1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.stat;
|
---|
18 |
|
---|
19 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
20 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
21 | import agents.org.apache.commons.math.stat.descriptive.DescriptiveStatistics;
|
---|
22 | import agents.org.apache.commons.math.stat.descriptive.UnivariateStatistic;
|
---|
23 | import agents.org.apache.commons.math.stat.descriptive.moment.GeometricMean;
|
---|
24 | import agents.org.apache.commons.math.stat.descriptive.moment.Mean;
|
---|
25 | import agents.org.apache.commons.math.stat.descriptive.moment.Variance;
|
---|
26 | import agents.org.apache.commons.math.stat.descriptive.rank.Max;
|
---|
27 | import agents.org.apache.commons.math.stat.descriptive.rank.Min;
|
---|
28 | import agents.org.apache.commons.math.stat.descriptive.rank.Percentile;
|
---|
29 | import agents.org.apache.commons.math.stat.descriptive.summary.Product;
|
---|
30 | import agents.org.apache.commons.math.stat.descriptive.summary.Sum;
|
---|
31 | import agents.org.apache.commons.math.stat.descriptive.summary.SumOfLogs;
|
---|
32 | import agents.org.apache.commons.math.stat.descriptive.summary.SumOfSquares;
|
---|
33 |
|
---|
34 | /**
|
---|
35 | * StatUtils provides static methods for computing statistics based on data
|
---|
36 | * stored in double[] arrays.
|
---|
37 | *
|
---|
38 | * @version $Revision: 1073276 $ $Date: 2011-02-22 10:34:52 +0100 (mar. 22 févr. 2011) $
|
---|
39 | */
|
---|
40 | public final class StatUtils {
|
---|
41 |
|
---|
42 | /** sum */
|
---|
43 | private static final UnivariateStatistic SUM = new Sum();
|
---|
44 |
|
---|
45 | /** sumSq */
|
---|
46 | private static final UnivariateStatistic SUM_OF_SQUARES = new SumOfSquares();
|
---|
47 |
|
---|
48 | /** prod */
|
---|
49 | private static final UnivariateStatistic PRODUCT = new Product();
|
---|
50 |
|
---|
51 | /** sumLog */
|
---|
52 | private static final UnivariateStatistic SUM_OF_LOGS = new SumOfLogs();
|
---|
53 |
|
---|
54 | /** min */
|
---|
55 | private static final UnivariateStatistic MIN = new Min();
|
---|
56 |
|
---|
57 | /** max */
|
---|
58 | private static final UnivariateStatistic MAX = new Max();
|
---|
59 |
|
---|
60 | /** mean */
|
---|
61 | private static final UnivariateStatistic MEAN = new Mean();
|
---|
62 |
|
---|
63 | /** variance */
|
---|
64 | private static final Variance VARIANCE = new Variance();
|
---|
65 |
|
---|
66 | /** percentile */
|
---|
67 | private static final Percentile PERCENTILE = new Percentile();
|
---|
68 |
|
---|
69 | /** geometric mean */
|
---|
70 | private static final GeometricMean GEOMETRIC_MEAN = new GeometricMean();
|
---|
71 |
|
---|
72 | /**
|
---|
73 | * Private Constructor
|
---|
74 | */
|
---|
75 | private StatUtils() {
|
---|
76 | }
|
---|
77 |
|
---|
78 | /**
|
---|
79 | * Returns the sum of the values in the input array, or
|
---|
80 | * <code>Double.NaN</code> if the array is empty.
|
---|
81 | * <p>
|
---|
82 | * Throws <code>IllegalArgumentException</code> if the input array
|
---|
83 | * is null.</p>
|
---|
84 | *
|
---|
85 | * @param values array of values to sum
|
---|
86 | * @return the sum of the values or <code>Double.NaN</code> if the array
|
---|
87 | * is empty
|
---|
88 | * @throws IllegalArgumentException if the array is null
|
---|
89 | */
|
---|
90 | public static double sum(final double[] values) {
|
---|
91 | return SUM.evaluate(values);
|
---|
92 | }
|
---|
93 |
|
---|
94 | /**
|
---|
95 | * Returns the sum of the entries in the specified portion of
|
---|
96 | * the input array, or <code>Double.NaN</code> if the designated subarray
|
---|
97 | * is empty.
|
---|
98 | * <p>
|
---|
99 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
100 | *
|
---|
101 | * @param values the input array
|
---|
102 | * @param begin index of the first array element to include
|
---|
103 | * @param length the number of elements to include
|
---|
104 | * @return the sum of the values or Double.NaN if length = 0
|
---|
105 | * @throws IllegalArgumentException if the array is null or the array index
|
---|
106 | * parameters are not valid
|
---|
107 | */
|
---|
108 | public static double sum(final double[] values, final int begin,
|
---|
109 | final int length) {
|
---|
110 | return SUM.evaluate(values, begin, length);
|
---|
111 | }
|
---|
112 |
|
---|
113 | /**
|
---|
114 | * Returns the sum of the squares of the entries in the input array, or
|
---|
115 | * <code>Double.NaN</code> if the array is empty.
|
---|
116 | * <p>
|
---|
117 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
118 | *
|
---|
119 | * @param values input array
|
---|
120 | * @return the sum of the squared values or <code>Double.NaN</code> if the
|
---|
121 | * array is empty
|
---|
122 | * @throws IllegalArgumentException if the array is null
|
---|
123 | */
|
---|
124 | public static double sumSq(final double[] values) {
|
---|
125 | return SUM_OF_SQUARES.evaluate(values);
|
---|
126 | }
|
---|
127 |
|
---|
128 | /**
|
---|
129 | * Returns the sum of the squares of the entries in the specified portion of
|
---|
130 | * the input array, or <code>Double.NaN</code> if the designated subarray
|
---|
131 | * is empty.
|
---|
132 | * <p>
|
---|
133 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
134 | *
|
---|
135 | * @param values the input array
|
---|
136 | * @param begin index of the first array element to include
|
---|
137 | * @param length the number of elements to include
|
---|
138 | * @return the sum of the squares of the values or Double.NaN if length = 0
|
---|
139 | * @throws IllegalArgumentException if the array is null or the array index
|
---|
140 | * parameters are not valid
|
---|
141 | */
|
---|
142 | public static double sumSq(final double[] values, final int begin,
|
---|
143 | final int length) {
|
---|
144 | return SUM_OF_SQUARES.evaluate(values, begin, length);
|
---|
145 | }
|
---|
146 |
|
---|
147 | /**
|
---|
148 | * Returns the product of the entries in the input array, or
|
---|
149 | * <code>Double.NaN</code> if the array is empty.
|
---|
150 | * <p>
|
---|
151 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
152 | *
|
---|
153 | * @param values the input array
|
---|
154 | * @return the product of the values or Double.NaN if the array is empty
|
---|
155 | * @throws IllegalArgumentException if the array is null
|
---|
156 | */
|
---|
157 | public static double product(final double[] values) {
|
---|
158 | return PRODUCT.evaluate(values);
|
---|
159 | }
|
---|
160 |
|
---|
161 | /**
|
---|
162 | * Returns the product of the entries in the specified portion of
|
---|
163 | * the input array, or <code>Double.NaN</code> if the designated subarray
|
---|
164 | * is empty.
|
---|
165 | * <p>
|
---|
166 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
167 | *
|
---|
168 | * @param values the input array
|
---|
169 | * @param begin index of the first array element to include
|
---|
170 | * @param length the number of elements to include
|
---|
171 | * @return the product of the values or Double.NaN if length = 0
|
---|
172 | * @throws IllegalArgumentException if the array is null or the array index
|
---|
173 | * parameters are not valid
|
---|
174 | */
|
---|
175 | public static double product(final double[] values, final int begin,
|
---|
176 | final int length) {
|
---|
177 | return PRODUCT.evaluate(values, begin, length);
|
---|
178 | }
|
---|
179 |
|
---|
180 | /**
|
---|
181 | * Returns the sum of the natural logs of the entries in the input array, or
|
---|
182 | * <code>Double.NaN</code> if the array is empty.
|
---|
183 | * <p>
|
---|
184 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
185 | * <p>
|
---|
186 | * See {@link agents.org.apache.commons.math.stat.descriptive.summary.SumOfLogs}.
|
---|
187 | * </p>
|
---|
188 | *
|
---|
189 | * @param values the input array
|
---|
190 | * @return the sum of the natural logs of the values or Double.NaN if
|
---|
191 | * the array is empty
|
---|
192 | * @throws IllegalArgumentException if the array is null
|
---|
193 | */
|
---|
194 | public static double sumLog(final double[] values) {
|
---|
195 | return SUM_OF_LOGS.evaluate(values);
|
---|
196 | }
|
---|
197 |
|
---|
198 | /**
|
---|
199 | * Returns the sum of the natural logs of the entries in the specified portion of
|
---|
200 | * the input array, or <code>Double.NaN</code> if the designated subarray
|
---|
201 | * is empty.
|
---|
202 | * <p>
|
---|
203 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
204 | * <p>
|
---|
205 | * See {@link agents.org.apache.commons.math.stat.descriptive.summary.SumOfLogs}.
|
---|
206 | * </p>
|
---|
207 | *
|
---|
208 | * @param values the input array
|
---|
209 | * @param begin index of the first array element to include
|
---|
210 | * @param length the number of elements to include
|
---|
211 | * @return the sum of the natural logs of the values or Double.NaN if
|
---|
212 | * length = 0
|
---|
213 | * @throws IllegalArgumentException if the array is null or the array index
|
---|
214 | * parameters are not valid
|
---|
215 | */
|
---|
216 | public static double sumLog(final double[] values, final int begin,
|
---|
217 | final int length) {
|
---|
218 | return SUM_OF_LOGS.evaluate(values, begin, length);
|
---|
219 | }
|
---|
220 |
|
---|
221 | /**
|
---|
222 | * Returns the arithmetic mean of the entries in the input array, or
|
---|
223 | * <code>Double.NaN</code> if the array is empty.
|
---|
224 | * <p>
|
---|
225 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
226 | * <p>
|
---|
227 | * See {@link agents.org.apache.commons.math.stat.descriptive.moment.Mean} for
|
---|
228 | * details on the computing algorithm.</p>
|
---|
229 | *
|
---|
230 | * @param values the input array
|
---|
231 | * @return the mean of the values or Double.NaN if the array is empty
|
---|
232 | * @throws IllegalArgumentException if the array is null
|
---|
233 | */
|
---|
234 | public static double mean(final double[] values) {
|
---|
235 | return MEAN.evaluate(values);
|
---|
236 | }
|
---|
237 |
|
---|
238 | /**
|
---|
239 | * Returns the arithmetic mean of the entries in the specified portion of
|
---|
240 | * the input array, or <code>Double.NaN</code> if the designated subarray
|
---|
241 | * is empty.
|
---|
242 | * <p>
|
---|
243 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
244 | * <p>
|
---|
245 | * See {@link agents.org.apache.commons.math.stat.descriptive.moment.Mean} for
|
---|
246 | * details on the computing algorithm.</p>
|
---|
247 | *
|
---|
248 | * @param values the input array
|
---|
249 | * @param begin index of the first array element to include
|
---|
250 | * @param length the number of elements to include
|
---|
251 | * @return the mean of the values or Double.NaN if length = 0
|
---|
252 | * @throws IllegalArgumentException if the array is null or the array index
|
---|
253 | * parameters are not valid
|
---|
254 | */
|
---|
255 | public static double mean(final double[] values, final int begin,
|
---|
256 | final int length) {
|
---|
257 | return MEAN.evaluate(values, begin, length);
|
---|
258 | }
|
---|
259 |
|
---|
260 | /**
|
---|
261 | * Returns the geometric mean of the entries in the input array, or
|
---|
262 | * <code>Double.NaN</code> if the array is empty.
|
---|
263 | * <p>
|
---|
264 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
265 | * <p>
|
---|
266 | * See {@link agents.org.apache.commons.math.stat.descriptive.moment.GeometricMean}
|
---|
267 | * for details on the computing algorithm.</p>
|
---|
268 | *
|
---|
269 | * @param values the input array
|
---|
270 | * @return the geometric mean of the values or Double.NaN if the array is empty
|
---|
271 | * @throws IllegalArgumentException if the array is null
|
---|
272 | */
|
---|
273 | public static double geometricMean(final double[] values) {
|
---|
274 | return GEOMETRIC_MEAN.evaluate(values);
|
---|
275 | }
|
---|
276 |
|
---|
277 | /**
|
---|
278 | * Returns the geometric mean of the entries in the specified portion of
|
---|
279 | * the input array, or <code>Double.NaN</code> if the designated subarray
|
---|
280 | * is empty.
|
---|
281 | * <p>
|
---|
282 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
283 | * <p>
|
---|
284 | * See {@link agents.org.apache.commons.math.stat.descriptive.moment.GeometricMean}
|
---|
285 | * for details on the computing algorithm.</p>
|
---|
286 | *
|
---|
287 | * @param values the input array
|
---|
288 | * @param begin index of the first array element to include
|
---|
289 | * @param length the number of elements to include
|
---|
290 | * @return the geometric mean of the values or Double.NaN if length = 0
|
---|
291 | * @throws IllegalArgumentException if the array is null or the array index
|
---|
292 | * parameters are not valid
|
---|
293 | */
|
---|
294 | public static double geometricMean(final double[] values, final int begin,
|
---|
295 | final int length) {
|
---|
296 | return GEOMETRIC_MEAN.evaluate(values, begin, length);
|
---|
297 | }
|
---|
298 |
|
---|
299 |
|
---|
300 | /**
|
---|
301 | * Returns the variance of the entries in the input array, or
|
---|
302 | * <code>Double.NaN</code> if the array is empty.
|
---|
303 | * <p>
|
---|
304 | * See {@link agents.org.apache.commons.math.stat.descriptive.moment.Variance} for
|
---|
305 | * details on the computing algorithm.</p>
|
---|
306 | * <p>
|
---|
307 | * Returns 0 for a single-value (i.e. length = 1) sample.</p>
|
---|
308 | * <p>
|
---|
309 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
310 | *
|
---|
311 | * @param values the input array
|
---|
312 | * @return the variance of the values or Double.NaN if the array is empty
|
---|
313 | * @throws IllegalArgumentException if the array is null
|
---|
314 | */
|
---|
315 | public static double variance(final double[] values) {
|
---|
316 | return VARIANCE.evaluate(values);
|
---|
317 | }
|
---|
318 |
|
---|
319 | /**
|
---|
320 | * Returns the variance of the entries in the specified portion of
|
---|
321 | * the input array, or <code>Double.NaN</code> if the designated subarray
|
---|
322 | * is empty.
|
---|
323 | * <p>
|
---|
324 | * See {@link agents.org.apache.commons.math.stat.descriptive.moment.Variance} for
|
---|
325 | * details on the computing algorithm.</p>
|
---|
326 | * <p>
|
---|
327 | * Returns 0 for a single-value (i.e. length = 1) sample.</p>
|
---|
328 | * <p>
|
---|
329 | * Throws <code>IllegalArgumentException</code> if the array is null or the
|
---|
330 | * array index parameters are not valid.</p>
|
---|
331 | *
|
---|
332 | * @param values the input array
|
---|
333 | * @param begin index of the first array element to include
|
---|
334 | * @param length the number of elements to include
|
---|
335 | * @return the variance of the values or Double.NaN if length = 0
|
---|
336 | * @throws IllegalArgumentException if the array is null or the array index
|
---|
337 | * parameters are not valid
|
---|
338 | */
|
---|
339 | public static double variance(final double[] values, final int begin,
|
---|
340 | final int length) {
|
---|
341 | return VARIANCE.evaluate(values, begin, length);
|
---|
342 | }
|
---|
343 |
|
---|
344 | /**
|
---|
345 | * Returns the variance of the entries in the specified portion of
|
---|
346 | * the input array, using the precomputed mean value. Returns
|
---|
347 | * <code>Double.NaN</code> if the designated subarray is empty.
|
---|
348 | * <p>
|
---|
349 | * See {@link agents.org.apache.commons.math.stat.descriptive.moment.Variance} for
|
---|
350 | * details on the computing algorithm.</p>
|
---|
351 | * <p>
|
---|
352 | * The formula used assumes that the supplied mean value is the arithmetic
|
---|
353 | * mean of the sample data, not a known population parameter. This method
|
---|
354 | * is supplied only to save computation when the mean has already been
|
---|
355 | * computed.</p>
|
---|
356 | * <p>
|
---|
357 | * Returns 0 for a single-value (i.e. length = 1) sample.</p>
|
---|
358 | * <p>
|
---|
359 | * Throws <code>IllegalArgumentException</code> if the array is null or the
|
---|
360 | * array index parameters are not valid.</p>
|
---|
361 | *
|
---|
362 | * @param values the input array
|
---|
363 | * @param mean the precomputed mean value
|
---|
364 | * @param begin index of the first array element to include
|
---|
365 | * @param length the number of elements to include
|
---|
366 | * @return the variance of the values or Double.NaN if length = 0
|
---|
367 | * @throws IllegalArgumentException if the array is null or the array index
|
---|
368 | * parameters are not valid
|
---|
369 | */
|
---|
370 | public static double variance(final double[] values, final double mean,
|
---|
371 | final int begin, final int length) {
|
---|
372 | return VARIANCE.evaluate(values, mean, begin, length);
|
---|
373 | }
|
---|
374 |
|
---|
375 | /**
|
---|
376 | * Returns the variance of the entries in the input array, using the
|
---|
377 | * precomputed mean value. Returns <code>Double.NaN</code> if the array
|
---|
378 | * is empty.
|
---|
379 | * <p>
|
---|
380 | * See {@link agents.org.apache.commons.math.stat.descriptive.moment.Variance} for
|
---|
381 | * details on the computing algorithm.</p>
|
---|
382 | * <p>
|
---|
383 | * The formula used assumes that the supplied mean value is the arithmetic
|
---|
384 | * mean of the sample data, not a known population parameter. This method
|
---|
385 | * is supplied only to save computation when the mean has already been
|
---|
386 | * computed.</p>
|
---|
387 | * <p>
|
---|
388 | * Returns 0 for a single-value (i.e. length = 1) sample.</p>
|
---|
389 | * <p>
|
---|
390 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
391 | *
|
---|
392 | * @param values the input array
|
---|
393 | * @param mean the precomputed mean value
|
---|
394 | * @return the variance of the values or Double.NaN if the array is empty
|
---|
395 | * @throws IllegalArgumentException if the array is null
|
---|
396 | */
|
---|
397 | public static double variance(final double[] values, final double mean) {
|
---|
398 | return VARIANCE.evaluate(values, mean);
|
---|
399 | }
|
---|
400 |
|
---|
401 | /**
|
---|
402 | * Returns the maximum of the entries in the input array, or
|
---|
403 | * <code>Double.NaN</code> if the array is empty.
|
---|
404 | * <p>
|
---|
405 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
406 | * <p>
|
---|
407 | * <ul>
|
---|
408 | * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>
|
---|
409 | * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>
|
---|
410 | * <li>If any of the values equals <code>Double.POSITIVE_INFINITY</code>,
|
---|
411 | * the result is <code>Double.POSITIVE_INFINITY.</code></li>
|
---|
412 | * </ul></p>
|
---|
413 | *
|
---|
414 | * @param values the input array
|
---|
415 | * @return the maximum of the values or Double.NaN if the array is empty
|
---|
416 | * @throws IllegalArgumentException if the array is null
|
---|
417 | */
|
---|
418 | public static double max(final double[] values) {
|
---|
419 | return MAX.evaluate(values);
|
---|
420 | }
|
---|
421 |
|
---|
422 | /**
|
---|
423 | * Returns the maximum of the entries in the specified portion of
|
---|
424 | * the input array, or <code>Double.NaN</code> if the designated subarray
|
---|
425 | * is empty.
|
---|
426 | * <p>
|
---|
427 | * Throws <code>IllegalArgumentException</code> if the array is null or
|
---|
428 | * the array index parameters are not valid.</p>
|
---|
429 | * <p>
|
---|
430 | * <ul>
|
---|
431 | * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>
|
---|
432 | * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>
|
---|
433 | * <li>If any of the values equals <code>Double.POSITIVE_INFINITY</code>,
|
---|
434 | * the result is <code>Double.POSITIVE_INFINITY.</code></li>
|
---|
435 | * </ul></p>
|
---|
436 | *
|
---|
437 | * @param values the input array
|
---|
438 | * @param begin index of the first array element to include
|
---|
439 | * @param length the number of elements to include
|
---|
440 | * @return the maximum of the values or Double.NaN if length = 0
|
---|
441 | * @throws IllegalArgumentException if the array is null or the array index
|
---|
442 | * parameters are not valid
|
---|
443 | */
|
---|
444 | public static double max(final double[] values, final int begin,
|
---|
445 | final int length) {
|
---|
446 | return MAX.evaluate(values, begin, length);
|
---|
447 | }
|
---|
448 |
|
---|
449 | /**
|
---|
450 | * Returns the minimum of the entries in the input array, or
|
---|
451 | * <code>Double.NaN</code> if the array is empty.
|
---|
452 | * <p>
|
---|
453 | * Throws <code>IllegalArgumentException</code> if the array is null.</p>
|
---|
454 | * <p>
|
---|
455 | * <ul>
|
---|
456 | * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>
|
---|
457 | * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>
|
---|
458 | * <li>If any of the values equals <code>Double.NEGATIVE_INFINITY</code>,
|
---|
459 | * the result is <code>Double.NEGATIVE_INFINITY.</code></li>
|
---|
460 | * </ul> </p>
|
---|
461 | *
|
---|
462 | * @param values the input array
|
---|
463 | * @return the minimum of the values or Double.NaN if the array is empty
|
---|
464 | * @throws IllegalArgumentException if the array is null
|
---|
465 | */
|
---|
466 | public static double min(final double[] values) {
|
---|
467 | return MIN.evaluate(values);
|
---|
468 | }
|
---|
469 |
|
---|
470 | /**
|
---|
471 | * Returns the minimum of the entries in the specified portion of
|
---|
472 | * the input array, or <code>Double.NaN</code> if the designated subarray
|
---|
473 | * is empty.
|
---|
474 | * <p>
|
---|
475 | * Throws <code>IllegalArgumentException</code> if the array is null or
|
---|
476 | * the array index parameters are not valid.</p>
|
---|
477 | * <p>
|
---|
478 | * <ul>
|
---|
479 | * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>
|
---|
480 | * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>
|
---|
481 | * <li>If any of the values equals <code>Double.NEGATIVE_INFINITY</code>,
|
---|
482 | * the result is <code>Double.NEGATIVE_INFINITY.</code></li>
|
---|
483 | * </ul></p>
|
---|
484 | *
|
---|
485 | * @param values the input array
|
---|
486 | * @param begin index of the first array element to include
|
---|
487 | * @param length the number of elements to include
|
---|
488 | * @return the minimum of the values or Double.NaN if length = 0
|
---|
489 | * @throws IllegalArgumentException if the array is null or the array index
|
---|
490 | * parameters are not valid
|
---|
491 | */
|
---|
492 | public static double min(final double[] values, final int begin,
|
---|
493 | final int length) {
|
---|
494 | return MIN.evaluate(values, begin, length);
|
---|
495 | }
|
---|
496 |
|
---|
497 | /**
|
---|
498 | * Returns an estimate of the <code>p</code>th percentile of the values
|
---|
499 | * in the <code>values</code> array.
|
---|
500 | * <p>
|
---|
501 | * <ul>
|
---|
502 | * <li>Returns <code>Double.NaN</code> if <code>values</code> has length
|
---|
503 | * <code>0</code></li></p>
|
---|
504 | * <li>Returns (for any value of <code>p</code>) <code>values[0]</code>
|
---|
505 | * if <code>values</code> has length <code>1</code></li>
|
---|
506 | * <li>Throws <code>IllegalArgumentException</code> if <code>values</code>
|
---|
507 | * is null or p is not a valid quantile value (p must be greater than 0
|
---|
508 | * and less than or equal to 100)</li>
|
---|
509 | * </ul></p>
|
---|
510 | * <p>
|
---|
511 | * See {@link agents.org.apache.commons.math.stat.descriptive.rank.Percentile} for
|
---|
512 | * a description of the percentile estimation algorithm used.</p>
|
---|
513 | *
|
---|
514 | * @param values input array of values
|
---|
515 | * @param p the percentile value to compute
|
---|
516 | * @return the percentile value or Double.NaN if the array is empty
|
---|
517 | * @throws IllegalArgumentException if <code>values</code> is null
|
---|
518 | * or p is invalid
|
---|
519 | */
|
---|
520 | public static double percentile(final double[] values, final double p) {
|
---|
521 | return PERCENTILE.evaluate(values,p);
|
---|
522 | }
|
---|
523 |
|
---|
524 | /**
|
---|
525 | * Returns an estimate of the <code>p</code>th percentile of the values
|
---|
526 | * in the <code>values</code> array, starting with the element in (0-based)
|
---|
527 | * position <code>begin</code> in the array and including <code>length</code>
|
---|
528 | * values.
|
---|
529 | * <p>
|
---|
530 | * <ul>
|
---|
531 | * <li>Returns <code>Double.NaN</code> if <code>length = 0</code></li>
|
---|
532 | * <li>Returns (for any value of <code>p</code>) <code>values[begin]</code>
|
---|
533 | * if <code>length = 1 </code></li>
|
---|
534 | * <li>Throws <code>IllegalArgumentException</code> if <code>values</code>
|
---|
535 | * is null , <code>begin</code> or <code>length</code> is invalid, or
|
---|
536 | * <code>p</code> is not a valid quantile value (p must be greater than 0
|
---|
537 | * and less than or equal to 100)</li>
|
---|
538 | * </ul></p>
|
---|
539 | * <p>
|
---|
540 | * See {@link agents.org.apache.commons.math.stat.descriptive.rank.Percentile} for
|
---|
541 | * a description of the percentile estimation algorithm used.</p>
|
---|
542 | *
|
---|
543 | * @param values array of input values
|
---|
544 | * @param p the percentile to compute
|
---|
545 | * @param begin the first (0-based) element to include in the computation
|
---|
546 | * @param length the number of array elements to include
|
---|
547 | * @return the percentile value
|
---|
548 | * @throws IllegalArgumentException if the parameters are not valid or the
|
---|
549 | * input array is null
|
---|
550 | */
|
---|
551 | public static double percentile(final double[] values, final int begin,
|
---|
552 | final int length, final double p) {
|
---|
553 | return PERCENTILE.evaluate(values, begin, length, p);
|
---|
554 | }
|
---|
555 |
|
---|
556 | /**
|
---|
557 | * Returns the sum of the (signed) differences between corresponding elements of the
|
---|
558 | * input arrays -- i.e., sum(sample1[i] - sample2[i]).
|
---|
559 | *
|
---|
560 | * @param sample1 the first array
|
---|
561 | * @param sample2 the second array
|
---|
562 | * @return sum of paired differences
|
---|
563 | * @throws IllegalArgumentException if the arrays do not have the same
|
---|
564 | * (positive) length
|
---|
565 | */
|
---|
566 | public static double sumDifference(final double[] sample1, final double[] sample2)
|
---|
567 | throws IllegalArgumentException {
|
---|
568 | int n = sample1.length;
|
---|
569 | if (n != sample2.length) {
|
---|
570 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
571 | LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, n, sample2.length);
|
---|
572 | }
|
---|
573 | if (n < 1) {
|
---|
574 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
575 | LocalizedFormats.INSUFFICIENT_DIMENSION, sample2.length, 1);
|
---|
576 | }
|
---|
577 | double result = 0;
|
---|
578 | for (int i = 0; i < n; i++) {
|
---|
579 | result += sample1[i] - sample2[i];
|
---|
580 | }
|
---|
581 | return result;
|
---|
582 | }
|
---|
583 |
|
---|
584 | /**
|
---|
585 | * Returns the mean of the (signed) differences between corresponding elements of the
|
---|
586 | * input arrays -- i.e., sum(sample1[i] - sample2[i]) / sample1.length.
|
---|
587 | *
|
---|
588 | * @param sample1 the first array
|
---|
589 | * @param sample2 the second array
|
---|
590 | * @return mean of paired differences
|
---|
591 | * @throws IllegalArgumentException if the arrays do not have the same
|
---|
592 | * (positive) length
|
---|
593 | */
|
---|
594 | public static double meanDifference(final double[] sample1, final double[] sample2)
|
---|
595 | throws IllegalArgumentException {
|
---|
596 | return sumDifference(sample1, sample2) / sample1.length;
|
---|
597 | }
|
---|
598 |
|
---|
599 | /**
|
---|
600 | * Returns the variance of the (signed) differences between corresponding elements of the
|
---|
601 | * input arrays -- i.e., var(sample1[i] - sample2[i]).
|
---|
602 | *
|
---|
603 | * @param sample1 the first array
|
---|
604 | * @param sample2 the second array
|
---|
605 | * @param meanDifference the mean difference between corresponding entries
|
---|
606 | * @see #meanDifference(double[],double[])
|
---|
607 | * @return variance of paired differences
|
---|
608 | * @throws IllegalArgumentException if the arrays do not have the same
|
---|
609 | * length or their common length is less than 2.
|
---|
610 | */
|
---|
611 | public static double varianceDifference(final double[] sample1, final double[] sample2,
|
---|
612 | double meanDifference) throws IllegalArgumentException {
|
---|
613 | double sum1 = 0d;
|
---|
614 | double sum2 = 0d;
|
---|
615 | double diff = 0d;
|
---|
616 | int n = sample1.length;
|
---|
617 | if (n != sample2.length) {
|
---|
618 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
619 | LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, n, sample2.length);
|
---|
620 | }
|
---|
621 | if (n < 2) {
|
---|
622 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
623 | LocalizedFormats.INSUFFICIENT_DIMENSION, n, 2);
|
---|
624 | }
|
---|
625 | for (int i = 0; i < n; i++) {
|
---|
626 | diff = sample1[i] - sample2[i];
|
---|
627 | sum1 += (diff - meanDifference) *(diff - meanDifference);
|
---|
628 | sum2 += diff - meanDifference;
|
---|
629 | }
|
---|
630 | return (sum1 - (sum2 * sum2 / n)) / (n - 1);
|
---|
631 | }
|
---|
632 |
|
---|
633 |
|
---|
634 | /**
|
---|
635 | * Normalize (standardize) the series, so in the end it is having a mean of 0 and a standard deviation of 1.
|
---|
636 | *
|
---|
637 | * @param sample sample to normalize
|
---|
638 | * @return normalized (standardized) sample
|
---|
639 | * @since 2.2
|
---|
640 | */
|
---|
641 | public static double[] normalize(final double[] sample) {
|
---|
642 | DescriptiveStatistics stats = new DescriptiveStatistics();
|
---|
643 |
|
---|
644 | // Add the data from the series to stats
|
---|
645 | for (int i = 0; i < sample.length; i++) {
|
---|
646 | stats.addValue(sample[i]);
|
---|
647 | }
|
---|
648 |
|
---|
649 | // Compute mean and standard deviation
|
---|
650 | double mean = stats.getMean();
|
---|
651 | double standardDeviation = stats.getStandardDeviation();
|
---|
652 |
|
---|
653 | // initialize the standardizedSample, which has the same length as the sample
|
---|
654 | double[] standardizedSample = new double[sample.length];
|
---|
655 |
|
---|
656 | for (int i = 0; i < sample.length; i++) {
|
---|
657 | // z = (x- mean)/standardDeviation
|
---|
658 | standardizedSample[i] = (sample[i] - mean) / standardDeviation;
|
---|
659 | }
|
---|
660 | return standardizedSample;
|
---|
661 | }
|
---|
662 |
|
---|
663 | }
|
---|