1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.special;
|
---|
18 |
|
---|
19 | import agents.org.apache.commons.math.MathException;
|
---|
20 | import agents.org.apache.commons.math.MaxIterationsExceededException;
|
---|
21 | import agents.org.apache.commons.math.util.ContinuedFraction;
|
---|
22 | import agents.org.apache.commons.math.util.FastMath;
|
---|
23 |
|
---|
24 | /**
|
---|
25 | * This is a utility class that provides computation methods related to the
|
---|
26 | * Gamma family of functions.
|
---|
27 | *
|
---|
28 | * @version $Revision: 1042510 $ $Date: 2010-12-06 02:54:18 +0100 (lun. 06 déc. 2010) $
|
---|
29 | */
|
---|
30 | public class Gamma {
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * <a href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Euler-Mascheroni constant</a>
|
---|
34 | * @since 2.0
|
---|
35 | */
|
---|
36 | public static final double GAMMA = 0.577215664901532860606512090082;
|
---|
37 |
|
---|
38 | /** Maximum allowed numerical error. */
|
---|
39 | private static final double DEFAULT_EPSILON = 10e-15;
|
---|
40 |
|
---|
41 | /** Lanczos coefficients */
|
---|
42 | private static final double[] LANCZOS =
|
---|
43 | {
|
---|
44 | 0.99999999999999709182,
|
---|
45 | 57.156235665862923517,
|
---|
46 | -59.597960355475491248,
|
---|
47 | 14.136097974741747174,
|
---|
48 | -0.49191381609762019978,
|
---|
49 | .33994649984811888699e-4,
|
---|
50 | .46523628927048575665e-4,
|
---|
51 | -.98374475304879564677e-4,
|
---|
52 | .15808870322491248884e-3,
|
---|
53 | -.21026444172410488319e-3,
|
---|
54 | .21743961811521264320e-3,
|
---|
55 | -.16431810653676389022e-3,
|
---|
56 | .84418223983852743293e-4,
|
---|
57 | -.26190838401581408670e-4,
|
---|
58 | .36899182659531622704e-5,
|
---|
59 | };
|
---|
60 |
|
---|
61 | /** Avoid repeated computation of log of 2 PI in logGamma */
|
---|
62 | private static final double HALF_LOG_2_PI = 0.5 * FastMath.log(2.0 * FastMath.PI);
|
---|
63 |
|
---|
64 | // limits for switching algorithm in digamma
|
---|
65 | /** C limit. */
|
---|
66 | private static final double C_LIMIT = 49;
|
---|
67 |
|
---|
68 | /** S limit. */
|
---|
69 | private static final double S_LIMIT = 1e-5;
|
---|
70 |
|
---|
71 | /**
|
---|
72 | * Default constructor. Prohibit instantiation.
|
---|
73 | */
|
---|
74 | private Gamma() {
|
---|
75 | super();
|
---|
76 | }
|
---|
77 |
|
---|
78 | /**
|
---|
79 | * Returns the natural logarithm of the gamma function Γ(x).
|
---|
80 | *
|
---|
81 | * The implementation of this method is based on:
|
---|
82 | * <ul>
|
---|
83 | * <li><a href="http://mathworld.wolfram.com/GammaFunction.html">
|
---|
84 | * Gamma Function</a>, equation (28).</li>
|
---|
85 | * <li><a href="http://mathworld.wolfram.com/LanczosApproximation.html">
|
---|
86 | * Lanczos Approximation</a>, equations (1) through (5).</li>
|
---|
87 | * <li><a href="http://my.fit.edu/~gabdo/gamma.txt">Paul Godfrey, A note on
|
---|
88 | * the computation of the convergent Lanczos complex Gamma approximation
|
---|
89 | * </a></li>
|
---|
90 | * </ul>
|
---|
91 | *
|
---|
92 | * @param x the value.
|
---|
93 | * @return log(Γ(x))
|
---|
94 | */
|
---|
95 | public static double logGamma(double x) {
|
---|
96 | double ret;
|
---|
97 |
|
---|
98 | if (Double.isNaN(x) || (x <= 0.0)) {
|
---|
99 | ret = Double.NaN;
|
---|
100 | } else {
|
---|
101 | double g = 607.0 / 128.0;
|
---|
102 |
|
---|
103 | double sum = 0.0;
|
---|
104 | for (int i = LANCZOS.length - 1; i > 0; --i) {
|
---|
105 | sum = sum + (LANCZOS[i] / (x + i));
|
---|
106 | }
|
---|
107 | sum = sum + LANCZOS[0];
|
---|
108 |
|
---|
109 | double tmp = x + g + .5;
|
---|
110 | ret = ((x + .5) * FastMath.log(tmp)) - tmp +
|
---|
111 | HALF_LOG_2_PI + FastMath.log(sum / x);
|
---|
112 | }
|
---|
113 |
|
---|
114 | return ret;
|
---|
115 | }
|
---|
116 |
|
---|
117 | /**
|
---|
118 | * Returns the regularized gamma function P(a, x).
|
---|
119 | *
|
---|
120 | * @param a the a parameter.
|
---|
121 | * @param x the value.
|
---|
122 | * @return the regularized gamma function P(a, x)
|
---|
123 | * @throws MathException if the algorithm fails to converge.
|
---|
124 | */
|
---|
125 | public static double regularizedGammaP(double a, double x)
|
---|
126 | throws MathException
|
---|
127 | {
|
---|
128 | return regularizedGammaP(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
|
---|
129 | }
|
---|
130 |
|
---|
131 |
|
---|
132 | /**
|
---|
133 | * Returns the regularized gamma function P(a, x).
|
---|
134 | *
|
---|
135 | * The implementation of this method is based on:
|
---|
136 | * <ul>
|
---|
137 | * <li>
|
---|
138 | * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
|
---|
139 | * Regularized Gamma Function</a>, equation (1).</li>
|
---|
140 | * <li>
|
---|
141 | * <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html">
|
---|
142 | * Incomplete Gamma Function</a>, equation (4).</li>
|
---|
143 | * <li>
|
---|
144 | * <a href="http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html">
|
---|
145 | * Confluent Hypergeometric Function of the First Kind</a>, equation (1).
|
---|
146 | * </li>
|
---|
147 | * </ul>
|
---|
148 | *
|
---|
149 | * @param a the a parameter.
|
---|
150 | * @param x the value.
|
---|
151 | * @param epsilon When the absolute value of the nth item in the
|
---|
152 | * series is less than epsilon the approximation ceases
|
---|
153 | * to calculate further elements in the series.
|
---|
154 | * @param maxIterations Maximum number of "iterations" to complete.
|
---|
155 | * @return the regularized gamma function P(a, x)
|
---|
156 | * @throws MathException if the algorithm fails to converge.
|
---|
157 | */
|
---|
158 | public static double regularizedGammaP(double a,
|
---|
159 | double x,
|
---|
160 | double epsilon,
|
---|
161 | int maxIterations)
|
---|
162 | throws MathException
|
---|
163 | {
|
---|
164 | double ret;
|
---|
165 |
|
---|
166 | if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
|
---|
167 | ret = Double.NaN;
|
---|
168 | } else if (x == 0.0) {
|
---|
169 | ret = 0.0;
|
---|
170 | } else if (x >= a + 1) {
|
---|
171 | // use regularizedGammaQ because it should converge faster in this
|
---|
172 | // case.
|
---|
173 | ret = 1.0 - regularizedGammaQ(a, x, epsilon, maxIterations);
|
---|
174 | } else {
|
---|
175 | // calculate series
|
---|
176 | double n = 0.0; // current element index
|
---|
177 | double an = 1.0 / a; // n-th element in the series
|
---|
178 | double sum = an; // partial sum
|
---|
179 | while (FastMath.abs(an/sum) > epsilon && n < maxIterations && sum < Double.POSITIVE_INFINITY) {
|
---|
180 | // compute next element in the series
|
---|
181 | n = n + 1.0;
|
---|
182 | an = an * (x / (a + n));
|
---|
183 |
|
---|
184 | // update partial sum
|
---|
185 | sum = sum + an;
|
---|
186 | }
|
---|
187 | if (n >= maxIterations) {
|
---|
188 | throw new MaxIterationsExceededException(maxIterations);
|
---|
189 | } else if (Double.isInfinite(sum)) {
|
---|
190 | ret = 1.0;
|
---|
191 | } else {
|
---|
192 | ret = FastMath.exp(-x + (a * FastMath.log(x)) - logGamma(a)) * sum;
|
---|
193 | }
|
---|
194 | }
|
---|
195 |
|
---|
196 | return ret;
|
---|
197 | }
|
---|
198 |
|
---|
199 | /**
|
---|
200 | * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
|
---|
201 | *
|
---|
202 | * @param a the a parameter.
|
---|
203 | * @param x the value.
|
---|
204 | * @return the regularized gamma function Q(a, x)
|
---|
205 | * @throws MathException if the algorithm fails to converge.
|
---|
206 | */
|
---|
207 | public static double regularizedGammaQ(double a, double x)
|
---|
208 | throws MathException
|
---|
209 | {
|
---|
210 | return regularizedGammaQ(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
|
---|
211 | }
|
---|
212 |
|
---|
213 | /**
|
---|
214 | * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
|
---|
215 | *
|
---|
216 | * The implementation of this method is based on:
|
---|
217 | * <ul>
|
---|
218 | * <li>
|
---|
219 | * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
|
---|
220 | * Regularized Gamma Function</a>, equation (1).</li>
|
---|
221 | * <li>
|
---|
222 | * <a href="http://functions.wolfram.com/GammaBetaErf/GammaRegularized/10/0003/">
|
---|
223 | * Regularized incomplete gamma function: Continued fraction representations (formula 06.08.10.0003)</a></li>
|
---|
224 | * </ul>
|
---|
225 | *
|
---|
226 | * @param a the a parameter.
|
---|
227 | * @param x the value.
|
---|
228 | * @param epsilon When the absolute value of the nth item in the
|
---|
229 | * series is less than epsilon the approximation ceases
|
---|
230 | * to calculate further elements in the series.
|
---|
231 | * @param maxIterations Maximum number of "iterations" to complete.
|
---|
232 | * @return the regularized gamma function P(a, x)
|
---|
233 | * @throws MathException if the algorithm fails to converge.
|
---|
234 | */
|
---|
235 | public static double regularizedGammaQ(final double a,
|
---|
236 | double x,
|
---|
237 | double epsilon,
|
---|
238 | int maxIterations)
|
---|
239 | throws MathException
|
---|
240 | {
|
---|
241 | double ret;
|
---|
242 |
|
---|
243 | if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
|
---|
244 | ret = Double.NaN;
|
---|
245 | } else if (x == 0.0) {
|
---|
246 | ret = 1.0;
|
---|
247 | } else if (x < a + 1.0) {
|
---|
248 | // use regularizedGammaP because it should converge faster in this
|
---|
249 | // case.
|
---|
250 | ret = 1.0 - regularizedGammaP(a, x, epsilon, maxIterations);
|
---|
251 | } else {
|
---|
252 | // create continued fraction
|
---|
253 | ContinuedFraction cf = new ContinuedFraction() {
|
---|
254 |
|
---|
255 | @Override
|
---|
256 | protected double getA(int n, double x) {
|
---|
257 | return ((2.0 * n) + 1.0) - a + x;
|
---|
258 | }
|
---|
259 |
|
---|
260 | @Override
|
---|
261 | protected double getB(int n, double x) {
|
---|
262 | return n * (a - n);
|
---|
263 | }
|
---|
264 | };
|
---|
265 |
|
---|
266 | ret = 1.0 / cf.evaluate(x, epsilon, maxIterations);
|
---|
267 | ret = FastMath.exp(-x + (a * FastMath.log(x)) - logGamma(a)) * ret;
|
---|
268 | }
|
---|
269 |
|
---|
270 | return ret;
|
---|
271 | }
|
---|
272 |
|
---|
273 |
|
---|
274 | /**
|
---|
275 | * <p>Computes the digamma function of x.</p>
|
---|
276 | *
|
---|
277 | * <p>This is an independently written implementation of the algorithm described in
|
---|
278 | * Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976.</p>
|
---|
279 | *
|
---|
280 | * <p>Some of the constants have been changed to increase accuracy at the moderate expense
|
---|
281 | * of run-time. The result should be accurate to within 10^-8 absolute tolerance for
|
---|
282 | * x >= 10^-5 and within 10^-8 relative tolerance for x > 0.</p>
|
---|
283 | *
|
---|
284 | * <p>Performance for large negative values of x will be quite expensive (proportional to
|
---|
285 | * |x|). Accuracy for negative values of x should be about 10^-8 absolute for results
|
---|
286 | * less than 10^5 and 10^-8 relative for results larger than that.</p>
|
---|
287 | *
|
---|
288 | * @param x the argument
|
---|
289 | * @return digamma(x) to within 10-8 relative or absolute error whichever is smaller
|
---|
290 | * @see <a href="http://en.wikipedia.org/wiki/Digamma_function"> Digamma at wikipedia </a>
|
---|
291 | * @see <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf"> Bernardo's original article </a>
|
---|
292 | * @since 2.0
|
---|
293 | */
|
---|
294 | public static double digamma(double x) {
|
---|
295 | if (x > 0 && x <= S_LIMIT) {
|
---|
296 | // use method 5 from Bernardo AS103
|
---|
297 | // accurate to O(x)
|
---|
298 | return -GAMMA - 1 / x;
|
---|
299 | }
|
---|
300 |
|
---|
301 | if (x >= C_LIMIT) {
|
---|
302 | // use method 4 (accurate to O(1/x^8)
|
---|
303 | double inv = 1 / (x * x);
|
---|
304 | // 1 1 1 1
|
---|
305 | // log(x) - --- - ------ + ------- - -------
|
---|
306 | // 2 x 12 x^2 120 x^4 252 x^6
|
---|
307 | return FastMath.log(x) - 0.5 / x - inv * ((1.0 / 12) + inv * (1.0 / 120 - inv / 252));
|
---|
308 | }
|
---|
309 |
|
---|
310 | return digamma(x + 1) - 1 / x;
|
---|
311 | }
|
---|
312 |
|
---|
313 | /**
|
---|
314 | * <p>Computes the trigamma function of x. This function is derived by taking the derivative of
|
---|
315 | * the implementation of digamma.</p>
|
---|
316 | *
|
---|
317 | * @param x the argument
|
---|
318 | * @return trigamma(x) to within 10-8 relative or absolute error whichever is smaller
|
---|
319 | * @see <a href="http://en.wikipedia.org/wiki/Trigamma_function"> Trigamma at wikipedia </a>
|
---|
320 | * @see Gamma#digamma(double)
|
---|
321 | * @since 2.0
|
---|
322 | */
|
---|
323 | public static double trigamma(double x) {
|
---|
324 | if (x > 0 && x <= S_LIMIT) {
|
---|
325 | return 1 / (x * x);
|
---|
326 | }
|
---|
327 |
|
---|
328 | if (x >= C_LIMIT) {
|
---|
329 | double inv = 1 / (x * x);
|
---|
330 | // 1 1 1 1 1
|
---|
331 | // - + ---- + ---- - ----- + -----
|
---|
332 | // x 2 3 5 7
|
---|
333 | // 2 x 6 x 30 x 42 x
|
---|
334 | return 1 / x + inv / 2 + inv / x * (1.0 / 6 - inv * (1.0 / 30 + inv / 42));
|
---|
335 | }
|
---|
336 |
|
---|
337 | return trigamma(x + 1) + 1 / (x * x);
|
---|
338 | }
|
---|
339 | }
|
---|