1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.util;
|
---|
18 |
|
---|
19 | import agents.org.apache.commons.math.ConvergenceException;
|
---|
20 | import agents.org.apache.commons.math.MathException;
|
---|
21 | import agents.org.apache.commons.math.MaxIterationsExceededException;
|
---|
22 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
23 |
|
---|
24 | /**
|
---|
25 | * Provides a generic means to evaluate continued fractions. Subclasses simply
|
---|
26 | * provided the a and b coefficients to evaluate the continued fraction.
|
---|
27 | *
|
---|
28 | * <p>
|
---|
29 | * References:
|
---|
30 | * <ul>
|
---|
31 | * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
|
---|
32 | * Continued Fraction</a></li>
|
---|
33 | * </ul>
|
---|
34 | * </p>
|
---|
35 | *
|
---|
36 | * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
|
---|
37 | */
|
---|
38 | public abstract class ContinuedFraction {
|
---|
39 |
|
---|
40 | /** Maximum allowed numerical error. */
|
---|
41 | private static final double DEFAULT_EPSILON = 10e-9;
|
---|
42 |
|
---|
43 | /**
|
---|
44 | * Default constructor.
|
---|
45 | */
|
---|
46 | protected ContinuedFraction() {
|
---|
47 | super();
|
---|
48 | }
|
---|
49 |
|
---|
50 | /**
|
---|
51 | * Access the n-th a coefficient of the continued fraction. Since a can be
|
---|
52 | * a function of the evaluation point, x, that is passed in as well.
|
---|
53 | * @param n the coefficient index to retrieve.
|
---|
54 | * @param x the evaluation point.
|
---|
55 | * @return the n-th a coefficient.
|
---|
56 | */
|
---|
57 | protected abstract double getA(int n, double x);
|
---|
58 |
|
---|
59 | /**
|
---|
60 | * Access the n-th b coefficient of the continued fraction. Since b can be
|
---|
61 | * a function of the evaluation point, x, that is passed in as well.
|
---|
62 | * @param n the coefficient index to retrieve.
|
---|
63 | * @param x the evaluation point.
|
---|
64 | * @return the n-th b coefficient.
|
---|
65 | */
|
---|
66 | protected abstract double getB(int n, double x);
|
---|
67 |
|
---|
68 | /**
|
---|
69 | * Evaluates the continued fraction at the value x.
|
---|
70 | * @param x the evaluation point.
|
---|
71 | * @return the value of the continued fraction evaluated at x.
|
---|
72 | * @throws MathException if the algorithm fails to converge.
|
---|
73 | */
|
---|
74 | public double evaluate(double x) throws MathException {
|
---|
75 | return evaluate(x, DEFAULT_EPSILON, Integer.MAX_VALUE);
|
---|
76 | }
|
---|
77 |
|
---|
78 | /**
|
---|
79 | * Evaluates the continued fraction at the value x.
|
---|
80 | * @param x the evaluation point.
|
---|
81 | * @param epsilon maximum error allowed.
|
---|
82 | * @return the value of the continued fraction evaluated at x.
|
---|
83 | * @throws MathException if the algorithm fails to converge.
|
---|
84 | */
|
---|
85 | public double evaluate(double x, double epsilon) throws MathException {
|
---|
86 | return evaluate(x, epsilon, Integer.MAX_VALUE);
|
---|
87 | }
|
---|
88 |
|
---|
89 | /**
|
---|
90 | * Evaluates the continued fraction at the value x.
|
---|
91 | * @param x the evaluation point.
|
---|
92 | * @param maxIterations maximum number of convergents
|
---|
93 | * @return the value of the continued fraction evaluated at x.
|
---|
94 | * @throws MathException if the algorithm fails to converge.
|
---|
95 | */
|
---|
96 | public double evaluate(double x, int maxIterations) throws MathException {
|
---|
97 | return evaluate(x, DEFAULT_EPSILON, maxIterations);
|
---|
98 | }
|
---|
99 |
|
---|
100 | /**
|
---|
101 | * <p>
|
---|
102 | * Evaluates the continued fraction at the value x.
|
---|
103 | * </p>
|
---|
104 | *
|
---|
105 | * <p>
|
---|
106 | * The implementation of this method is based on equations 14-17 of:
|
---|
107 | * <ul>
|
---|
108 | * <li>
|
---|
109 | * Eric W. Weisstein. "Continued Fraction." From MathWorld--A Wolfram Web
|
---|
110 | * Resource. <a target="_blank"
|
---|
111 | * href="http://mathworld.wolfram.com/ContinuedFraction.html">
|
---|
112 | * http://mathworld.wolfram.com/ContinuedFraction.html</a>
|
---|
113 | * </li>
|
---|
114 | * </ul>
|
---|
115 | * The recurrence relationship defined in those equations can result in
|
---|
116 | * very large intermediate results which can result in numerical overflow.
|
---|
117 | * As a means to combat these overflow conditions, the intermediate results
|
---|
118 | * are scaled whenever they threaten to become numerically unstable.</p>
|
---|
119 | *
|
---|
120 | * @param x the evaluation point.
|
---|
121 | * @param epsilon maximum error allowed.
|
---|
122 | * @param maxIterations maximum number of convergents
|
---|
123 | * @return the value of the continued fraction evaluated at x.
|
---|
124 | * @throws MathException if the algorithm fails to converge.
|
---|
125 | */
|
---|
126 | public double evaluate(double x, double epsilon, int maxIterations)
|
---|
127 | throws MathException
|
---|
128 | {
|
---|
129 | double p0 = 1.0;
|
---|
130 | double p1 = getA(0, x);
|
---|
131 | double q0 = 0.0;
|
---|
132 | double q1 = 1.0;
|
---|
133 | double c = p1 / q1;
|
---|
134 | int n = 0;
|
---|
135 | double relativeError = Double.MAX_VALUE;
|
---|
136 | while (n < maxIterations && relativeError > epsilon) {
|
---|
137 | ++n;
|
---|
138 | double a = getA(n, x);
|
---|
139 | double b = getB(n, x);
|
---|
140 | double p2 = a * p1 + b * p0;
|
---|
141 | double q2 = a * q1 + b * q0;
|
---|
142 | boolean infinite = false;
|
---|
143 | if (Double.isInfinite(p2) || Double.isInfinite(q2)) {
|
---|
144 | /*
|
---|
145 | * Need to scale. Try successive powers of the larger of a or b
|
---|
146 | * up to 5th power. Throw ConvergenceException if one or both
|
---|
147 | * of p2, q2 still overflow.
|
---|
148 | */
|
---|
149 | double scaleFactor = 1d;
|
---|
150 | double lastScaleFactor = 1d;
|
---|
151 | final int maxPower = 5;
|
---|
152 | final double scale = FastMath.max(a,b);
|
---|
153 | if (scale <= 0) { // Can't scale
|
---|
154 | throw new ConvergenceException(
|
---|
155 | LocalizedFormats.CONTINUED_FRACTION_INFINITY_DIVERGENCE,
|
---|
156 | x);
|
---|
157 | }
|
---|
158 | infinite = true;
|
---|
159 | for (int i = 0; i < maxPower; i++) {
|
---|
160 | lastScaleFactor = scaleFactor;
|
---|
161 | scaleFactor *= scale;
|
---|
162 | if (a != 0.0 && a > b) {
|
---|
163 | p2 = p1 / lastScaleFactor + (b / scaleFactor * p0);
|
---|
164 | q2 = q1 / lastScaleFactor + (b / scaleFactor * q0);
|
---|
165 | } else if (b != 0) {
|
---|
166 | p2 = (a / scaleFactor * p1) + p0 / lastScaleFactor;
|
---|
167 | q2 = (a / scaleFactor * q1) + q0 / lastScaleFactor;
|
---|
168 | }
|
---|
169 | infinite = Double.isInfinite(p2) || Double.isInfinite(q2);
|
---|
170 | if (!infinite) {
|
---|
171 | break;
|
---|
172 | }
|
---|
173 | }
|
---|
174 | }
|
---|
175 |
|
---|
176 | if (infinite) {
|
---|
177 | // Scaling failed
|
---|
178 | throw new ConvergenceException(
|
---|
179 | LocalizedFormats.CONTINUED_FRACTION_INFINITY_DIVERGENCE,
|
---|
180 | x);
|
---|
181 | }
|
---|
182 |
|
---|
183 | double r = p2 / q2;
|
---|
184 |
|
---|
185 | if (Double.isNaN(r)) {
|
---|
186 | throw new ConvergenceException(
|
---|
187 | LocalizedFormats.CONTINUED_FRACTION_NAN_DIVERGENCE,
|
---|
188 | x);
|
---|
189 | }
|
---|
190 | relativeError = FastMath.abs(r / c - 1.0);
|
---|
191 |
|
---|
192 | // prepare for next iteration
|
---|
193 | c = p2 / q2;
|
---|
194 | p0 = p1;
|
---|
195 | p1 = p2;
|
---|
196 | q0 = q1;
|
---|
197 | q1 = q2;
|
---|
198 | }
|
---|
199 |
|
---|
200 | if (n >= maxIterations) {
|
---|
201 | throw new MaxIterationsExceededException(maxIterations,
|
---|
202 | LocalizedFormats.NON_CONVERGENT_CONTINUED_FRACTION,
|
---|
203 | x);
|
---|
204 | }
|
---|
205 |
|
---|
206 | return c;
|
---|
207 | }
|
---|
208 | }
|
---|