | * equal as defined by {@link #equals(float,float,int) equals(x, y, 1)}.
|
---|
432 | *
|
---|
433 | * @param x first value
|
---|
434 | * @param y second value
|
---|
435 | * @return {@code true} if the values are equal or both are NaN.
|
---|
436 | * @since 2.2
|
---|
437 | */
|
---|
438 | public static boolean equalsIncludingNaN(float x, float y) {
|
---|
439 | return (Float.isNaN(x) && Float.isNaN(y)) || equals(x, y, 1);
|
---|
440 | }
|
---|
441 |
|
---|
442 | /**
|
---|
443 | * Returns true if both arguments are equal or within the range of allowed
|
---|
444 | * error (inclusive).
|
---|
445 | *
|
---|
446 | * @param x first value
|
---|
447 | * @param y second value
|
---|
448 | * @param eps the amount of absolute error to allow.
|
---|
449 | * @return {@code true} if the values are equal or within range of each other.
|
---|
450 | * @since 2.2
|
---|
451 | */
|
---|
452 | public static boolean equals(float x, float y, float eps) {
|
---|
453 | return equals(x, y, 1) || FastMath.abs(y - x) <= eps;
|
---|
454 | }
|
---|
455 |
|
---|
456 | /**
|
---|
457 | * Returns true if both arguments are NaN or are equal or within the range
|
---|
458 | * of allowed error (inclusive).
|
---|
459 | *
|
---|
460 | * @param x first value
|
---|
461 | * @param y second value
|
---|
462 | * @param eps the amount of absolute error to allow.
|
---|
463 | * @return {@code true} if the values are equal or within range of each other,
|
---|
464 | * or both are NaN.
|
---|
465 | * @since 2.2
|
---|
466 | */
|
---|
467 | public static boolean equalsIncludingNaN(float x, float y, float eps) {
|
---|
468 | return equalsIncludingNaN(x, y) || (FastMath.abs(y - x) <= eps);
|
---|
469 | }
|
---|
470 |
|
---|
471 | /**
|
---|
472 | * Returns true if both arguments are equal or within the range of allowed
|
---|
473 | * error (inclusive).
|
---|
474 | * Two float numbers are considered equal if there are {@code (maxUlps - 1)}
|
---|
475 | * (or fewer) floating point numbers between them, i.e. two adjacent floating
|
---|
476 | * point numbers are considered equal.
|
---|
477 | * Adapted from <a
|
---|
478 | * href="http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm">
|
---|
479 | * Bruce Dawson</a>
|
---|
480 | *
|
---|
481 | * @param x first value
|
---|
482 | * @param y second value
|
---|
483 | * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
|
---|
484 | * values between {@code x} and {@code y}.
|
---|
485 | * @return {@code true} if there are fewer than {@code maxUlps} floating
|
---|
486 | * point values between {@code x} and {@code y}.
|
---|
487 | * @since 2.2
|
---|
488 | */
|
---|
489 | public static boolean equals(float x, float y, int maxUlps) {
|
---|
490 | // Check that "maxUlps" is non-negative and small enough so that
|
---|
491 | // NaN won't compare as equal to anything (except another NaN).
|
---|
492 | assert maxUlps > 0 && maxUlps < NAN_GAP;
|
---|
493 |
|
---|
494 | int xInt = Float.floatToIntBits(x);
|
---|
495 | int yInt = Float.floatToIntBits(y);
|
---|
496 |
|
---|
497 | // Make lexicographically ordered as a two's-complement integer.
|
---|
498 | if (xInt < 0) {
|
---|
499 | xInt = SGN_MASK_FLOAT - xInt;
|
---|
500 | }
|
---|
501 | if (yInt < 0) {
|
---|
502 | yInt = SGN_MASK_FLOAT - yInt;
|
---|
503 | }
|
---|
504 |
|
---|
505 | final boolean isEqual = FastMath.abs(xInt - yInt) <= maxUlps;
|
---|
506 |
|
---|
507 | return isEqual && !Float.isNaN(x) && !Float.isNaN(y);
|
---|
508 | }
|
---|
509 |
|
---|
510 | /**
|
---|
511 | * Returns true if both arguments are NaN or if they are equal as defined
|
---|
512 | * by {@link #equals(float,float,int) equals(x, y, maxUlps)}.
|
---|
513 | *
|
---|
514 | * @param x first value
|
---|
515 | * @param y second value
|
---|
516 | * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
|
---|
517 | * values between {@code x} and {@code y}.
|
---|
518 | * @return {@code true} if both arguments are NaN or if there are less than
|
---|
519 | * {@code maxUlps} floating point values between {@code x} and {@code y}.
|
---|
520 | * @since 2.2
|
---|
521 | */
|
---|
522 | public static boolean equalsIncludingNaN(float x, float y, int maxUlps) {
|
---|
523 | return (Float.isNaN(x) && Float.isNaN(y)) || equals(x, y, maxUlps);
|
---|
524 | }
|
---|
525 |
|
---|
526 | /**
|
---|
527 | * Returns true iff both arguments are null or have same dimensions and all
|
---|
528 | * their elements are equal as defined by
|
---|
529 | * {@link #equals(float,float)}.
|
---|
530 | *
|
---|
531 | * @param x first array
|
---|
532 | * @param y second array
|
---|
533 | * @return true if the values are both null or have same dimension
|
---|
534 | * and equal elements.
|
---|
535 | * @deprecated as of 2.2 this method considers that {@code NaN == NaN}. In release
|
---|
536 | * 3.0, the semantics will change in order to comply with IEEE754 where it
|
---|
537 | * is specified that {@code NaN != NaN}.
|
---|
538 | * New methods have been added for those cases where the old semantics is
|
---|
539 | * useful (see e.g. {@link #equalsIncludingNaN(float[],float[])
|
---|
540 | * equalsIncludingNaN}.
|
---|
541 | */
|
---|
542 | @Deprecated
|
---|
543 | public static boolean equals(float[] x, float[] y) {
|
---|
544 | if ((x == null) || (y == null)) {
|
---|
545 | return !((x == null) ^ (y == null));
|
---|
546 | }
|
---|
547 | if (x.length != y.length) {
|
---|
548 | return false;
|
---|
549 | }
|
---|
550 | for (int i = 0; i < x.length; ++i) {
|
---|
551 | if (!equals(x[i], y[i])) {
|
---|
552 | return false;
|
---|
553 | }
|
---|
554 | }
|
---|
555 | return true;
|
---|
556 | }
|
---|
557 |
|
---|
558 | /**
|
---|
559 | * Returns true iff both arguments are null or have same dimensions and all
|
---|
560 | * their elements are equal as defined by
|
---|
561 | * {@link #equalsIncludingNaN(float,float)}.
|
---|
562 | *
|
---|
563 | * @param x first array
|
---|
564 | * @param y second array
|
---|
565 | * @return true if the values are both null or have same dimension and
|
---|
566 | * equal elements
|
---|
567 | * @since 2.2
|
---|
568 | */
|
---|
569 | public static boolean equalsIncludingNaN(float[] x, float[] y) {
|
---|
570 | if ((x == null) || (y == null)) {
|
---|
571 | return !((x == null) ^ (y == null));
|
---|
572 | }
|
---|
573 | if (x.length != y.length) {
|
---|
574 | return false;
|
---|
575 | }
|
---|
576 | for (int i = 0; i < x.length; ++i) {
|
---|
577 | if (!equalsIncludingNaN(x[i], y[i])) {
|
---|
578 | return false;
|
---|
579 | }
|
---|
580 | }
|
---|
581 | return true;
|
---|
582 | }
|
---|
583 |
|
---|
584 | /**
|
---|
585 | * Returns true iff both arguments are NaN or neither is NaN and they are
|
---|
586 | * equal
|
---|
587 | *
|
---|
588 | * <p>This method considers that {@code NaN == NaN}. In release
|
---|
589 | * 3.0, the semantics will change in order to comply with IEEE754 where it
|
---|
590 | * is specified that {@code NaN != NaN}.
|
---|
591 | * New methods have been added for those cases where the old semantics
|
---|
592 | * (w.r.t. NaN) is useful (see e.g.
|
---|
593 | * {@link #equalsIncludingNaN(double,double, double) equalsIncludingNaN}.
|
---|
594 | * </p>
|
---|
595 | *
|
---|
596 | * @param x first value
|
---|
597 | * @param y second value
|
---|
598 | * @return {@code true} if the values are equal.
|
---|
599 | */
|
---|
600 | public static boolean equals(double x, double y) {
|
---|
601 | return (Double.isNaN(x) && Double.isNaN(y)) || x == y;
|
---|
602 | }
|
---|
603 |
|
---|
604 | /**
|
---|
605 | * Returns true if both arguments are NaN or neither is NaN and they are
|
---|
606 | * equal as defined by {@link #equals(double,double,int) equals(x, y, 1)}.
|
---|
607 | *
|
---|
608 | * @param x first value
|
---|
609 | * @param y second value
|
---|
610 | * @return {@code true} if the values are equal or both are NaN.
|
---|
611 | * @since 2.2
|
---|
612 | */
|
---|
613 | public static boolean equalsIncludingNaN(double x, double y) {
|
---|
614 | return (Double.isNaN(x) && Double.isNaN(y)) || equals(x, y, 1);
|
---|
615 | }
|
---|
616 |
|
---|
617 | /**
|
---|
618 | * Returns true if both arguments are equal or within the range of allowed
|
---|
619 | * error (inclusive).
|
---|
620 | * <p>
|
---|
621 | * Two NaNs are considered equals, as are two infinities with same sign.
|
---|
622 | * </p>
|
---|
623 | * <p>This method considers that {@code NaN == NaN}. In release
|
---|
624 | * 3.0, the semantics will change in order to comply with IEEE754 where it
|
---|
625 | * is specified that {@code NaN != NaN}.
|
---|
626 | * New methods have been added for those cases where the old semantics
|
---|
627 | * (w.r.t. NaN) is useful (see e.g.
|
---|
628 | * {@link #equalsIncludingNaN(double,double, double) equalsIncludingNaN}.
|
---|
629 | * </p>
|
---|
630 | * @param x first value
|
---|
631 | * @param y second value
|
---|
632 | * @param eps the amount of absolute error to allow.
|
---|
633 | * @return {@code true} if the values are equal or within range of each other.
|
---|
634 | */
|
---|
635 | public static boolean equals(double x, double y, double eps) {
|
---|
636 | return equals(x, y) || FastMath.abs(y - x) <= eps;
|
---|
637 | }
|
---|
638 |
|
---|
639 | /**
|
---|
640 | * Returns true if both arguments are NaN or are equal or within the range
|
---|
641 | * of allowed error (inclusive).
|
---|
642 | *
|
---|
643 | * @param x first value
|
---|
644 | * @param y second value
|
---|
645 | * @param eps the amount of absolute error to allow.
|
---|
646 | * @return {@code true} if the values are equal or within range of each other,
|
---|
647 | * or both are NaN.
|
---|
648 | * @since 2.2
|
---|
649 | */
|
---|
650 | public static boolean equalsIncludingNaN(double x, double y, double eps) {
|
---|
651 | return equalsIncludingNaN(x, y) || (FastMath.abs(y - x) <= eps);
|
---|
652 | }
|
---|
653 |
|
---|
654 | /**
|
---|
655 | * Returns true if both arguments are equal or within the range of allowed
|
---|
656 | * error (inclusive).
|
---|
657 | * Two float numbers are considered equal if there are {@code (maxUlps - 1)}
|
---|
658 | * (or fewer) floating point numbers between them, i.e. two adjacent floating
|
---|
659 | * point numbers are considered equal.
|
---|
660 | * Adapted from <a
|
---|
661 | * href="http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm">
|
---|
662 | * Bruce Dawson</a>
|
---|
663 | *
|
---|
664 | * <p>This method considers that {@code NaN == NaN}. In release
|
---|
665 | * 3.0, the semantics will change in order to comply with IEEE754 where it
|
---|
666 | * is specified that {@code NaN != NaN}.
|
---|
667 | * New methods have been added for those cases where the old semantics
|
---|
668 | * (w.r.t. NaN) is useful (see e.g.
|
---|
669 | * {@link #equalsIncludingNaN(double,double, int) equalsIncludingNaN}.
|
---|
670 | * </p>
|
---|
671 | *
|
---|
672 | * @param x first value
|
---|
673 | * @param y second value
|
---|
674 | * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
|
---|
675 | * values between {@code x} and {@code y}.
|
---|
676 | * @return {@code true} if there are fewer than {@code maxUlps} floating
|
---|
677 | * point values between {@code x} and {@code y}.
|
---|
678 | */
|
---|
679 | public static boolean equals(double x, double y, int maxUlps) {
|
---|
680 | // Check that "maxUlps" is non-negative and small enough so that
|
---|
681 | // NaN won't compare as equal to anything (except another NaN).
|
---|
682 | assert maxUlps > 0 && maxUlps < NAN_GAP;
|
---|
683 |
|
---|
684 | long xInt = Double.doubleToLongBits(x);
|
---|
685 | long yInt = Double.doubleToLongBits(y);
|
---|
686 |
|
---|
687 | // Make lexicographically ordered as a two's-complement integer.
|
---|
688 | if (xInt < 0) {
|
---|
689 | xInt = SGN_MASK - xInt;
|
---|
690 | }
|
---|
691 | if (yInt < 0) {
|
---|
692 | yInt = SGN_MASK - yInt;
|
---|
693 | }
|
---|
694 |
|
---|
695 | return FastMath.abs(xInt - yInt) <= maxUlps;
|
---|
696 | }
|
---|
697 |
|
---|
698 | /**
|
---|
699 | * Returns true if both arguments are NaN or if they are equal as defined
|
---|
700 | * by {@link #equals(double,double,int) equals(x, y, maxUlps}.
|
---|
701 | *
|
---|
702 | * @param x first value
|
---|
703 | * @param y second value
|
---|
704 | * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
|
---|
705 | * values between {@code x} and {@code y}.
|
---|
706 | * @return {@code true} if both arguments are NaN or if there are less than
|
---|
707 | * {@code maxUlps} floating point values between {@code x} and {@code y}.
|
---|
708 | * @since 2.2
|
---|
709 | */
|
---|
710 | public static boolean equalsIncludingNaN(double x, double y, int maxUlps) {
|
---|
711 | return (Double.isNaN(x) && Double.isNaN(y)) || equals(x, y, maxUlps);
|
---|
712 | }
|
---|
713 |
|
---|
714 | /**
|
---|
715 | * Returns true iff both arguments are null or have same dimensions and all
|
---|
716 | * their elements are equal as defined by
|
---|
717 | * {@link #equals(double,double)}.
|
---|
718 | *
|
---|
719 | * <p>This method considers that {@code NaN == NaN}. In release
|
---|
720 | * 3.0, the semantics will change in order to comply with IEEE754 where it
|
---|
721 | * is specified that {@code NaN != NaN}.
|
---|
722 | * New methods have been added for those cases wher the old semantics is
|
---|
723 | * useful (see e.g. {@link #equalsIncludingNaN(double[],double[])
|
---|
724 | * equalsIncludingNaN}.
|
---|
725 | * </p>
|
---|
726 | * @param x first array
|
---|
727 | * @param y second array
|
---|
728 | * @return true if the values are both null or have same dimension
|
---|
729 | * and equal elements.
|
---|
730 | */
|
---|
731 | public static boolean equals(double[] x, double[] y) {
|
---|
732 | if ((x == null) || (y == null)) {
|
---|
733 | return !((x == null) ^ (y == null));
|
---|
734 | }
|
---|
735 | if (x.length != y.length) {
|
---|
736 | return false;
|
---|
737 | }
|
---|
738 | for (int i = 0; i < x.length; ++i) {
|
---|
739 | if (!equals(x[i], y[i])) {
|
---|
740 | return false;
|
---|
741 | }
|
---|
742 | }
|
---|
743 | return true;
|
---|
744 | }
|
---|
745 |
|
---|
746 | /**
|
---|
747 | * Returns true iff both arguments are null or have same dimensions and all
|
---|
748 | * their elements are equal as defined by
|
---|
749 | * {@link #equalsIncludingNaN(double,double)}.
|
---|
750 | *
|
---|
751 | * @param x first array
|
---|
752 | * @param y second array
|
---|
753 | * @return true if the values are both null or have same dimension and
|
---|
754 | * equal elements
|
---|
755 | * @since 2.2
|
---|
756 | */
|
---|
757 | public static boolean equalsIncludingNaN(double[] x, double[] y) {
|
---|
758 | if ((x == null) || (y == null)) {
|
---|
759 | return !((x == null) ^ (y == null));
|
---|
760 | }
|
---|
761 | if (x.length != y.length) {
|
---|
762 | return false;
|
---|
763 | }
|
---|
764 | for (int i = 0; i < x.length; ++i) {
|
---|
765 | if (!equalsIncludingNaN(x[i], y[i])) {
|
---|
766 | return false;
|
---|
767 | }
|
---|
768 | }
|
---|
769 | return true;
|
---|
770 | }
|
---|
771 |
|
---|
772 | /**
|
---|
773 | * Returns n!. Shorthand for <code>n</code> <a
|
---|
774 | * href="http://mathworld.wolfram.com/Factorial.html"> Factorial</a>, the
|
---|
775 | * product of the numbers <code>1,...,n</code>.
|
---|
776 | * <p>
|
---|
777 | * <Strong>Preconditions</strong>:
|
---|
778 | * <ul>
|
---|
779 | * <li> <code>n >= 0</code> (otherwise
|
---|
780 | * <code>IllegalArgumentException</code> is thrown)</li>
|
---|
781 | * <li> The result is small enough to fit into a <code>long</code>. The
|
---|
782 | * largest value of <code>n</code> for which <code>n!</code> <
|
---|
783 | * Long.MAX_VALUE</code> is 20. If the computed value exceeds <code>Long.MAX_VALUE</code>
|
---|
784 | * an <code>ArithMeticException </code> is thrown.</li>
|
---|
785 | * </ul>
|
---|
786 | * </p>
|
---|
787 | *
|
---|
788 | * @param n argument
|
---|
789 | * @return <code>n!</code>
|
---|
790 | * @throws ArithmeticException if the result is too large to be represented
|
---|
791 | * by a long integer.
|
---|
792 | * @throws IllegalArgumentException if n < 0
|
---|
793 | */
|
---|
794 | public static long factorial(final int n) {
|
---|
795 | if (n < 0) {
|
---|
796 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
797 | LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER,
|
---|
798 | n);
|
---|
799 | }
|
---|
800 | if (n > 20) {
|
---|
801 | throw new ArithmeticException(
|
---|
802 | "factorial value is too large to fit in a long");
|
---|
803 | }
|
---|
804 | return FACTORIALS[n];
|
---|
805 | }
|
---|
806 |
|
---|
807 | /**
|
---|
808 | * Returns n!. Shorthand for <code>n</code> <a
|
---|
809 | * href="http://mathworld.wolfram.com/Factorial.html"> Factorial</a>, the
|
---|
810 | * product of the numbers <code>1,...,n</code> as a <code>double</code>.
|
---|
811 | * <p>
|
---|
812 | * <Strong>Preconditions</strong>:
|
---|
813 | * <ul>
|
---|
814 | * <li> <code>n >= 0</code> (otherwise
|
---|
815 | * <code>IllegalArgumentException</code> is thrown)</li>
|
---|
816 | * <li> The result is small enough to fit into a <code>double</code>. The
|
---|
817 | * largest value of <code>n</code> for which <code>n!</code> <
|
---|
818 | * Double.MAX_VALUE</code> is 170. If the computed value exceeds
|
---|
819 | * Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned</li>
|
---|
820 | * </ul>
|
---|
821 | * </p>
|
---|
822 | *
|
---|
823 | * @param n argument
|
---|
824 | * @return <code>n!</code>
|
---|
825 | * @throws IllegalArgumentException if n < 0
|
---|
826 | */
|
---|
827 | public static double factorialDouble(final int n) {
|
---|
828 | if (n < 0) {
|
---|
829 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
830 | LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER,
|
---|
831 | n);
|
---|
832 | }
|
---|
833 | if (n < 21) {
|
---|
834 | return factorial(n);
|
---|
835 | }
|
---|
836 | return FastMath.floor(FastMath.exp(factorialLog(n)) + 0.5);
|
---|
837 | }
|
---|
838 |
|
---|
839 | /**
|
---|
840 | * Returns the natural logarithm of n!.
|
---|
841 | * <p>
|
---|
842 | * <Strong>Preconditions</strong>:
|
---|
843 | * <ul>
|
---|
844 | * <li> <code>n >= 0</code> (otherwise
|
---|
845 | * <code>IllegalArgumentException</code> is thrown)</li>
|
---|
846 | * </ul></p>
|
---|
847 | *
|
---|
848 | * @param n argument
|
---|
849 | * @return <code>n!</code>
|
---|
850 | * @throws IllegalArgumentException if preconditions are not met.
|
---|
851 | */
|
---|
852 | public static double factorialLog(final int n) {
|
---|
853 | if (n < 0) {
|
---|
854 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
855 | LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER,
|
---|
856 | n);
|
---|
857 | }
|
---|
858 | if (n < 21) {
|
---|
859 | return FastMath.log(factorial(n));
|
---|
860 | }
|
---|
861 | double logSum = 0;
|
---|
862 | for (int i = 2; i <= n; i++) {
|
---|
863 | logSum += FastMath.log(i);
|
---|
864 | }
|
---|
865 | return logSum;
|
---|
866 | }
|
---|
867 |
|
---|
868 | /**
|
---|
869 | * <p>
|
---|
870 | * Gets the greatest common divisor of the absolute value of two numbers,
|
---|
871 | * using the "binary gcd" method which avoids division and modulo
|
---|
872 | * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef
|
---|
873 | * Stein (1961).
|
---|
874 | * </p>
|
---|
875 | * Special cases:
|
---|
876 | * <ul>
|
---|
877 | * <li>The invocations
|
---|
878 | * <code>gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)</code>,
|
---|
879 | * <code>gcd(Integer.MIN_VALUE, 0)</code> and
|
---|
880 | * <code>gcd(0, Integer.MIN_VALUE)</code> throw an
|
---|
881 | * <code>ArithmeticException</code>, because the result would be 2^31, which
|
---|
882 | * is too large for an int value.</li>
|
---|
883 | * <li>The result of <code>gcd(x, x)</code>, <code>gcd(0, x)</code> and
|
---|
884 | * <code>gcd(x, 0)</code> is the absolute value of <code>x</code>, except
|
---|
885 | * for the special cases above.
|
---|
886 | * <li>The invocation <code>gcd(0, 0)</code> is the only one which returns
|
---|
887 | * <code>0</code>.</li>
|
---|
888 | * </ul>
|
---|
889 | *
|
---|
890 | * @param p any number
|
---|
891 | * @param q any number
|
---|
892 | * @return the greatest common divisor, never negative
|
---|
893 | * @throws ArithmeticException if the result cannot be represented as a
|
---|
894 | * nonnegative int value
|
---|
895 | * @since 1.1
|
---|
896 | */
|
---|
897 | public static int gcd(final int p, final int q) {
|
---|
898 | int u = p;
|
---|
899 | int v = q;
|
---|
900 | if ((u == 0) || (v == 0)) {
|
---|
901 | if ((u == Integer.MIN_VALUE) || (v == Integer.MIN_VALUE)) {
|
---|
902 | throw MathRuntimeException.createArithmeticException(
|
---|
903 | LocalizedFormats.GCD_OVERFLOW_32_BITS,
|
---|
904 | p, q);
|
---|
905 | }
|
---|
906 | return FastMath.abs(u) + FastMath.abs(v);
|
---|
907 | }
|
---|
908 | // keep u and v negative, as negative integers range down to
|
---|
909 | // -2^31, while positive numbers can only be as large as 2^31-1
|
---|
910 | // (i.e. we can't necessarily negate a negative number without
|
---|
911 | // overflow)
|
---|
912 | /* assert u!=0 && v!=0; */
|
---|
913 | if (u > 0) {
|
---|
914 | u = -u;
|
---|
915 | } // make u negative
|
---|
916 | if (v > 0) {
|
---|
917 | v = -v;
|
---|
918 | } // make v negative
|
---|
919 | // B1. [Find power of 2]
|
---|
920 | int k = 0;
|
---|
921 | while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are
|
---|
922 | // both even...
|
---|
923 | u /= 2;
|
---|
924 | v /= 2;
|
---|
925 | k++; // cast out twos.
|
---|
926 | }
|
---|
927 | if (k == 31) {
|
---|
928 | throw MathRuntimeException.createArithmeticException(
|
---|
929 | LocalizedFormats.GCD_OVERFLOW_32_BITS,
|
---|
930 | p, q);
|
---|
931 | }
|
---|
932 | // B2. Initialize: u and v have been divided by 2^k and at least
|
---|
933 | // one is odd.
|
---|
934 | int t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */;
|
---|
935 | // t negative: u was odd, v may be even (t replaces v)
|
---|
936 | // t positive: u was even, v is odd (t replaces u)
|
---|
937 | do {
|
---|
938 | /* assert u<0 && v<0; */
|
---|
939 | // B4/B3: cast out twos from t.
|
---|
940 | while ((t & 1) == 0) { // while t is even..
|
---|
941 | t /= 2; // cast out twos
|
---|
942 | }
|
---|
943 | // B5 [reset max(u,v)]
|
---|
944 | if (t > 0) {
|
---|
945 | u = -t;
|
---|
946 | } else {
|
---|
947 | v = t;
|
---|
948 | }
|
---|
949 | // B6/B3. at this point both u and v should be odd.
|
---|
950 | t = (v - u) / 2;
|
---|
951 | // |u| larger: t positive (replace u)
|
---|
952 | // |v| larger: t negative (replace v)
|
---|
953 | } while (t != 0);
|
---|
954 | return -u * (1 << k); // gcd is u*2^k
|
---|
955 | }
|
---|
956 |
|
---|
957 | /**
|
---|
958 | * <p>
|
---|
959 | * Gets the greatest common divisor of the absolute value of two numbers,
|
---|
960 | * using the "binary gcd" method which avoids division and modulo
|
---|
961 | * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef
|
---|
962 | * Stein (1961).
|
---|
963 | * </p>
|
---|
964 | * Special cases:
|
---|
965 | * <ul>
|
---|
966 | * <li>The invocations
|
---|
967 | * <code>gcd(Long.MIN_VALUE, Long.MIN_VALUE)</code>,
|
---|
968 | * <code>gcd(Long.MIN_VALUE, 0L)</code> and
|
---|
969 | * <code>gcd(0L, Long.MIN_VALUE)</code> throw an
|
---|
970 | * <code>ArithmeticException</code>, because the result would be 2^63, which
|
---|
971 | * is too large for a long value.</li>
|
---|
972 | * <li>The result of <code>gcd(x, x)</code>, <code>gcd(0L, x)</code> and
|
---|
973 | * <code>gcd(x, 0L)</code> is the absolute value of <code>x</code>, except
|
---|
974 | * for the special cases above.
|
---|
975 | * <li>The invocation <code>gcd(0L, 0L)</code> is the only one which returns
|
---|
976 | * <code>0L</code>.</li>
|
---|
977 | * </ul>
|
---|
978 | *
|
---|
979 | * @param p any number
|
---|
980 | * @param q any number
|
---|
981 | * @return the greatest common divisor, never negative
|
---|
982 | * @throws ArithmeticException if the result cannot be represented as a nonnegative long
|
---|
983 | * value
|
---|
984 | * @since 2.1
|
---|
985 | */
|
---|
986 | public static long gcd(final long p, final long q) {
|
---|
987 | long u = p;
|
---|
988 | long v = q;
|
---|
989 | if ((u == 0) || (v == 0)) {
|
---|
990 | if ((u == Long.MIN_VALUE) || (v == Long.MIN_VALUE)){
|
---|
991 | throw MathRuntimeException.createArithmeticException(
|
---|
992 | LocalizedFormats.GCD_OVERFLOW_64_BITS,
|
---|
993 | p, q);
|
---|
994 | }
|
---|
995 | return FastMath.abs(u) + FastMath.abs(v);
|
---|
996 | }
|
---|
997 | // keep u and v negative, as negative integers range down to
|
---|
998 | // -2^63, while positive numbers can only be as large as 2^63-1
|
---|
999 | // (i.e. we can't necessarily negate a negative number without
|
---|
1000 | // overflow)
|
---|
1001 | /* assert u!=0 && v!=0; */
|
---|
1002 | if (u > 0) {
|
---|
1003 | u = -u;
|
---|
1004 | } // make u negative
|
---|
1005 | if (v > 0) {
|
---|
1006 | v = -v;
|
---|
1007 | } // make v negative
|
---|
1008 | // B1. [Find power of 2]
|
---|
1009 | int k = 0;
|
---|
1010 | while ((u & 1) == 0 && (v & 1) == 0 && k < 63) { // while u and v are
|
---|
1011 | // both even...
|
---|
1012 | u /= 2;
|
---|
1013 | v /= 2;
|
---|
1014 | k++; // cast out twos.
|
---|
1015 | }
|
---|
1016 | if (k == 63) {
|
---|
1017 | throw MathRuntimeException.createArithmeticException(
|
---|
1018 | LocalizedFormats.GCD_OVERFLOW_64_BITS,
|
---|
1019 | p, q);
|
---|
1020 | }
|
---|
1021 | // B2. Initialize: u and v have been divided by 2^k and at least
|
---|
1022 | // one is odd.
|
---|
1023 | long t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */;
|
---|
1024 | // t negative: u was odd, v may be even (t replaces v)
|
---|
1025 | // t positive: u was even, v is odd (t replaces u)
|
---|
1026 | do {
|
---|
1027 | /* assert u<0 && v<0; */
|
---|
1028 | // B4/B3: cast out twos from t.
|
---|
1029 | while ((t & 1) == 0) { // while t is even..
|
---|
1030 | t /= 2; // cast out twos
|
---|
1031 | }
|
---|
1032 | // B5 [reset max(u,v)]
|
---|
1033 | if (t > 0) {
|
---|
1034 | u = -t;
|
---|
1035 | } else {
|
---|
1036 | v = t;
|
---|
1037 | }
|
---|
1038 | // B6/B3. at this point both u and v should be odd.
|
---|
1039 | t = (v - u) / 2;
|
---|
1040 | // |u| larger: t positive (replace u)
|
---|
1041 | // |v| larger: t negative (replace v)
|
---|
1042 | } while (t != 0);
|
---|
1043 | return -u * (1L << k); // gcd is u*2^k
|
---|
1044 | }
|
---|
1045 |
|
---|
1046 | /**
|
---|
1047 | * Returns an integer hash code representing the given double value.
|
---|
1048 | *
|
---|
1049 | * @param value the value to be hashed
|
---|
1050 | * @return the hash code
|
---|
1051 | */
|
---|
1052 | public static int hash(double value) {
|
---|
1053 | return new Double(value).hashCode();
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 | /**
|
---|
1057 | * Returns an integer hash code representing the given double array.
|
---|
1058 | *
|
---|
1059 | * @param value the value to be hashed (may be null)
|
---|
1060 | * @return the hash code
|
---|
1061 | * @since 1.2
|
---|
1062 | */
|
---|
1063 | public static int hash(double[] value) {
|
---|
1064 | return Arrays.hashCode(value);
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 | /**
|
---|
1068 | * For a byte value x, this method returns (byte)(+1) if x >= 0 and
|
---|
1069 | * (byte)(-1) if x < 0.
|
---|
1070 | *
|
---|
1071 | * @param x the value, a byte
|
---|
1072 | * @return (byte)(+1) or (byte)(-1), depending on the sign of x
|
---|
1073 | */
|
---|
1074 | public static byte indicator(final byte x) {
|
---|
1075 | return (x >= ZB) ? PB : NB;
|
---|
1076 | }
|
---|
1077 |
|
---|
1078 | /**
|
---|
1079 | * For a double precision value x, this method returns +1.0 if x >= 0 and
|
---|
1080 | * -1.0 if x < 0. Returns <code>NaN</code> if <code>x</code> is
|
---|
1081 | * <code>NaN</code>.
|
---|
1082 | *
|
---|
1083 | * @param x the value, a double
|
---|
1084 | * @return +1.0 or -1.0, depending on the sign of x
|
---|
1085 | */
|
---|
1086 | public static double indicator(final double x) {
|
---|
1087 | if (Double.isNaN(x)) {
|
---|
1088 | return Double.NaN;
|
---|
1089 | }
|
---|
1090 | return (x >= 0.0) ? 1.0 : -1.0;
|
---|
1091 | }
|
---|
1092 |
|
---|
1093 | /**
|
---|
1094 | * For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x <
|
---|
1095 | * 0. Returns <code>NaN</code> if <code>x</code> is <code>NaN</code>.
|
---|
1096 | *
|
---|
1097 | * @param x the value, a float
|
---|
1098 | * @return +1.0F or -1.0F, depending on the sign of x
|
---|
1099 | */
|
---|
1100 | public static float indicator(final float x) {
|
---|
1101 | if (Float.isNaN(x)) {
|
---|
1102 | return Float.NaN;
|
---|
1103 | }
|
---|
1104 | return (x >= 0.0F) ? 1.0F : -1.0F;
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 | /**
|
---|
1108 | * For an int value x, this method returns +1 if x >= 0 and -1 if x < 0.
|
---|
1109 | *
|
---|
1110 | * @param x the value, an int
|
---|
1111 | * @return +1 or -1, depending on the sign of x
|
---|
1112 | */
|
---|
1113 | public static int indicator(final int x) {
|
---|
1114 | return (x >= 0) ? 1 : -1;
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | /**
|
---|
1118 | * For a long value x, this method returns +1L if x >= 0 and -1L if x < 0.
|
---|
1119 | *
|
---|
1120 | * @param x the value, a long
|
---|
1121 | * @return +1L or -1L, depending on the sign of x
|
---|
1122 | */
|
---|
1123 | public static long indicator(final long x) {
|
---|
1124 | return (x >= 0L) ? 1L : -1L;
|
---|
1125 | }
|
---|
1126 |
|
---|
1127 | /**
|
---|
1128 | * For a short value x, this method returns (short)(+1) if x >= 0 and
|
---|
1129 | * (short)(-1) if x < 0.
|
---|
1130 | *
|
---|
1131 | * @param x the value, a short
|
---|
1132 | * @return (short)(+1) or (short)(-1), depending on the sign of x
|
---|
1133 | */
|
---|
1134 | public static short indicator(final short x) {
|
---|
1135 | return (x >= ZS) ? PS : NS;
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | /**
|
---|
1139 | * <p>
|
---|
1140 | * Returns the least common multiple of the absolute value of two numbers,
|
---|
1141 | * using the formula <code>lcm(a,b) = (a / gcd(a,b)) * b</code>.
|
---|
1142 | * </p>
|
---|
1143 | * Special cases:
|
---|
1144 | * <ul>
|
---|
1145 | * <li>The invocations <code>lcm(Integer.MIN_VALUE, n)</code> and
|
---|
1146 | * <code>lcm(n, Integer.MIN_VALUE)</code>, where <code>abs(n)</code> is a
|
---|
1147 | * power of 2, throw an <code>ArithmeticException</code>, because the result
|
---|
1148 | * would be 2^31, which is too large for an int value.</li>
|
---|
1149 | * <li>The result of <code>lcm(0, x)</code> and <code>lcm(x, 0)</code> is
|
---|
1150 | * <code>0</code> for any <code>x</code>.
|
---|
1151 | * </ul>
|
---|
1152 | *
|
---|
1153 | * @param a any number
|
---|
1154 | * @param b any number
|
---|
1155 | * @return the least common multiple, never negative
|
---|
1156 | * @throws ArithmeticException
|
---|
1157 | * if the result cannot be represented as a nonnegative int
|
---|
1158 | * value
|
---|
1159 | * @since 1.1
|
---|
1160 | */
|
---|
1161 | public static int lcm(int a, int b) {
|
---|
1162 | if (a==0 || b==0){
|
---|
1163 | return 0;
|
---|
1164 | }
|
---|
1165 | int lcm = FastMath.abs(mulAndCheck(a / gcd(a, b), b));
|
---|
1166 | if (lcm == Integer.MIN_VALUE) {
|
---|
1167 | throw MathRuntimeException.createArithmeticException(
|
---|
1168 | LocalizedFormats.LCM_OVERFLOW_32_BITS,
|
---|
1169 | a, b);
|
---|
1170 | }
|
---|
1171 | return lcm;
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 | /**
|
---|
1175 | * <p>
|
---|
1176 | * Returns the least common multiple of the absolute value of two numbers,
|
---|
1177 | * using the formula <code>lcm(a,b) = (a / gcd(a,b)) * b</code>.
|
---|
1178 | * </p>
|
---|
1179 | * Special cases:
|
---|
1180 | * <ul>
|
---|
1181 | * <li>The invocations <code>lcm(Long.MIN_VALUE, n)</code> and
|
---|
1182 | * <code>lcm(n, Long.MIN_VALUE)</code>, where <code>abs(n)</code> is a
|
---|
1183 | * power of 2, throw an <code>ArithmeticException</code>, because the result
|
---|
1184 | * would be 2^63, which is too large for an int value.</li>
|
---|
1185 | * <li>The result of <code>lcm(0L, x)</code> and <code>lcm(x, 0L)</code> is
|
---|
1186 | * <code>0L</code> for any <code>x</code>.
|
---|
1187 | * </ul>
|
---|
1188 | *
|
---|
1189 | * @param a any number
|
---|
1190 | * @param b any number
|
---|
1191 | * @return the least common multiple, never negative
|
---|
1192 | * @throws ArithmeticException if the result cannot be represented as a nonnegative long
|
---|
1193 | * value
|
---|
1194 | * @since 2.1
|
---|
1195 | */
|
---|
1196 | public static long lcm(long a, long b) {
|
---|
1197 | if (a==0 || b==0){
|
---|
1198 | return 0;
|
---|
1199 | }
|
---|
1200 | long lcm = FastMath.abs(mulAndCheck(a / gcd(a, b), b));
|
---|
1201 | if (lcm == Long.MIN_VALUE){
|
---|
1202 | throw MathRuntimeException.createArithmeticException(
|
---|
1203 | LocalizedFormats.LCM_OVERFLOW_64_BITS,
|
---|
1204 | a, b);
|
---|
1205 | }
|
---|
1206 | return lcm;
|
---|
1207 | }
|
---|
1208 |
|
---|
1209 | /**
|
---|
1210 | * <p>Returns the
|
---|
1211 | * <a href="http://mathworld.wolfram.com/Logarithm.html">logarithm</a>
|
---|
1212 | * for base <code>b</code> of <code>x</code>.
|
---|
1213 | * </p>
|
---|
1214 | * <p>Returns <code>NaN<code> if either argument is negative. If
|
---|
1215 | * <code>base</code> is 0 and <code>x</code> is positive, 0 is returned.
|
---|
1216 | * If <code>base</code> is positive and <code>x</code> is 0,
|
---|
1217 | * <code>Double.NEGATIVE_INFINITY</code> is returned. If both arguments
|
---|
1218 | * are 0, the result is <code>NaN</code>.</p>
|
---|
1219 | *
|
---|
1220 | * @param base the base of the logarithm, must be greater than 0
|
---|
1221 | * @param x argument, must be greater than 0
|
---|
1222 | * @return the value of the logarithm - the number y such that base^y = x.
|
---|
1223 | * @since 1.2
|
---|
1224 | */
|
---|
1225 | public static double log(double base, double x) {
|
---|
1226 | return FastMath.log(x)/FastMath.log(base);
|
---|
1227 | }
|
---|
1228 |
|
---|
1229 | /**
|
---|
1230 | * Multiply two integers, checking for overflow.
|
---|
1231 | *
|
---|
1232 | * @param x a factor
|
---|
1233 | * @param y a factor
|
---|
1234 | * @return the product <code>x*y</code>
|
---|
1235 | * @throws ArithmeticException if the result can not be represented as an
|
---|
1236 | * int
|
---|
1237 | * @since 1.1
|
---|
1238 | */
|
---|
1239 | public static int mulAndCheck(int x, int y) {
|
---|
1240 | long m = ((long)x) * ((long)y);
|
---|
1241 | if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
|
---|
1242 | throw new ArithmeticException("overflow: mul");
|
---|
1243 | }
|
---|
1244 | return (int)m;
|
---|
1245 | }
|
---|
1246 |
|
---|
1247 | /**
|
---|
1248 | * Multiply two long integers, checking for overflow.
|
---|
1249 | *
|
---|
1250 | * @param a first value
|
---|
1251 | * @param b second value
|
---|
1252 | * @return the product <code>a * b</code>
|
---|
1253 | * @throws ArithmeticException if the result can not be represented as an
|
---|
1254 | * long
|
---|
1255 | * @since 1.2
|
---|
1256 | */
|
---|
1257 | public static long mulAndCheck(long a, long b) {
|
---|
1258 | long ret;
|
---|
1259 | String msg = "overflow: multiply";
|
---|
1260 | if (a > b) {
|
---|
1261 | // use symmetry to reduce boundary cases
|
---|
1262 | ret = mulAndCheck(b, a);
|
---|
1263 | } else {
|
---|
1264 | if (a < 0) {
|
---|
1265 | if (b < 0) {
|
---|
1266 | // check for positive overflow with negative a, negative b
|
---|
1267 | if (a >= Long.MAX_VALUE / b) {
|
---|
1268 | ret = a * b;
|
---|
1269 | } else {
|
---|
1270 | throw new ArithmeticException(msg);
|
---|
1271 | }
|
---|
1272 | } else if (b > 0) {
|
---|
1273 | // check for negative overflow with negative a, positive b
|
---|
1274 | if (Long.MIN_VALUE / b <= a) {
|
---|
1275 | ret = a * b;
|
---|
1276 | } else {
|
---|
1277 | throw new ArithmeticException(msg);
|
---|
1278 |
|
---|
1279 | }
|
---|
1280 | } else {
|
---|
1281 | // assert b == 0
|
---|
1282 | ret = 0;
|
---|
1283 | }
|
---|
1284 | } else if (a > 0) {
|
---|
1285 | // assert a > 0
|
---|
1286 | // assert b > 0
|
---|
1287 |
|
---|
1288 | // check for positive overflow with positive a, positive b
|
---|
1289 | if (a <= Long.MAX_VALUE / b) {
|
---|
1290 | ret = a * b;
|
---|
1291 | } else {
|
---|
1292 | throw new ArithmeticException(msg);
|
---|
1293 | }
|
---|
1294 | } else {
|
---|
1295 | // assert a == 0
|
---|
1296 | ret = 0;
|
---|
1297 | }
|
---|
1298 | }
|
---|
1299 | return ret;
|
---|
1300 | }
|
---|
1301 |
|
---|
1302 | /**
|
---|
1303 | * Get the next machine representable number after a number, moving
|
---|
1304 | * in the direction of another number.
|
---|
1305 | * <p>
|
---|
1306 | * If <code>direction</code> is greater than or equal to<code>d</code>,
|
---|
1307 | * the smallest machine representable number strictly greater than
|
---|
1308 | * <code>d</code> is returned; otherwise the largest representable number
|
---|
1309 | * strictly less than <code>d</code> is returned.</p>
|
---|
1310 | * <p>
|
---|
1311 | * If <code>d</code> is NaN or Infinite, it is returned unchanged.</p>
|
---|
1312 | *
|
---|
1313 | * @param d base number
|
---|
1314 | * @param direction (the only important thing is whether
|
---|
1315 | * direction is greater or smaller than d)
|
---|
1316 | * @return the next machine representable number in the specified direction
|
---|
1317 | * @since 1.2
|
---|
1318 | * @deprecated as of 2.2, replaced by {@link FastMath#nextAfter(double, double)}
|
---|
1319 | * which handles Infinities differently, and returns direction if d and direction compare equal.
|
---|
1320 | */
|
---|
1321 | @Deprecated
|
---|
1322 | public static double nextAfter(double d, double direction) {
|
---|
1323 |
|
---|
1324 | // handling of some important special cases
|
---|
1325 | if (Double.isNaN(d) || Double.isInfinite(d)) {
|
---|
1326 | return d;
|
---|
1327 | } else if (d == 0) {
|
---|
1328 | return (direction < 0) ? -Double.MIN_VALUE : Double.MIN_VALUE;
|
---|
1329 | }
|
---|
1330 | // special cases MAX_VALUE to infinity and MIN_VALUE to 0
|
---|
1331 | // are handled just as normal numbers
|
---|
1332 |
|
---|
1333 | // split the double in raw components
|
---|
1334 | long bits = Double.doubleToLongBits(d);
|
---|
1335 | long sign = bits & 0x8000000000000000L;
|
---|
1336 | long exponent = bits & 0x7ff0000000000000L;
|
---|
1337 | long mantissa = bits & 0x000fffffffffffffL;
|
---|
1338 |
|
---|
1339 | if (d * (direction - d) >= 0) {
|
---|
1340 | // we should increase the mantissa
|
---|
1341 | if (mantissa == 0x000fffffffffffffL) {
|
---|
1342 | return Double.longBitsToDouble(sign |
|
---|
1343 | (exponent + 0x0010000000000000L));
|
---|
1344 | } else {
|
---|
1345 | return Double.longBitsToDouble(sign |
|
---|
1346 | exponent | (mantissa + 1));
|
---|
1347 | }
|
---|
1348 | } else {
|
---|
1349 | // we should decrease the mantissa
|
---|
1350 | if (mantissa == 0L) {
|
---|
1351 | return Double.longBitsToDouble(sign |
|
---|
1352 | (exponent - 0x0010000000000000L) |
|
---|
1353 | 0x000fffffffffffffL);
|
---|
1354 | } else {
|
---|
1355 | return Double.longBitsToDouble(sign |
|
---|
1356 | exponent | (mantissa - 1));
|
---|
1357 | }
|
---|
1358 | }
|
---|
1359 | }
|
---|
1360 |
|
---|
1361 | /**
|
---|
1362 | * Scale a number by 2<sup>scaleFactor</sup>.
|
---|
1363 | * <p>If <code>d</code> is 0 or NaN or Infinite, it is returned unchanged.</p>
|
---|
1364 | *
|
---|
1365 | * @param d base number
|
---|
1366 | * @param scaleFactor power of two by which d should be multiplied
|
---|
1367 | * @return d × 2<sup>scaleFactor</sup>
|
---|
1368 | * @since 2.0
|
---|
1369 | * @deprecated as of 2.2, replaced by {@link FastMath#scalb(double, int)}
|
---|
1370 | */
|
---|
1371 | @Deprecated
|
---|
1372 | public static double scalb(final double d, final int scaleFactor) {
|
---|
1373 | return FastMath.scalb(d, scaleFactor);
|
---|
1374 | }
|
---|
1375 |
|
---|
1376 | /**
|
---|
1377 | * Normalize an angle in a 2&pi wide interval around a center value.
|
---|
1378 | * <p>This method has three main uses:</p>
|
---|
1379 | * <ul>
|
---|
1380 | * <li>normalize an angle between 0 and 2π:<br/>
|
---|
1381 | * <code>a = MathUtils.normalizeAngle(a, FastMath.PI);</code></li>
|
---|
1382 | * <li>normalize an angle between -π and +π<br/>
|
---|
1383 | * <code>a = MathUtils.normalizeAngle(a, 0.0);</code></li>
|
---|
1384 | * <li>compute the angle between two defining angular positions:<br>
|
---|
1385 | * <code>angle = MathUtils.normalizeAngle(end, start) - start;</code></li>
|
---|
1386 | * </ul>
|
---|
1387 | * <p>Note that due to numerical accuracy and since π cannot be represented
|
---|
1388 | * exactly, the result interval is <em>closed</em>, it cannot be half-closed
|
---|
1389 | * as would be more satisfactory in a purely mathematical view.</p>
|
---|
1390 | * @param a angle to normalize
|
---|
1391 | * @param center center of the desired 2π interval for the result
|
---|
1392 | * @return a-2kπ with integer k and center-π <= a-2kπ <= center+π
|
---|
1393 | * @since 1.2
|
---|
1394 | */
|
---|
1395 | public static double normalizeAngle(double a, double center) {
|
---|
1396 | return a - TWO_PI * FastMath.floor((a + FastMath.PI - center) / TWO_PI);
|
---|
1397 | }
|
---|
1398 |
|
---|
1399 | /**
|
---|
1400 | * <p>Normalizes an array to make it sum to a specified value.
|
---|
1401 | * Returns the result of the transformation <pre>
|
---|
1402 | * x |-> x * normalizedSum / sum
|
---|
1403 | * </pre>
|
---|
1404 | * applied to each non-NaN element x of the input array, where sum is the
|
---|
1405 | * sum of the non-NaN entries in the input array.</p>
|
---|
1406 | *
|
---|
1407 | * <p>Throws IllegalArgumentException if <code>normalizedSum</code> is infinite
|
---|
1408 | * or NaN and ArithmeticException if the input array contains any infinite elements
|
---|
1409 | * or sums to 0</p>
|
---|
1410 | *
|
---|
1411 | * <p>Ignores (i.e., copies unchanged to the output array) NaNs in the input array.</p>
|
---|
1412 | *
|
---|
1413 | * @param values input array to be normalized
|
---|
1414 | * @param normalizedSum target sum for the normalized array
|
---|
1415 | * @return normalized array
|
---|
1416 | * @throws ArithmeticException if the input array contains infinite elements or sums to zero
|
---|
1417 | * @throws IllegalArgumentException if the target sum is infinite or NaN
|
---|
1418 | * @since 2.1
|
---|
1419 | */
|
---|
1420 | public static double[] normalizeArray(double[] values, double normalizedSum)
|
---|
1421 | throws ArithmeticException, IllegalArgumentException {
|
---|
1422 | if (Double.isInfinite(normalizedSum)) {
|
---|
1423 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
1424 | LocalizedFormats.NORMALIZE_INFINITE);
|
---|
1425 | }
|
---|
1426 | if (Double.isNaN(normalizedSum)) {
|
---|
1427 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
1428 | LocalizedFormats.NORMALIZE_NAN);
|
---|
1429 | }
|
---|
1430 | double sum = 0d;
|
---|
1431 | final int len = values.length;
|
---|
1432 | double[] out = new double[len];
|
---|
1433 | for (int i = 0; i < len; i++) {
|
---|
1434 | if (Double.isInfinite(values[i])) {
|
---|
1435 | throw MathRuntimeException.createArithmeticException(
|
---|
1436 | LocalizedFormats.INFINITE_ARRAY_ELEMENT, values[i], i);
|
---|
1437 | }
|
---|
1438 | if (!Double.isNaN(values[i])) {
|
---|
1439 | sum += values[i];
|
---|
1440 | }
|
---|
1441 | }
|
---|
1442 | if (sum == 0) {
|
---|
1443 | throw MathRuntimeException.createArithmeticException(LocalizedFormats.ARRAY_SUMS_TO_ZERO);
|
---|
1444 | }
|
---|
1445 | for (int i = 0; i < len; i++) {
|
---|
1446 | if (Double.isNaN(values[i])) {
|
---|
1447 | out[i] = Double.NaN;
|
---|
1448 | } else {
|
---|
1449 | out[i] = values[i] * normalizedSum / sum;
|
---|
1450 | }
|
---|
1451 | }
|
---|
1452 | return out;
|
---|
1453 | }
|
---|
1454 |
|
---|
1455 | /**
|
---|
1456 | * Round the given value to the specified number of decimal places. The
|
---|
1457 | * value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method.
|
---|
1458 | *
|
---|
1459 | * @param x the value to round.
|
---|
1460 | * @param scale the number of digits to the right of the decimal point.
|
---|
1461 | * @return the rounded value.
|
---|
1462 | * @since 1.1
|
---|
1463 | */
|
---|
1464 | public static double round(double x, int scale) {
|
---|
1465 | return round(x, scale, BigDecimal.ROUND_HALF_UP);
|
---|
1466 | }
|
---|
1467 |
|
---|
1468 | /**
|
---|
1469 | * Round the given value to the specified number of decimal places. The
|
---|
1470 | * value is rounded using the given method which is any method defined in
|
---|
1471 | * {@link BigDecimal}.
|
---|
1472 | *
|
---|
1473 | * @param x the value to round.
|
---|
1474 | * @param scale the number of digits to the right of the decimal point.
|
---|
1475 | * @param roundingMethod the rounding method as defined in
|
---|
1476 | * {@link BigDecimal}.
|
---|
1477 | * @return the rounded value.
|
---|
1478 | * @since 1.1
|
---|
1479 | */
|
---|
1480 | public static double round(double x, int scale, int roundingMethod) {
|
---|
1481 | try {
|
---|
1482 | return (new BigDecimal
|
---|
1483 | (Double.toString(x))
|
---|
1484 | .setScale(scale, roundingMethod))
|
---|
1485 | .doubleValue();
|
---|
1486 | } catch (NumberFormatException ex) {
|
---|
1487 | if (Double.isInfinite(x)) {
|
---|
1488 | return x;
|
---|
1489 | } else {
|
---|
1490 | return Double.NaN;
|
---|
1491 | }
|
---|
1492 | }
|
---|
1493 | }
|
---|
1494 |
|
---|
1495 | /**
|
---|
1496 | * Round the given value to the specified number of decimal places. The
|
---|
1497 | * value is rounding using the {@link BigDecimal#ROUND_HALF_UP} method.
|
---|
1498 | *
|
---|
1499 | * @param x the value to round.
|
---|
1500 | * @param scale the number of digits to the right of the decimal point.
|
---|
1501 | * @return the rounded value.
|
---|
1502 | * @since 1.1
|
---|
1503 | */
|
---|
1504 | public static float round(float x, int scale) {
|
---|
1505 | return round(x, scale, BigDecimal.ROUND_HALF_UP);
|
---|
1506 | }
|
---|
1507 |
|
---|
1508 | /**
|
---|
1509 | * Round the given value to the specified number of decimal places. The
|
---|
1510 | * value is rounded using the given method which is any method defined in
|
---|
1511 | * {@link BigDecimal}.
|
---|
1512 | *
|
---|
1513 | * @param x the value to round.
|
---|
1514 | * @param scale the number of digits to the right of the decimal point.
|
---|
1515 | * @param roundingMethod the rounding method as defined in
|
---|
1516 | * {@link BigDecimal}.
|
---|
1517 | * @return the rounded value.
|
---|
1518 | * @since 1.1
|
---|
1519 | */
|
---|
1520 | public static float round(float x, int scale, int roundingMethod) {
|
---|
1521 | float sign = indicator(x);
|
---|
1522 | float factor = (float)FastMath.pow(10.0f, scale) * sign;
|
---|
1523 | return (float)roundUnscaled(x * factor, sign, roundingMethod) / factor;
|
---|
1524 | }
|
---|
1525 |
|
---|
1526 | /**
|
---|
1527 | * Round the given non-negative, value to the "nearest" integer. Nearest is
|
---|
1528 | * determined by the rounding method specified. Rounding methods are defined
|
---|
1529 | * in {@link BigDecimal}.
|
---|
1530 | *
|
---|
1531 | * @param unscaled the value to round.
|
---|
1532 | * @param sign the sign of the original, scaled value.
|
---|
1533 | * @param roundingMethod the rounding method as defined in
|
---|
1534 | * {@link BigDecimal}.
|
---|
1535 | * @return the rounded value.
|
---|
1536 | * @since 1.1
|
---|
1537 | */
|
---|
1538 | private static double roundUnscaled(double unscaled, double sign,
|
---|
1539 | int roundingMethod) {
|
---|
1540 | switch (roundingMethod) {
|
---|
1541 | case BigDecimal.ROUND_CEILING :
|
---|
1542 | if (sign == -1) {
|
---|
1543 | unscaled = FastMath.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY));
|
---|
1544 | } else {
|
---|
1545 | unscaled = FastMath.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY));
|
---|
1546 | }
|
---|
1547 | break;
|
---|
1548 | case BigDecimal.ROUND_DOWN :
|
---|
1549 | unscaled = FastMath.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY));
|
---|
1550 | break;
|
---|
1551 | case BigDecimal.ROUND_FLOOR :
|
---|
1552 | if (sign == -1) {
|
---|
1553 | unscaled = FastMath.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY));
|
---|
1554 | } else {
|
---|
1555 | unscaled = FastMath.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY));
|
---|
1556 | }
|
---|
1557 | break;
|
---|
1558 | case BigDecimal.ROUND_HALF_DOWN : {
|
---|
1559 | unscaled = nextAfter(unscaled, Double.NEGATIVE_INFINITY);
|
---|
1560 | double fraction = unscaled - FastMath.floor(unscaled);
|
---|
1561 | if (fraction > 0.5) {
|
---|
1562 | unscaled = FastMath.ceil(unscaled);
|
---|
1563 | } else {
|
---|
1564 | unscaled = FastMath.floor(unscaled);
|
---|
1565 | }
|
---|
1566 | break;
|
---|
1567 | }
|
---|
1568 | case BigDecimal.ROUND_HALF_EVEN : {
|
---|
1569 | double fraction = unscaled - FastMath.floor(unscaled);
|
---|
1570 | if (fraction > 0.5) {
|
---|
1571 | unscaled = FastMath.ceil(unscaled);
|
---|
1572 | } else if (fraction < 0.5) {
|
---|
1573 | unscaled = FastMath.floor(unscaled);
|
---|
1574 | } else {
|
---|
1575 | // The following equality test is intentional and needed for rounding purposes
|
---|
1576 | if (FastMath.floor(unscaled) / 2.0 == FastMath.floor(Math
|
---|
1577 | .floor(unscaled) / 2.0)) { // even
|
---|
1578 | unscaled = FastMath.floor(unscaled);
|
---|
1579 | } else { // odd
|
---|
1580 | unscaled = FastMath.ceil(unscaled);
|
---|
1581 | }
|
---|
1582 | }
|
---|
1583 | break;
|
---|
1584 | }
|
---|
1585 | case BigDecimal.ROUND_HALF_UP : {
|
---|
1586 | unscaled = nextAfter(unscaled, Double.POSITIVE_INFINITY);
|
---|
1587 | double fraction = unscaled - FastMath.floor(unscaled);
|
---|
1588 | if (fraction >= 0.5) {
|
---|
1589 | unscaled = FastMath.ceil(unscaled);
|
---|
1590 | } else {
|
---|
1591 | unscaled = FastMath.floor(unscaled);
|
---|
1592 | }
|
---|
1593 | break;
|
---|
1594 | }
|
---|
1595 | case BigDecimal.ROUND_UNNECESSARY :
|
---|
1596 | if (unscaled != FastMath.floor(unscaled)) {
|
---|
1597 | throw new ArithmeticException("Inexact result from rounding");
|
---|
1598 | }
|
---|
1599 | break;
|
---|
1600 | case BigDecimal.ROUND_UP :
|
---|
1601 | unscaled = FastMath.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY));
|
---|
1602 | break;
|
---|
1603 | default :
|
---|
1604 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
1605 | LocalizedFormats.INVALID_ROUNDING_METHOD,
|
---|
1606 | roundingMethod,
|
---|
1607 | "ROUND_CEILING", BigDecimal.ROUND_CEILING,
|
---|
1608 | "ROUND_DOWN", BigDecimal.ROUND_DOWN,
|
---|
1609 | "ROUND_FLOOR", BigDecimal.ROUND_FLOOR,
|
---|
1610 | "ROUND_HALF_DOWN", BigDecimal.ROUND_HALF_DOWN,
|
---|
1611 | "ROUND_HALF_EVEN", BigDecimal.ROUND_HALF_EVEN,
|
---|
1612 | "ROUND_HALF_UP", BigDecimal.ROUND_HALF_UP,
|
---|
1613 | "ROUND_UNNECESSARY", BigDecimal.ROUND_UNNECESSARY,
|
---|
1614 | "ROUND_UP", BigDecimal.ROUND_UP);
|
---|
1615 | }
|
---|
1616 | return unscaled;
|
---|
1617 | }
|
---|
1618 |
|
---|
1619 | /**
|
---|
1620 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
|
---|
1621 | * for byte value <code>x</code>.
|
---|
1622 | * <p>
|
---|
1623 | * For a byte value x, this method returns (byte)(+1) if x > 0, (byte)(0) if
|
---|
1624 | * x = 0, and (byte)(-1) if x < 0.</p>
|
---|
1625 | *
|
---|
1626 | * @param x the value, a byte
|
---|
1627 | * @return (byte)(+1), (byte)(0), or (byte)(-1), depending on the sign of x
|
---|
1628 | */
|
---|
1629 | public static byte sign(final byte x) {
|
---|
1630 | return (x == ZB) ? ZB : (x > ZB) ? PB : NB;
|
---|
1631 | }
|
---|
1632 |
|
---|
1633 | /**
|
---|
1634 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
|
---|
1635 | * for double precision <code>x</code>.
|
---|
1636 | * <p>
|
---|
1637 | * For a double value <code>x</code>, this method returns
|
---|
1638 | * <code>+1.0</code> if <code>x > 0</code>, <code>0.0</code> if
|
---|
1639 | * <code>x = 0.0</code>, and <code>-1.0</code> if <code>x < 0</code>.
|
---|
1640 | * Returns <code>NaN</code> if <code>x</code> is <code>NaN</code>.</p>
|
---|
1641 | *
|
---|
1642 | * @param x the value, a double
|
---|
1643 | * @return +1.0, 0.0, or -1.0, depending on the sign of x
|
---|
1644 | */
|
---|
1645 | public static double sign(final double x) {
|
---|
1646 | if (Double.isNaN(x)) {
|
---|
1647 | return Double.NaN;
|
---|
1648 | }
|
---|
1649 | return (x == 0.0) ? 0.0 : (x > 0.0) ? 1.0 : -1.0;
|
---|
1650 | }
|
---|
1651 |
|
---|
1652 | /**
|
---|
1653 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
|
---|
1654 | * for float value <code>x</code>.
|
---|
1655 | * <p>
|
---|
1656 | * For a float value x, this method returns +1.0F if x > 0, 0.0F if x =
|
---|
1657 | * 0.0F, and -1.0F if x < 0. Returns <code>NaN</code> if <code>x</code>
|
---|
1658 | * is <code>NaN</code>.</p>
|
---|
1659 | *
|
---|
1660 | * @param x the value, a float
|
---|
1661 | * @return +1.0F, 0.0F, or -1.0F, depending on the sign of x
|
---|
1662 | */
|
---|
1663 | public static float sign(final float x) {
|
---|
1664 | if (Float.isNaN(x)) {
|
---|
1665 | return Float.NaN;
|
---|
1666 | }
|
---|
1667 | return (x == 0.0F) ? 0.0F : (x > 0.0F) ? 1.0F : -1.0F;
|
---|
1668 | }
|
---|
1669 |
|
---|
1670 | /**
|
---|
1671 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
|
---|
1672 | * for int value <code>x</code>.
|
---|
1673 | * <p>
|
---|
1674 | * For an int value x, this method returns +1 if x > 0, 0 if x = 0, and -1
|
---|
1675 | * if x < 0.</p>
|
---|
1676 | *
|
---|
1677 | * @param x the value, an int
|
---|
1678 | * @return +1, 0, or -1, depending on the sign of x
|
---|
1679 | */
|
---|
1680 | public static int sign(final int x) {
|
---|
1681 | return (x == 0) ? 0 : (x > 0) ? 1 : -1;
|
---|
1682 | }
|
---|
1683 |
|
---|
1684 | /**
|
---|
1685 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
|
---|
1686 | * for long value <code>x</code>.
|
---|
1687 | * <p>
|
---|
1688 | * For a long value x, this method returns +1L if x > 0, 0L if x = 0, and
|
---|
1689 | * -1L if x < 0.</p>
|
---|
1690 | *
|
---|
1691 | * @param x the value, a long
|
---|
1692 | * @return +1L, 0L, or -1L, depending on the sign of x
|
---|
1693 | */
|
---|
1694 | public static long sign(final long x) {
|
---|
1695 | return (x == 0L) ? 0L : (x > 0L) ? 1L : -1L;
|
---|
1696 | }
|
---|
1697 |
|
---|
1698 | /**
|
---|
1699 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
|
---|
1700 | * for short value <code>x</code>.
|
---|
1701 | * <p>
|
---|
1702 | * For a short value x, this method returns (short)(+1) if x > 0, (short)(0)
|
---|
1703 | * if x = 0, and (short)(-1) if x < 0.</p>
|
---|
1704 | *
|
---|
1705 | * @param x the value, a short
|
---|
1706 | * @return (short)(+1), (short)(0), or (short)(-1), depending on the sign of
|
---|
1707 | * x
|
---|
1708 | */
|
---|
1709 | public static short sign(final short x) {
|
---|
1710 | return (x == ZS) ? ZS : (x > ZS) ? PS : NS;
|
---|
1711 | }
|
---|
1712 |
|
---|
1713 | /**
|
---|
1714 | * Returns the <a href="http://mathworld.wolfram.com/HyperbolicSine.html">
|
---|
1715 | * hyperbolic sine</a> of x.
|
---|
1716 | *
|
---|
1717 | * @param x double value for which to find the hyperbolic sine
|
---|
1718 | * @return hyperbolic sine of x
|
---|
1719 | */
|
---|
1720 | public static double sinh(double x) {
|
---|
1721 | return (FastMath.exp(x) - FastMath.exp(-x)) / 2.0;
|
---|
1722 | }
|
---|
1723 |
|
---|
1724 | /**
|
---|
1725 | * Subtract two integers, checking for overflow.
|
---|
1726 | *
|
---|
1727 | * @param x the minuend
|
---|
1728 | * @param y the subtrahend
|
---|
1729 | * @return the difference <code>x-y</code>
|
---|
1730 | * @throws ArithmeticException if the result can not be represented as an
|
---|
1731 | * int
|
---|
1732 | * @since 1.1
|
---|
1733 | */
|
---|
1734 | public static int subAndCheck(int x, int y) {
|
---|
1735 | long s = (long)x - (long)y;
|
---|
1736 | if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
|
---|
1737 | throw MathRuntimeException.createArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, x, y);
|
---|
1738 | }
|
---|
1739 | return (int)s;
|
---|
1740 | }
|
---|
1741 |
|
---|
1742 | /**
|
---|
1743 | * Subtract two long integers, checking for overflow.
|
---|
1744 | *
|
---|
1745 | * @param a first value
|
---|
1746 | * @param b second value
|
---|
1747 | * @return the difference <code>a-b</code>
|
---|
1748 | * @throws ArithmeticException if the result can not be represented as an
|
---|
1749 | * long
|
---|
1750 | * @since 1.2
|
---|
1751 | */
|
---|
1752 | public static long subAndCheck(long a, long b) {
|
---|
1753 | long ret;
|
---|
1754 | String msg = "overflow: subtract";
|
---|
1755 | if (b == Long.MIN_VALUE) {
|
---|
1756 | if (a < 0) {
|
---|
1757 | ret = a - b;
|
---|
1758 | } else {
|
---|
1759 | throw new ArithmeticException(msg);
|
---|
1760 | }
|
---|
1761 | } else {
|
---|
1762 | // use additive inverse
|
---|
1763 | ret = addAndCheck(a, -b, LocalizedFormats.OVERFLOW_IN_ADDITION);
|
---|
1764 | }
|
---|
1765 | return ret;
|
---|
1766 | }
|
---|
1767 |
|
---|
1768 | /**
|
---|
1769 | * Raise an int to an int power.
|
---|
1770 | * @param k number to raise
|
---|
1771 | * @param e exponent (must be positive or null)
|
---|
1772 | * @return k<sup>e</sup>
|
---|
1773 | * @exception IllegalArgumentException if e is negative
|
---|
1774 | */
|
---|
1775 | public static int pow(final int k, int e)
|
---|
1776 | throws IllegalArgumentException {
|
---|
1777 |
|
---|
1778 | if (e < 0) {
|
---|
1779 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
1780 | LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
|
---|
1781 | k, e);
|
---|
1782 | }
|
---|
1783 |
|
---|
1784 | int result = 1;
|
---|
1785 | int k2p = k;
|
---|
1786 | while (e != 0) {
|
---|
1787 | if ((e & 0x1) != 0) {
|
---|
1788 | result *= k2p;
|
---|
1789 | }
|
---|
1790 | k2p *= k2p;
|
---|
1791 | e = e >> 1;
|
---|
1792 | }
|
---|
1793 |
|
---|
1794 | return result;
|
---|
1795 |
|
---|
1796 | }
|
---|
1797 |
|
---|
1798 | /**
|
---|
1799 | * Raise an int to a long power.
|
---|
1800 | * @param k number to raise
|
---|
1801 | * @param e exponent (must be positive or null)
|
---|
1802 | * @return k<sup>e</sup>
|
---|
1803 | * @exception IllegalArgumentException if e is negative
|
---|
1804 | */
|
---|
1805 | public static int pow(final int k, long e)
|
---|
1806 | throws IllegalArgumentException {
|
---|
1807 |
|
---|
1808 | if (e < 0) {
|
---|
1809 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
1810 | LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
|
---|
1811 | k, e);
|
---|
1812 | }
|
---|
1813 |
|
---|
1814 | int result = 1;
|
---|
1815 | int k2p = k;
|
---|
1816 | while (e != 0) {
|
---|
1817 | if ((e & 0x1) != 0) {
|
---|
1818 | result *= k2p;
|
---|
1819 | }
|
---|
1820 | k2p *= k2p;
|
---|
1821 | e = e >> 1;
|
---|
1822 | }
|
---|
1823 |
|
---|
1824 | return result;
|
---|
1825 |
|
---|
1826 | }
|
---|
1827 |
|
---|
1828 | /**
|
---|
1829 | * Raise a long to an int power.
|
---|
1830 | * @param k number to raise
|
---|
1831 | * @param e exponent (must be positive or null)
|
---|
1832 | * @return k<sup>e</sup>
|
---|
1833 | * @exception IllegalArgumentException if e is negative
|
---|
1834 | */
|
---|
1835 | public static long pow(final long k, int e)
|
---|
1836 | throws IllegalArgumentException {
|
---|
1837 |
|
---|
1838 | if (e < 0) {
|
---|
1839 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
1840 | LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
|
---|
1841 | k, e);
|
---|
1842 | }
|
---|
1843 |
|
---|
1844 | long result = 1l;
|
---|
1845 | long k2p = k;
|
---|
1846 | while (e != 0) {
|
---|
1847 | if ((e & 0x1) != 0) {
|
---|
1848 | result *= k2p;
|
---|
1849 | }
|
---|
1850 | k2p *= k2p;
|
---|
1851 | e = e >> 1;
|
---|
1852 | }
|
---|
1853 |
|
---|
1854 | return result;
|
---|
1855 |
|
---|
1856 | }
|
---|
1857 |
|
---|
1858 | /**
|
---|
1859 | * Raise a long to a long power.
|
---|
1860 | * @param k number to raise
|
---|
1861 | * @param e exponent (must be positive or null)
|
---|
1862 | * @return k<sup>e</sup>
|
---|
1863 | * @exception IllegalArgumentException if e is negative
|
---|
1864 | */
|
---|
1865 | public static long pow(final long k, long e)
|
---|
1866 | throws IllegalArgumentException {
|
---|
1867 |
|
---|
1868 | if (e < 0) {
|
---|
1869 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
1870 | LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
|
---|
1871 | k, e);
|
---|
1872 | }
|
---|
1873 |
|
---|
1874 | long result = 1l;
|
---|
1875 | long k2p = k;
|
---|
1876 | while (e != 0) {
|
---|
1877 | if ((e & 0x1) != 0) {
|
---|
1878 | result *= k2p;
|
---|
1879 | }
|
---|
1880 | k2p *= k2p;
|
---|
1881 | e = e >> 1;
|
---|
1882 | }
|
---|
1883 |
|
---|
1884 | return result;
|
---|
1885 |
|
---|
1886 | }
|
---|
1887 |
|
---|
1888 | /**
|
---|
1889 | * Raise a BigInteger to an int power.
|
---|
1890 | * @param k number to raise
|
---|
1891 | * @param e exponent (must be positive or null)
|
---|
1892 | * @return k<sup>e</sup>
|
---|
1893 | * @exception IllegalArgumentException if e is negative
|
---|
1894 | */
|
---|
1895 | public static BigInteger pow(final BigInteger k, int e)
|
---|
1896 | throws IllegalArgumentException {
|
---|
1897 |
|
---|
1898 | if (e < 0) {
|
---|
1899 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
1900 | LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
|
---|
1901 | k, e);
|
---|
1902 | }
|
---|
1903 |
|
---|
1904 | return k.pow(e);
|
---|
1905 |
|
---|
1906 | }
|
---|
1907 |
|
---|
1908 | /**
|
---|
1909 | * Raise a BigInteger to a long power.
|
---|
1910 | * @param k number to raise
|
---|
1911 | * @param e exponent (must be positive or null)
|
---|
1912 | * @return k<sup>e</sup>
|
---|
1913 | * @exception IllegalArgumentException if e is negative
|
---|
1914 | */
|
---|
1915 | public static BigInteger pow(final BigInteger k, long e)
|
---|
1916 | throws IllegalArgumentException {
|
---|
1917 |
|
---|
1918 | if (e < 0) {
|
---|
1919 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
1920 | LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
|
---|
1921 | k, e);
|
---|
1922 | }
|
---|
1923 |
|
---|
1924 | BigInteger result = BigInteger.ONE;
|
---|
1925 | BigInteger k2p = k;
|
---|
1926 | while (e != 0) {
|
---|
1927 | if ((e & 0x1) != 0) {
|
---|
1928 | result = result.multiply(k2p);
|
---|
1929 | }
|
---|
1930 | k2p = k2p.multiply(k2p);
|
---|
1931 | e = e >> 1;
|
---|
1932 | }
|
---|
1933 |
|
---|
1934 | return result;
|
---|
1935 |
|
---|
1936 | }
|
---|
1937 |
|
---|
1938 | /**
|
---|
1939 | * Raise a BigInteger to a BigInteger power.
|
---|
1940 | * @param k number to raise
|
---|
1941 | * @param e exponent (must be positive or null)
|
---|
1942 | * @return k<sup>e</sup>
|
---|
1943 | * @exception IllegalArgumentException if e is negative
|
---|
1944 | */
|
---|
1945 | public static BigInteger pow(final BigInteger k, BigInteger e)
|
---|
1946 | throws IllegalArgumentException {
|
---|
1947 |
|
---|
1948 | if (e.compareTo(BigInteger.ZERO) < 0) {
|
---|
1949 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
1950 | LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
|
---|
1951 | k, e);
|
---|
1952 | }
|
---|
1953 |
|
---|
1954 | BigInteger result = BigInteger.ONE;
|
---|
1955 | BigInteger k2p = k;
|
---|
1956 | while (!BigInteger.ZERO.equals(e)) {
|
---|
1957 | if (e.testBit(0)) {
|
---|
1958 | result = result.multiply(k2p);
|
---|
1959 | }
|
---|
1960 | k2p = k2p.multiply(k2p);
|
---|
1961 | e = e.shiftRight(1);
|
---|
1962 | }
|
---|
1963 |
|
---|
1964 | return result;
|
---|
1965 |
|
---|
1966 | }
|
---|
1967 |
|
---|
1968 | /**
|
---|
1969 | * Calculates the L<sub>1</sub> (sum of abs) distance between two points.
|
---|
1970 | *
|
---|
1971 | * @param p1 the first point
|
---|
1972 | * @param p2 the second point
|
---|
1973 | * @return the L<sub>1</sub> distance between the two points
|
---|
1974 | */
|
---|
1975 | public static double distance1(double[] p1, double[] p2) {
|
---|
1976 | double sum = 0;
|
---|
1977 | for (int i = 0; i < p1.length; i++) {
|
---|
1978 | sum += FastMath.abs(p1[i] - p2[i]);
|
---|
1979 | }
|
---|
1980 | return sum;
|
---|
1981 | }
|
---|
1982 |
|
---|
1983 | /**
|
---|
1984 | * Calculates the L<sub>1</sub> (sum of abs) distance between two points.
|
---|
1985 | *
|
---|
1986 | * @param p1 the first point
|
---|
1987 | * @param p2 the second point
|
---|
1988 | * @return the L<sub>1</sub> distance between the two points
|
---|
1989 | */
|
---|
1990 | public static int distance1(int[] p1, int[] p2) {
|
---|
1991 | int sum = 0;
|
---|
1992 | for (int i = 0; i < p1.length; i++) {
|
---|
1993 | sum += FastMath.abs(p1[i] - p2[i]);
|
---|
1994 | }
|
---|
1995 | return sum;
|
---|
1996 | }
|
---|
1997 |
|
---|
1998 | /**
|
---|
1999 | * Calculates the L<sub>2</sub> (Euclidean) distance between two points.
|
---|
2000 | *
|
---|
2001 | * @param p1 the first point
|
---|
2002 | * @param p2 the second point
|
---|
2003 | * @return the L<sub>2</sub> distance between the two points
|
---|
2004 | */
|
---|
2005 | public static double distance(double[] p1, double[] p2) {
|
---|
2006 | double sum = 0;
|
---|
2007 | for (int i = 0; i < p1.length; i++) {
|
---|
2008 | final double dp = p1[i] - p2[i];
|
---|
2009 | sum += dp * dp;
|
---|
2010 | }
|
---|
2011 | return FastMath.sqrt(sum);
|
---|
2012 | }
|
---|
2013 |
|
---|
2014 | /**
|
---|
2015 | * Calculates the L<sub>2</sub> (Euclidean) distance between two points.
|
---|
2016 | *
|
---|
2017 | * @param p1 the first point
|
---|
2018 | * @param p2 the second point
|
---|
2019 | * @return the L<sub>2</sub> distance between the two points
|
---|
2020 | */
|
---|
2021 | public static double distance(int[] p1, int[] p2) {
|
---|
2022 | double sum = 0;
|
---|
2023 | for (int i = 0; i < p1.length; i++) {
|
---|
2024 | final double dp = p1[i] - p2[i];
|
---|
2025 | sum += dp * dp;
|
---|
2026 | }
|
---|
2027 | return FastMath.sqrt(sum);
|
---|
2028 | }
|
---|
2029 |
|
---|
2030 | /**
|
---|
2031 | * Calculates the L<sub>∞</sub> (max of abs) distance between two points.
|
---|
2032 | *
|
---|
2033 | * @param p1 the first point
|
---|
2034 | * @param p2 the second point
|
---|
2035 | * @return the L<sub>∞</sub> distance between the two points
|
---|
2036 | */
|
---|
2037 | public static double distanceInf(double[] p1, double[] p2) {
|
---|
2038 | double max = 0;
|
---|
2039 | for (int i = 0; i < p1.length; i++) {
|
---|
2040 | max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
|
---|
2041 | }
|
---|
2042 | return max;
|
---|
2043 | }
|
---|
2044 |
|
---|
2045 | /**
|
---|
2046 | * Calculates the L<sub>∞</sub> (max of abs) distance between two points.
|
---|
2047 | *
|
---|
2048 | * @param p1 the first point
|
---|
2049 | * @param p2 the second point
|
---|
2050 | * @return the L<sub>∞</sub> distance between the two points
|
---|
2051 | */
|
---|
2052 | public static int distanceInf(int[] p1, int[] p2) {
|
---|
2053 | int max = 0;
|
---|
2054 | for (int i = 0; i < p1.length; i++) {
|
---|
2055 | max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
|
---|
2056 | }
|
---|
2057 | return max;
|
---|
2058 | }
|
---|
2059 |
|
---|
2060 | /**
|
---|
2061 | * Specification of ordering direction.
|
---|
2062 | */
|
---|
2063 | public static enum OrderDirection {
|
---|
2064 | /** Constant for increasing direction. */
|
---|
2065 | INCREASING,
|
---|
2066 | /** Constant for decreasing direction. */
|
---|
2067 | DECREASING
|
---|
2068 | }
|
---|
2069 |
|
---|
2070 | /**
|
---|
2071 | * Checks that the given array is sorted.
|
---|
2072 | *
|
---|
2073 | * @param val Values.
|
---|
2074 | * @param dir Ordering direction.
|
---|
2075 | * @param strict Whether the order should be strict.
|
---|
2076 | * @throws NonMonotonousSequenceException if the array is not sorted.
|
---|
2077 | * @since 2.2
|
---|
2078 | */
|
---|
2079 | public static void checkOrder(double[] val, OrderDirection dir, boolean strict) {
|
---|
2080 | double previous = val[0];
|
---|
2081 | boolean ok = true;
|
---|
2082 |
|
---|
2083 | int max = val.length;
|
---|
2084 | for (int i = 1; i < max; i++) {
|
---|
2085 | switch (dir) {
|
---|
2086 | case INCREASING:
|
---|
2087 | if (strict) {
|
---|
2088 | if (val[i] <= previous) {
|
---|
2089 | ok = false;
|
---|
2090 | }
|
---|
2091 | } else {
|
---|
2092 | if (val[i] < previous) {
|
---|
2093 | ok = false;
|
---|
2094 | }
|
---|
2095 | }
|
---|
2096 | break;
|
---|
2097 | case DECREASING:
|
---|
2098 | if (strict) {
|
---|
2099 | if (val[i] >= previous) {
|
---|
2100 | ok = false;
|
---|
2101 | }
|
---|
2102 | } else {
|
---|
2103 | if (val[i] > previous) {
|
---|
2104 | ok = false;
|
---|
2105 | }
|
---|
2106 | }
|
---|
2107 | break;
|
---|
2108 | default:
|
---|
2109 | // Should never happen.
|
---|
2110 | throw new IllegalArgumentException();
|
---|
2111 | }
|
---|
2112 |
|
---|
2113 | if (!ok) {
|
---|
2114 | throw new NonMonotonousSequenceException(val[i], previous, i, dir, strict);
|
---|
2115 | }
|
---|
2116 | previous = val[i];
|
---|
2117 | }
|
---|
2118 | }
|
---|
2119 |
|
---|
2120 | /**
|
---|
2121 | * Checks that the given array is sorted in strictly increasing order.
|
---|
2122 | *
|
---|
2123 | * @param val Values.
|
---|
2124 | * @throws NonMonotonousSequenceException if the array is not sorted.
|
---|
2125 | * @since 2.2
|
---|
2126 | */
|
---|
2127 | public static void checkOrder(double[] val) {
|
---|
2128 | checkOrder(val, OrderDirection.INCREASING, true);
|
---|
2129 | }
|
---|
2130 |
|
---|
2131 | /**
|
---|
2132 | * Checks that the given array is sorted.
|
---|
2133 | *
|
---|
2134 | * @param val Values
|
---|
2135 | * @param dir Order direction (-1 for decreasing, 1 for increasing)
|
---|
2136 | * @param strict Whether the order should be strict
|
---|
2137 | * @throws NonMonotonousSequenceException if the array is not sorted.
|
---|
2138 | * @deprecated as of 2.2 (please use the new {@link #checkOrder(double[],OrderDirection,boolean)
|
---|
2139 | * checkOrder} method). To be removed in 3.0.
|
---|
2140 | */
|
---|
2141 | @Deprecated
|
---|
2142 | public static void checkOrder(double[] val, int dir, boolean strict) {
|
---|
2143 | if (dir > 0) {
|
---|
2144 | checkOrder(val, OrderDirection.INCREASING, strict);
|
---|
2145 | } else {
|
---|
2146 | checkOrder(val, OrderDirection.DECREASING, strict);
|
---|
2147 | }
|
---|
2148 | }
|
---|
2149 |
|
---|
2150 | /**
|
---|
2151 | * Returns the Cartesian norm (2-norm), handling both overflow and underflow.
|
---|
2152 | * Translation of the minpack enorm subroutine.
|
---|
2153 | *
|
---|
2154 | * The redistribution policy for MINPACK is available <a
|
---|
2155 | * href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it
|
---|
2156 | * is reproduced below.</p>
|
---|
2157 | *
|
---|
2158 | * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
|
---|
2159 | * <tr><td>
|
---|
2160 | * Minpack Copyright Notice (1999) University of Chicago.
|
---|
2161 | * All rights reserved
|
---|
2162 | * </td></tr>
|
---|
2163 | * <tr><td>
|
---|
2164 | * Redistribution and use in source and binary forms, with or without
|
---|
2165 | * modification, are permitted provided that the following conditions
|
---|
2166 | * are met:
|
---|
2167 | * <ol>
|
---|
2168 | * <li>Redistributions of source code must retain the above copyright
|
---|
2169 | * notice, this list of conditions and the following disclaimer.</li>
|
---|
2170 | * <li>Redistributions in binary form must reproduce the above
|
---|
2171 | * copyright notice, this list of conditions and the following
|
---|
2172 | * disclaimer in the documentation and/or other materials provided
|
---|
2173 | * with the distribution.</li>
|
---|
2174 | * <li>The end-user documentation included with the redistribution, if any,
|
---|
2175 | * must include the following acknowledgment:
|
---|
2176 | * <code>This product includes software developed by the University of
|
---|
2177 | * Chicago, as Operator of Argonne National Laboratory.</code>
|
---|
2178 | * Alternately, this acknowledgment may appear in the software itself,
|
---|
2179 | * if and wherever such third-party acknowledgments normally appear.</li>
|
---|
2180 | * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
|
---|
2181 | * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
|
---|
2182 | * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
|
---|
2183 | * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
|
---|
2184 | * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
|
---|
2185 | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
|
---|
2186 | * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
|
---|
2187 | * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
|
---|
2188 | * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
|
---|
2189 | * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
|
---|
2190 | * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
|
---|
2191 | * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
|
---|
2192 | * BE CORRECTED.</strong></li>
|
---|
2193 | * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
|
---|
2194 | * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
|
---|
2195 | * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
|
---|
2196 | * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
|
---|
2197 | * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
|
---|
2198 | * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
|
---|
2199 | * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
|
---|
2200 | * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
|
---|
2201 | * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
|
---|
2202 | * POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
|
---|
2203 | * <ol></td></tr>
|
---|
2204 | * </table>
|
---|
2205 | *
|
---|
2206 | * @param v vector of doubles
|
---|
2207 | * @return the 2-norm of the vector
|
---|
2208 | * @since 2.2
|
---|
2209 | */
|
---|
2210 | public static double safeNorm(double[] v) {
|
---|
2211 | double rdwarf = 3.834e-20;
|
---|
2212 | double rgiant = 1.304e+19;
|
---|
2213 | double s1=0.0;
|
---|
2214 | double s2=0.0;
|
---|
2215 | double s3=0.0;
|
---|
2216 | double x1max = 0.0;
|
---|
2217 | double x3max = 0.0;
|
---|
2218 | double floatn = (double)v.length;
|
---|
2219 | double agiant = rgiant/floatn;
|
---|
2220 | for (int i=0;i<v.length;i++) {
|
---|
2221 | double xabs = Math.abs(v[i]);
|
---|
2222 | if (xabs<rdwarf || xabs>agiant) {
|
---|
2223 | if (xabs>rdwarf) {
|
---|
2224 | if (xabs>x1max) {
|
---|
2225 | double r=x1max/xabs;
|
---|
2226 | s1=1.0+s1*r*r;
|
---|
2227 | x1max=xabs;
|
---|
2228 | } else {
|
---|
2229 | double r=xabs/x1max;
|
---|
2230 | s1+=r*r;
|
---|
2231 | }
|
---|
2232 | } else {
|
---|
2233 | if (xabs>x3max) {
|
---|
2234 | double r=x3max/xabs;
|
---|
2235 | s3=1.0+s3*r*r;
|
---|
2236 | x3max=xabs;
|
---|
2237 | } else {
|
---|
2238 | if (xabs!=0.0) {
|
---|
2239 | double r=xabs/x3max;
|
---|
2240 | s3+=r*r;
|
---|
2241 | }
|
---|
2242 | }
|
---|
2243 | }
|
---|
2244 | } else {
|
---|
2245 | s2+=xabs*xabs;
|
---|
2246 | }
|
---|
2247 | }
|
---|
2248 | double norm;
|
---|
2249 | if (s1!=0.0) {
|
---|
2250 | norm = x1max*Math.sqrt(s1+(s2/x1max)/x1max);
|
---|
2251 | } else {
|
---|
2252 | if (s2==0.0) {
|
---|
2253 | norm = x3max*Math.sqrt(s3);
|
---|
2254 | } else {
|
---|
2255 | if (s2>=x3max) {
|
---|
2256 | norm = Math.sqrt(s2*(1.0+(x3max/s2)*(x3max*s3)));
|
---|
2257 | } else {
|
---|
2258 | norm = Math.sqrt(x3max*((s2/x3max)+(x3max*s3)));
|
---|
2259 | }
|
---|
2260 | }
|
---|
2261 | }
|
---|
2262 | return norm;
|
---|
2263 | }
|
---|
2264 |
|
---|
2265 | }
|
---|