1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.special;
|
---|
18 |
|
---|
19 | import agents.org.apache.commons.math.MathException;
|
---|
20 | import agents.org.apache.commons.math.util.ContinuedFraction;
|
---|
21 | import agents.org.apache.commons.math.util.FastMath;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * This is a utility class that provides computation methods related to the
|
---|
25 | * Beta family of functions.
|
---|
26 | *
|
---|
27 | * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
|
---|
28 | */
|
---|
29 | public class Beta {
|
---|
30 |
|
---|
31 | /** Maximum allowed numerical error. */
|
---|
32 | private static final double DEFAULT_EPSILON = 10e-15;
|
---|
33 |
|
---|
34 | /**
|
---|
35 | * Default constructor. Prohibit instantiation.
|
---|
36 | */
|
---|
37 | private Beta() {
|
---|
38 | super();
|
---|
39 | }
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Returns the
|
---|
43 | * <a href="http://mathworld.wolfram.com/RegularizedBetaFunction.html">
|
---|
44 | * regularized beta function</a> I(x, a, b).
|
---|
45 | *
|
---|
46 | * @param x the value.
|
---|
47 | * @param a the a parameter.
|
---|
48 | * @param b the b parameter.
|
---|
49 | * @return the regularized beta function I(x, a, b)
|
---|
50 | * @throws MathException if the algorithm fails to converge.
|
---|
51 | */
|
---|
52 | public static double regularizedBeta(double x, double a, double b)
|
---|
53 | throws MathException
|
---|
54 | {
|
---|
55 | return regularizedBeta(x, a, b, DEFAULT_EPSILON, Integer.MAX_VALUE);
|
---|
56 | }
|
---|
57 |
|
---|
58 | /**
|
---|
59 | * Returns the
|
---|
60 | * <a href="http://mathworld.wolfram.com/RegularizedBetaFunction.html">
|
---|
61 | * regularized beta function</a> I(x, a, b).
|
---|
62 | *
|
---|
63 | * @param x the value.
|
---|
64 | * @param a the a parameter.
|
---|
65 | * @param b the b parameter.
|
---|
66 | * @param epsilon When the absolute value of the nth item in the
|
---|
67 | * series is less than epsilon the approximation ceases
|
---|
68 | * to calculate further elements in the series.
|
---|
69 | * @return the regularized beta function I(x, a, b)
|
---|
70 | * @throws MathException if the algorithm fails to converge.
|
---|
71 | */
|
---|
72 | public static double regularizedBeta(double x, double a, double b,
|
---|
73 | double epsilon) throws MathException
|
---|
74 | {
|
---|
75 | return regularizedBeta(x, a, b, epsilon, Integer.MAX_VALUE);
|
---|
76 | }
|
---|
77 |
|
---|
78 | /**
|
---|
79 | * Returns the regularized beta function I(x, a, b).
|
---|
80 | *
|
---|
81 | * @param x the value.
|
---|
82 | * @param a the a parameter.
|
---|
83 | * @param b the b parameter.
|
---|
84 | * @param maxIterations Maximum number of "iterations" to complete.
|
---|
85 | * @return the regularized beta function I(x, a, b)
|
---|
86 | * @throws MathException if the algorithm fails to converge.
|
---|
87 | */
|
---|
88 | public static double regularizedBeta(double x, double a, double b,
|
---|
89 | int maxIterations) throws MathException
|
---|
90 | {
|
---|
91 | return regularizedBeta(x, a, b, DEFAULT_EPSILON, maxIterations);
|
---|
92 | }
|
---|
93 |
|
---|
94 | /**
|
---|
95 | * Returns the regularized beta function I(x, a, b).
|
---|
96 | *
|
---|
97 | * The implementation of this method is based on:
|
---|
98 | * <ul>
|
---|
99 | * <li>
|
---|
100 | * <a href="http://mathworld.wolfram.com/RegularizedBetaFunction.html">
|
---|
101 | * Regularized Beta Function</a>.</li>
|
---|
102 | * <li>
|
---|
103 | * <a href="http://functions.wolfram.com/06.21.10.0001.01">
|
---|
104 | * Regularized Beta Function</a>.</li>
|
---|
105 | * </ul>
|
---|
106 | *
|
---|
107 | * @param x the value.
|
---|
108 | * @param a the a parameter.
|
---|
109 | * @param b the b parameter.
|
---|
110 | * @param epsilon When the absolute value of the nth item in the
|
---|
111 | * series is less than epsilon the approximation ceases
|
---|
112 | * to calculate further elements in the series.
|
---|
113 | * @param maxIterations Maximum number of "iterations" to complete.
|
---|
114 | * @return the regularized beta function I(x, a, b)
|
---|
115 | * @throws MathException if the algorithm fails to converge.
|
---|
116 | */
|
---|
117 | public static double regularizedBeta(double x, final double a,
|
---|
118 | final double b, double epsilon, int maxIterations) throws MathException
|
---|
119 | {
|
---|
120 | double ret;
|
---|
121 |
|
---|
122 | if (Double.isNaN(x) || Double.isNaN(a) || Double.isNaN(b) || (x < 0) ||
|
---|
123 | (x > 1) || (a <= 0.0) || (b <= 0.0))
|
---|
124 | {
|
---|
125 | ret = Double.NaN;
|
---|
126 | } else if (x > (a + 1.0) / (a + b + 2.0)) {
|
---|
127 | ret = 1.0 - regularizedBeta(1.0 - x, b, a, epsilon, maxIterations);
|
---|
128 | } else {
|
---|
129 | ContinuedFraction fraction = new ContinuedFraction() {
|
---|
130 |
|
---|
131 | @Override
|
---|
132 | protected double getB(int n, double x) {
|
---|
133 | double ret;
|
---|
134 | double m;
|
---|
135 | if (n % 2 == 0) { // even
|
---|
136 | m = n / 2.0;
|
---|
137 | ret = (m * (b - m) * x) /
|
---|
138 | ((a + (2 * m) - 1) * (a + (2 * m)));
|
---|
139 | } else {
|
---|
140 | m = (n - 1.0) / 2.0;
|
---|
141 | ret = -((a + m) * (a + b + m) * x) /
|
---|
142 | ((a + (2 * m)) * (a + (2 * m) + 1.0));
|
---|
143 | }
|
---|
144 | return ret;
|
---|
145 | }
|
---|
146 |
|
---|
147 | @Override
|
---|
148 | protected double getA(int n, double x) {
|
---|
149 | return 1.0;
|
---|
150 | }
|
---|
151 | };
|
---|
152 | ret = FastMath.exp((a * FastMath.log(x)) + (b * FastMath.log(1.0 - x)) -
|
---|
153 | FastMath.log(a) - logBeta(a, b, epsilon, maxIterations)) *
|
---|
154 | 1.0 / fraction.evaluate(x, epsilon, maxIterations);
|
---|
155 | }
|
---|
156 |
|
---|
157 | return ret;
|
---|
158 | }
|
---|
159 |
|
---|
160 | /**
|
---|
161 | * Returns the natural logarithm of the beta function B(a, b).
|
---|
162 | *
|
---|
163 | * @param a the a parameter.
|
---|
164 | * @param b the b parameter.
|
---|
165 | * @return log(B(a, b))
|
---|
166 | */
|
---|
167 | public static double logBeta(double a, double b) {
|
---|
168 | return logBeta(a, b, DEFAULT_EPSILON, Integer.MAX_VALUE);
|
---|
169 | }
|
---|
170 |
|
---|
171 | /**
|
---|
172 | * Returns the natural logarithm of the beta function B(a, b).
|
---|
173 | *
|
---|
174 | * The implementation of this method is based on:
|
---|
175 | * <ul>
|
---|
176 | * <li><a href="http://mathworld.wolfram.com/BetaFunction.html">
|
---|
177 | * Beta Function</a>, equation (1).</li>
|
---|
178 | * </ul>
|
---|
179 | *
|
---|
180 | * @param a the a parameter.
|
---|
181 | * @param b the b parameter.
|
---|
182 | * @param epsilon When the absolute value of the nth item in the
|
---|
183 | * series is less than epsilon the approximation ceases
|
---|
184 | * to calculate further elements in the series.
|
---|
185 | * @param maxIterations Maximum number of "iterations" to complete.
|
---|
186 | * @return log(B(a, b))
|
---|
187 | */
|
---|
188 | public static double logBeta(double a, double b, double epsilon,
|
---|
189 | int maxIterations) {
|
---|
190 |
|
---|
191 | double ret;
|
---|
192 |
|
---|
193 | if (Double.isNaN(a) || Double.isNaN(b) || (a <= 0.0) || (b <= 0.0)) {
|
---|
194 | ret = Double.NaN;
|
---|
195 | } else {
|
---|
196 | ret = Gamma.logGamma(a) + Gamma.logGamma(b) -
|
---|
197 | Gamma.logGamma(a + b);
|
---|
198 | }
|
---|
199 |
|
---|
200 | return ret;
|
---|
201 | }
|
---|
202 | }
|
---|