1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.special;
|
---|
18 |
|
---|
19 | import agents.org.apache.commons.math.MathException;
|
---|
20 | import agents.org.apache.commons.math.util.FastMath;
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * This is a utility class that provides computation methods related to the
|
---|
24 | * error functions.
|
---|
25 | *
|
---|
26 | * @version $Revision: 1054186 $ $Date: 2011-01-01 03:28:46 +0100 (sam. 01 janv. 2011) $
|
---|
27 | */
|
---|
28 | public class Erf {
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * Default constructor. Prohibit instantiation.
|
---|
32 | */
|
---|
33 | private Erf() {
|
---|
34 | super();
|
---|
35 | }
|
---|
36 |
|
---|
37 | /**
|
---|
38 | * <p>Returns the error function</p>
|
---|
39 | * <p>erf(x) = 2/√π <sub>0</sub>∫<sup>x</sup> e<sup>-t<sup>2</sup></sup>dt </p>
|
---|
40 | *
|
---|
41 | * <p>This implementation computes erf(x) using the
|
---|
42 | * {@link Gamma#regularizedGammaP(double, double, double, int) regularized gamma function},
|
---|
43 | * following <a href="http://mathworld.wolfram.com/Erf.html"> Erf</a>, equation (3)</p>
|
---|
44 | *
|
---|
45 | * <p>The value returned is always between -1 and 1 (inclusive). If {@code abs(x) > 40}, then
|
---|
46 | * {@code erf(x)} is indistinguishable from either 1 or -1 as a double, so the appropriate extreme
|
---|
47 | * value is returned.</p>
|
---|
48 | *
|
---|
49 | * @param x the value.
|
---|
50 | * @return the error function erf(x)
|
---|
51 | * @throws MathException if the algorithm fails to converge.
|
---|
52 | * @see Gamma#regularizedGammaP(double, double, double, int)
|
---|
53 | */
|
---|
54 | public static double erf(double x) throws MathException {
|
---|
55 | if (FastMath.abs(x) > 40) {
|
---|
56 | return x > 0 ? 1 : -1;
|
---|
57 | }
|
---|
58 | double ret = Gamma.regularizedGammaP(0.5, x * x, 1.0e-15, 10000);
|
---|
59 | if (x < 0) {
|
---|
60 | ret = -ret;
|
---|
61 | }
|
---|
62 | return ret;
|
---|
63 | }
|
---|
64 |
|
---|
65 | /**
|
---|
66 | * <p>Returns the complementary error function</p>
|
---|
67 | * <p>erfc(x) = 2/√π <sub>x</sub>∫<sup>∞</sup> e<sup>-t<sup>2</sup></sup>dt <br/>
|
---|
68 | * = 1 - {@link #erf(double) erf(x)} </p>
|
---|
69 | *
|
---|
70 | * <p>This implementation computes erfc(x) using the
|
---|
71 | * {@link Gamma#regularizedGammaQ(double, double, double, int) regularized gamma function},
|
---|
72 | * following <a href="http://mathworld.wolfram.com/Erf.html"> Erf</a>, equation (3).</p>
|
---|
73 | *
|
---|
74 | * <p>The value returned is always between 0 and 2 (inclusive). If {@code abs(x) > 40}, then
|
---|
75 | * {@code erf(x)} is indistinguishable from either 0 or 2 as a double, so the appropriate extreme
|
---|
76 | * value is returned.</p>
|
---|
77 | *
|
---|
78 | * @param x the value
|
---|
79 | * @return the complementary error function erfc(x)
|
---|
80 | * @throws MathException if the algorithm fails to converge
|
---|
81 | * @see Gamma#regularizedGammaQ(double, double, double, int)
|
---|
82 | * @since 2.2
|
---|
83 | */
|
---|
84 | public static double erfc(double x) throws MathException {
|
---|
85 | if (FastMath.abs(x) > 40) {
|
---|
86 | return x > 0 ? 0 : 2;
|
---|
87 | }
|
---|
88 | final double ret = Gamma.regularizedGammaQ(0.5, x * x, 1.0e-15, 10000);
|
---|
89 | return x < 0 ? 2 - ret : ret;
|
---|
90 | }
|
---|
91 | }
|
---|
92 |
|
---|