1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.random;
|
---|
19 |
|
---|
20 | import java.io.Serializable;
|
---|
21 | import java.security.MessageDigest;
|
---|
22 | import java.security.NoSuchAlgorithmException;
|
---|
23 | import java.security.NoSuchProviderException;
|
---|
24 | import java.security.SecureRandom;
|
---|
25 | import java.util.Collection;
|
---|
26 |
|
---|
27 | import agents.org.apache.commons.math.MathException;
|
---|
28 | import agents.org.apache.commons.math.distribution.BetaDistributionImpl;
|
---|
29 | import agents.org.apache.commons.math.distribution.BinomialDistributionImpl;
|
---|
30 | import agents.org.apache.commons.math.distribution.CauchyDistributionImpl;
|
---|
31 | import agents.org.apache.commons.math.distribution.ChiSquaredDistributionImpl;
|
---|
32 | import agents.org.apache.commons.math.distribution.ContinuousDistribution;
|
---|
33 | import agents.org.apache.commons.math.distribution.FDistributionImpl;
|
---|
34 | import agents.org.apache.commons.math.distribution.GammaDistributionImpl;
|
---|
35 | import agents.org.apache.commons.math.distribution.HypergeometricDistributionImpl;
|
---|
36 | import agents.org.apache.commons.math.distribution.IntegerDistribution;
|
---|
37 | import agents.org.apache.commons.math.distribution.PascalDistributionImpl;
|
---|
38 | import agents.org.apache.commons.math.distribution.TDistributionImpl;
|
---|
39 | import agents.org.apache.commons.math.distribution.WeibullDistributionImpl;
|
---|
40 | import agents.org.apache.commons.math.distribution.ZipfDistributionImpl;
|
---|
41 | import agents.org.apache.commons.math.exception.MathInternalError;
|
---|
42 | import agents.org.apache.commons.math.exception.NotStrictlyPositiveException;
|
---|
43 | import agents.org.apache.commons.math.exception.NumberIsTooLargeException;
|
---|
44 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
45 | import agents.org.apache.commons.math.util.FastMath;
|
---|
46 | import agents.org.apache.commons.math.util.MathUtils;
|
---|
47 |
|
---|
48 | /**
|
---|
49 | * Implements the {@link RandomData} interface using a {@link RandomGenerator}
|
---|
50 | * instance to generate non-secure data and a {@link java.security.SecureRandom}
|
---|
51 | * instance to provide data for the <code>nextSecureXxx</code> methods. If no
|
---|
52 | * <code>RandomGenerator</code> is provided in the constructor, the default is
|
---|
53 | * to use a generator based on {@link java.util.Random}. To plug in a different
|
---|
54 | * implementation, either implement <code>RandomGenerator</code> directly or
|
---|
55 | * extend {@link AbstractRandomGenerator}.
|
---|
56 | * <p>
|
---|
57 | * Supports reseeding the underlying pseudo-random number generator (PRNG). The
|
---|
58 | * <code>SecurityProvider</code> and <code>Algorithm</code> used by the
|
---|
59 | * <code>SecureRandom</code> instance can also be reset.
|
---|
60 | * </p>
|
---|
61 | * <p>
|
---|
62 | * For details on the default PRNGs, see {@link java.util.Random} and
|
---|
63 | * {@link java.security.SecureRandom}.
|
---|
64 | * </p>
|
---|
65 | * <p>
|
---|
66 | * <strong>Usage Notes</strong>:
|
---|
67 | * <ul>
|
---|
68 | * <li>
|
---|
69 | * Instance variables are used to maintain <code>RandomGenerator</code> and
|
---|
70 | * <code>SecureRandom</code> instances used in data generation. Therefore, to
|
---|
71 | * generate a random sequence of values or strings, you should use just
|
---|
72 | * <strong>one</strong> <code>RandomDataImpl</code> instance repeatedly.</li>
|
---|
73 | * <li>
|
---|
74 | * The "secure" methods are *much* slower. These should be used only when a
|
---|
75 | * cryptographically secure random sequence is required. A secure random
|
---|
76 | * sequence is a sequence of pseudo-random values which, in addition to being
|
---|
77 | * well-dispersed (so no subsequence of values is an any more likely than other
|
---|
78 | * subsequence of the the same length), also has the additional property that
|
---|
79 | * knowledge of values generated up to any point in the sequence does not make
|
---|
80 | * it any easier to predict subsequent values.</li>
|
---|
81 | * <li>
|
---|
82 | * When a new <code>RandomDataImpl</code> is created, the underlying random
|
---|
83 | * number generators are <strong>not</strong> initialized. If you do not
|
---|
84 | * explicitly seed the default non-secure generator, it is seeded with the
|
---|
85 | * current time in milliseconds on first use. The same holds for the secure
|
---|
86 | * generator. If you provide a <code>RandomGenerator</code> to the constructor,
|
---|
87 | * however, this generator is not reseeded by the constructor nor is it reseeded
|
---|
88 | * on first use.</li>
|
---|
89 | * <li>
|
---|
90 | * The <code>reSeed</code> and <code>reSeedSecure</code> methods delegate to the
|
---|
91 | * corresponding methods on the underlying <code>RandomGenerator</code> and
|
---|
92 | * <code>SecureRandom</code> instances. Therefore, <code>reSeed(long)</code>
|
---|
93 | * fully resets the initial state of the non-secure random number generator (so
|
---|
94 | * that reseeding with a specific value always results in the same subsequent
|
---|
95 | * random sequence); whereas reSeedSecure(long) does <strong>not</strong>
|
---|
96 | * reinitialize the secure random number generator (so secure sequences started
|
---|
97 | * with calls to reseedSecure(long) won't be identical).</li>
|
---|
98 | * <li>
|
---|
99 | * This implementation is not synchronized.
|
---|
100 | * </ul>
|
---|
101 | * </p>
|
---|
102 | *
|
---|
103 | * @version $Revision: 1061496 $ $Date: 2011-01-20 21:32:16 +0100 (jeu. 20 janv. 2011) $
|
---|
104 | */
|
---|
105 | public class RandomDataImpl implements RandomData, Serializable {
|
---|
106 |
|
---|
107 | /** Serializable version identifier */
|
---|
108 | private static final long serialVersionUID = -626730818244969716L;
|
---|
109 |
|
---|
110 | /** underlying random number generator */
|
---|
111 | private RandomGenerator rand = null;
|
---|
112 |
|
---|
113 | /** underlying secure random number generator */
|
---|
114 | private SecureRandom secRand = null;
|
---|
115 |
|
---|
116 | /**
|
---|
117 | * Construct a RandomDataImpl.
|
---|
118 | */
|
---|
119 | public RandomDataImpl() {
|
---|
120 | }
|
---|
121 |
|
---|
122 | /**
|
---|
123 | * Construct a RandomDataImpl using the supplied {@link RandomGenerator} as
|
---|
124 | * the source of (non-secure) random data.
|
---|
125 | *
|
---|
126 | * @param rand
|
---|
127 | * the source of (non-secure) random data
|
---|
128 | * @since 1.1
|
---|
129 | */
|
---|
130 | public RandomDataImpl(RandomGenerator rand) {
|
---|
131 | super();
|
---|
132 | this.rand = rand;
|
---|
133 | }
|
---|
134 |
|
---|
135 | /**
|
---|
136 | * {@inheritDoc}
|
---|
137 | * <p>
|
---|
138 | * <strong>Algorithm Description:</strong> hex strings are generated using a
|
---|
139 | * 2-step process.
|
---|
140 | * <ol>
|
---|
141 | * <li>
|
---|
142 | * len/2+1 binary bytes are generated using the underlying Random</li>
|
---|
143 | * <li>
|
---|
144 | * Each binary byte is translated into 2 hex digits</li>
|
---|
145 | * </ol>
|
---|
146 | * </p>
|
---|
147 | *
|
---|
148 | * @param len
|
---|
149 | * the desired string length.
|
---|
150 | * @return the random string.
|
---|
151 | * @throws NotStrictlyPositiveException if {@code len <= 0}.
|
---|
152 | */
|
---|
153 | public String nextHexString(int len) {
|
---|
154 | if (len <= 0) {
|
---|
155 | throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
|
---|
156 | }
|
---|
157 |
|
---|
158 | // Get a random number generator
|
---|
159 | RandomGenerator ran = getRan();
|
---|
160 |
|
---|
161 | // Initialize output buffer
|
---|
162 | StringBuilder outBuffer = new StringBuilder();
|
---|
163 |
|
---|
164 | // Get int(len/2)+1 random bytes
|
---|
165 | byte[] randomBytes = new byte[(len / 2) + 1];
|
---|
166 | ran.nextBytes(randomBytes);
|
---|
167 |
|
---|
168 | // Convert each byte to 2 hex digits
|
---|
169 | for (int i = 0; i < randomBytes.length; i++) {
|
---|
170 | Integer c = Integer.valueOf(randomBytes[i]);
|
---|
171 |
|
---|
172 | /*
|
---|
173 | * Add 128 to byte value to make interval 0-255 before doing hex
|
---|
174 | * conversion. This guarantees <= 2 hex digits from toHexString()
|
---|
175 | * toHexString would otherwise add 2^32 to negative arguments.
|
---|
176 | */
|
---|
177 | String hex = Integer.toHexString(c.intValue() + 128);
|
---|
178 |
|
---|
179 | // Make sure we add 2 hex digits for each byte
|
---|
180 | if (hex.length() == 1) {
|
---|
181 | hex = "0" + hex;
|
---|
182 | }
|
---|
183 | outBuffer.append(hex);
|
---|
184 | }
|
---|
185 | return outBuffer.toString().substring(0, len);
|
---|
186 | }
|
---|
187 |
|
---|
188 | /**
|
---|
189 | * Generate a random int value uniformly distributed between
|
---|
190 | * <code>lower</code> and <code>upper</code>, inclusive.
|
---|
191 | *
|
---|
192 | * @param lower
|
---|
193 | * the lower bound.
|
---|
194 | * @param upper
|
---|
195 | * the upper bound.
|
---|
196 | * @return the random integer.
|
---|
197 | * @throws NumberIsTooLargeException if {@code lower >= upper}.
|
---|
198 | */
|
---|
199 | public int nextInt(int lower, int upper) {
|
---|
200 | if (lower >= upper) {
|
---|
201 | throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
---|
202 | lower, upper, false);
|
---|
203 | }
|
---|
204 | double r = getRan().nextDouble();
|
---|
205 | return (int) ((r * upper) + ((1.0 - r) * lower) + r);
|
---|
206 | }
|
---|
207 |
|
---|
208 | /**
|
---|
209 | * Generate a random long value uniformly distributed between
|
---|
210 | * <code>lower</code> and <code>upper</code>, inclusive.
|
---|
211 | *
|
---|
212 | * @param lower
|
---|
213 | * the lower bound.
|
---|
214 | * @param upper
|
---|
215 | * the upper bound.
|
---|
216 | * @return the random integer.
|
---|
217 | * @throws NumberIsTooLargeException if {@code lower >= upper}.
|
---|
218 | */
|
---|
219 | public long nextLong(long lower, long upper) {
|
---|
220 | if (lower >= upper) {
|
---|
221 | throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
---|
222 | lower, upper, false);
|
---|
223 | }
|
---|
224 | double r = getRan().nextDouble();
|
---|
225 | return (long) ((r * upper) + ((1.0 - r) * lower) + r);
|
---|
226 | }
|
---|
227 |
|
---|
228 | /**
|
---|
229 | * {@inheritDoc}
|
---|
230 | * <p>
|
---|
231 | * <strong>Algorithm Description:</strong> hex strings are generated in
|
---|
232 | * 40-byte segments using a 3-step process.
|
---|
233 | * <ol>
|
---|
234 | * <li>
|
---|
235 | * 20 random bytes are generated using the underlying
|
---|
236 | * <code>SecureRandom</code>.</li>
|
---|
237 | * <li>
|
---|
238 | * SHA-1 hash is applied to yield a 20-byte binary digest.</li>
|
---|
239 | * <li>
|
---|
240 | * Each byte of the binary digest is converted to 2 hex digits.</li>
|
---|
241 | * </ol>
|
---|
242 | * </p>
|
---|
243 | *
|
---|
244 | * @param len
|
---|
245 | * the length of the generated string
|
---|
246 | * @return the random string
|
---|
247 | * @throws NotStrictlyPositiveException if {@code len <= 0}.
|
---|
248 | */
|
---|
249 | public String nextSecureHexString(int len) {
|
---|
250 | if (len <= 0) {
|
---|
251 | throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
|
---|
252 | }
|
---|
253 |
|
---|
254 | // Get SecureRandom and setup Digest provider
|
---|
255 | SecureRandom secRan = getSecRan();
|
---|
256 | MessageDigest alg = null;
|
---|
257 | try {
|
---|
258 | alg = MessageDigest.getInstance("SHA-1");
|
---|
259 | } catch (NoSuchAlgorithmException ex) {
|
---|
260 | // this should never happen
|
---|
261 | throw new MathInternalError(ex);
|
---|
262 | }
|
---|
263 | alg.reset();
|
---|
264 |
|
---|
265 | // Compute number of iterations required (40 bytes each)
|
---|
266 | int numIter = (len / 40) + 1;
|
---|
267 |
|
---|
268 | StringBuilder outBuffer = new StringBuilder();
|
---|
269 | for (int iter = 1; iter < numIter + 1; iter++) {
|
---|
270 | byte[] randomBytes = new byte[40];
|
---|
271 | secRan.nextBytes(randomBytes);
|
---|
272 | alg.update(randomBytes);
|
---|
273 |
|
---|
274 | // Compute hash -- will create 20-byte binary hash
|
---|
275 | byte hash[] = alg.digest();
|
---|
276 |
|
---|
277 | // Loop over the hash, converting each byte to 2 hex digits
|
---|
278 | for (int i = 0; i < hash.length; i++) {
|
---|
279 | Integer c = Integer.valueOf(hash[i]);
|
---|
280 |
|
---|
281 | /*
|
---|
282 | * Add 128 to byte value to make interval 0-255 This guarantees
|
---|
283 | * <= 2 hex digits from toHexString() toHexString would
|
---|
284 | * otherwise add 2^32 to negative arguments
|
---|
285 | */
|
---|
286 | String hex = Integer.toHexString(c.intValue() + 128);
|
---|
287 |
|
---|
288 | // Keep strings uniform length -- guarantees 40 bytes
|
---|
289 | if (hex.length() == 1) {
|
---|
290 | hex = "0" + hex;
|
---|
291 | }
|
---|
292 | outBuffer.append(hex);
|
---|
293 | }
|
---|
294 | }
|
---|
295 | return outBuffer.toString().substring(0, len);
|
---|
296 | }
|
---|
297 |
|
---|
298 | /**
|
---|
299 | * Generate a random int value uniformly distributed between
|
---|
300 | * <code>lower</code> and <code>upper</code>, inclusive. This algorithm uses
|
---|
301 | * a secure random number generator.
|
---|
302 | *
|
---|
303 | * @param lower
|
---|
304 | * the lower bound.
|
---|
305 | * @param upper
|
---|
306 | * the upper bound.
|
---|
307 | * @return the random integer.
|
---|
308 | * @throws NumberIsTooLargeException if {@code lower >= upper}.
|
---|
309 | */
|
---|
310 | public int nextSecureInt(int lower, int upper) {
|
---|
311 | if (lower >= upper) {
|
---|
312 | throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
---|
313 | lower, upper, false);
|
---|
314 | }
|
---|
315 | SecureRandom sec = getSecRan();
|
---|
316 | return lower + (int) (sec.nextDouble() * (upper - lower + 1));
|
---|
317 | }
|
---|
318 |
|
---|
319 | /**
|
---|
320 | * Generate a random long value uniformly distributed between
|
---|
321 | * <code>lower</code> and <code>upper</code>, inclusive. This algorithm uses
|
---|
322 | * a secure random number generator.
|
---|
323 | *
|
---|
324 | * @param lower
|
---|
325 | * the lower bound.
|
---|
326 | * @param upper
|
---|
327 | * the upper bound.
|
---|
328 | * @return the random integer.
|
---|
329 | * @throws NumberIsTooLargeException if {@code lower >= upper}.
|
---|
330 | */
|
---|
331 | public long nextSecureLong(long lower, long upper) {
|
---|
332 | if (lower >= upper) {
|
---|
333 | throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
---|
334 | lower, upper, false);
|
---|
335 | }
|
---|
336 | SecureRandom sec = getSecRan();
|
---|
337 | return lower + (long) (sec.nextDouble() * (upper - lower + 1));
|
---|
338 | }
|
---|
339 |
|
---|
340 | /**
|
---|
341 | * {@inheritDoc}
|
---|
342 | * <p>
|
---|
343 | * <strong>Algorithm Description</strong>:
|
---|
344 | * <ul><li> For small means, uses simulation of a Poisson process
|
---|
345 | * using Uniform deviates, as described
|
---|
346 | * <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here.</a>
|
---|
347 | * The Poisson process (and hence value returned) is bounded by 1000 * mean.</li>
|
---|
348 | *
|
---|
349 | * <li> For large means, uses the rejection algorithm described in <br/>
|
---|
350 | * Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
|
---|
351 | * <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p>
|
---|
352 | *
|
---|
353 | * @param mean mean of the Poisson distribution.
|
---|
354 | * @return the random Poisson value.
|
---|
355 | * @throws NotStrictlyPositiveException if {@code mean <= 0}.
|
---|
356 | */
|
---|
357 | public long nextPoisson(double mean) {
|
---|
358 | if (mean <= 0) {
|
---|
359 | throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
|
---|
360 | }
|
---|
361 |
|
---|
362 | final RandomGenerator generator = getRan();
|
---|
363 |
|
---|
364 | final double pivot = 40.0d;
|
---|
365 | if (mean < pivot) {
|
---|
366 | double p = FastMath.exp(-mean);
|
---|
367 | long n = 0;
|
---|
368 | double r = 1.0d;
|
---|
369 | double rnd = 1.0d;
|
---|
370 |
|
---|
371 | while (n < 1000 * mean) {
|
---|
372 | rnd = generator.nextDouble();
|
---|
373 | r = r * rnd;
|
---|
374 | if (r >= p) {
|
---|
375 | n++;
|
---|
376 | } else {
|
---|
377 | return n;
|
---|
378 | }
|
---|
379 | }
|
---|
380 | return n;
|
---|
381 | } else {
|
---|
382 | final double lambda = FastMath.floor(mean);
|
---|
383 | final double lambdaFractional = mean - lambda;
|
---|
384 | final double logLambda = FastMath.log(lambda);
|
---|
385 | final double logLambdaFactorial = MathUtils.factorialLog((int) lambda);
|
---|
386 | final long y2 = lambdaFractional < Double.MIN_VALUE ? 0 : nextPoisson(lambdaFractional);
|
---|
387 | final double delta = FastMath.sqrt(lambda * FastMath.log(32 * lambda / FastMath.PI + 1));
|
---|
388 | final double halfDelta = delta / 2;
|
---|
389 | final double twolpd = 2 * lambda + delta;
|
---|
390 | final double a1 = FastMath.sqrt(FastMath.PI * twolpd) * FastMath.exp(1 / 8 * lambda);
|
---|
391 | final double a2 = (twolpd / delta) * FastMath.exp(-delta * (1 + delta) / twolpd);
|
---|
392 | final double aSum = a1 + a2 + 1;
|
---|
393 | final double p1 = a1 / aSum;
|
---|
394 | final double p2 = a2 / aSum;
|
---|
395 | final double c1 = 1 / (8 * lambda);
|
---|
396 |
|
---|
397 | double x = 0;
|
---|
398 | double y = 0;
|
---|
399 | double v = 0;
|
---|
400 | int a = 0;
|
---|
401 | double t = 0;
|
---|
402 | double qr = 0;
|
---|
403 | double qa = 0;
|
---|
404 | for (;;) {
|
---|
405 | final double u = nextUniform(0.0, 1);
|
---|
406 | if (u <= p1) {
|
---|
407 | final double n = nextGaussian(0d, 1d);
|
---|
408 | x = n * FastMath.sqrt(lambda + halfDelta) - 0.5d;
|
---|
409 | if (x > delta || x < -lambda) {
|
---|
410 | continue;
|
---|
411 | }
|
---|
412 | y = x < 0 ? FastMath.floor(x) : FastMath.ceil(x);
|
---|
413 | final double e = nextExponential(1d);
|
---|
414 | v = -e - (n * n / 2) + c1;
|
---|
415 | } else {
|
---|
416 | if (u > p1 + p2) {
|
---|
417 | y = lambda;
|
---|
418 | break;
|
---|
419 | } else {
|
---|
420 | x = delta + (twolpd / delta) * nextExponential(1d);
|
---|
421 | y = FastMath.ceil(x);
|
---|
422 | v = -nextExponential(1d) - delta * (x + 1) / twolpd;
|
---|
423 | }
|
---|
424 | }
|
---|
425 | a = x < 0 ? 1 : 0;
|
---|
426 | t = y * (y + 1) / (2 * lambda);
|
---|
427 | if (v < -t && a == 0) {
|
---|
428 | y = lambda + y;
|
---|
429 | break;
|
---|
430 | }
|
---|
431 | qr = t * ((2 * y + 1) / (6 * lambda) - 1);
|
---|
432 | qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
|
---|
433 | if (v < qa) {
|
---|
434 | y = lambda + y;
|
---|
435 | break;
|
---|
436 | }
|
---|
437 | if (v > qr) {
|
---|
438 | continue;
|
---|
439 | }
|
---|
440 | if (v < y * logLambda - MathUtils.factorialLog((int) (y + lambda)) + logLambdaFactorial) {
|
---|
441 | y = lambda + y;
|
---|
442 | break;
|
---|
443 | }
|
---|
444 | }
|
---|
445 | return y2 + (long) y;
|
---|
446 | }
|
---|
447 | }
|
---|
448 |
|
---|
449 | /**
|
---|
450 | * Generate a random value from a Normal (a.k.a. Gaussian) distribution with
|
---|
451 | * the given mean, <code>mu</code> and the given standard deviation,
|
---|
452 | * <code>sigma</code>.
|
---|
453 | *
|
---|
454 | * @param mu
|
---|
455 | * the mean of the distribution
|
---|
456 | * @param sigma
|
---|
457 | * the standard deviation of the distribution
|
---|
458 | * @return the random Normal value
|
---|
459 | * @throws NotStrictlyPositiveException if {@code sigma <= 0}.
|
---|
460 | */
|
---|
461 | public double nextGaussian(double mu, double sigma) {
|
---|
462 | if (sigma <= 0) {
|
---|
463 | throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
|
---|
464 | }
|
---|
465 | return sigma * getRan().nextGaussian() + mu;
|
---|
466 | }
|
---|
467 |
|
---|
468 | /**
|
---|
469 | * Returns a random value from an Exponential distribution with the given
|
---|
470 | * mean.
|
---|
471 | * <p>
|
---|
472 | * <strong>Algorithm Description</strong>: Uses the <a
|
---|
473 | * href="http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html"> Inversion
|
---|
474 | * Method</a> to generate exponentially distributed random values from
|
---|
475 | * uniform deviates.
|
---|
476 | * </p>
|
---|
477 | *
|
---|
478 | * @param mean the mean of the distribution
|
---|
479 | * @return the random Exponential value
|
---|
480 | * @throws NotStrictlyPositiveException if {@code mean <= 0}.
|
---|
481 | */
|
---|
482 | public double nextExponential(double mean) {
|
---|
483 | if (mean <= 0.0) {
|
---|
484 | throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
|
---|
485 | }
|
---|
486 | final RandomGenerator generator = getRan();
|
---|
487 | double unif = generator.nextDouble();
|
---|
488 | while (unif == 0.0d) {
|
---|
489 | unif = generator.nextDouble();
|
---|
490 | }
|
---|
491 | return -mean * FastMath.log(unif);
|
---|
492 | }
|
---|
493 |
|
---|
494 | /**
|
---|
495 | * {@inheritDoc}
|
---|
496 | * <p>
|
---|
497 | * <strong>Algorithm Description</strong>: scales the output of
|
---|
498 | * Random.nextDouble(), but rejects 0 values (i.e., will generate another
|
---|
499 | * random double if Random.nextDouble() returns 0). This is necessary to
|
---|
500 | * provide a symmetric output interval (both endpoints excluded).
|
---|
501 | * </p>
|
---|
502 | *
|
---|
503 | * @param lower
|
---|
504 | * the lower bound.
|
---|
505 | * @param upper
|
---|
506 | * the upper bound.
|
---|
507 | * @return a uniformly distributed random value from the interval (lower,
|
---|
508 | * upper)
|
---|
509 | * @throws NumberIsTooLargeException if {@code lower >= upper}.
|
---|
510 | */
|
---|
511 | public double nextUniform(double lower, double upper) {
|
---|
512 | if (lower >= upper) {
|
---|
513 | throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
|
---|
514 | lower, upper, false);
|
---|
515 | }
|
---|
516 | final RandomGenerator generator = getRan();
|
---|
517 |
|
---|
518 | // ensure nextDouble() isn't 0.0
|
---|
519 | double u = generator.nextDouble();
|
---|
520 | while (u <= 0.0) {
|
---|
521 | u = generator.nextDouble();
|
---|
522 | }
|
---|
523 |
|
---|
524 | return lower + u * (upper - lower);
|
---|
525 | }
|
---|
526 |
|
---|
527 | /**
|
---|
528 | * Generates a random value from the {@link BetaDistributionImpl Beta Distribution}.
|
---|
529 | * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
|
---|
530 | * to generate random values.
|
---|
531 | *
|
---|
532 | * @param alpha first distribution shape parameter
|
---|
533 | * @param beta second distribution shape parameter
|
---|
534 | * @return random value sampled from the beta(alpha, beta) distribution
|
---|
535 | * @throws MathException if an error occurs generating the random value
|
---|
536 | * @since 2.2
|
---|
537 | */
|
---|
538 | public double nextBeta(double alpha, double beta) throws MathException {
|
---|
539 | return nextInversionDeviate(new BetaDistributionImpl(alpha, beta));
|
---|
540 | }
|
---|
541 |
|
---|
542 | /**
|
---|
543 | * Generates a random value from the {@link BinomialDistributionImpl Binomial Distribution}.
|
---|
544 | * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
|
---|
545 | * to generate random values.
|
---|
546 | *
|
---|
547 | * @param numberOfTrials number of trials of the Binomial distribution
|
---|
548 | * @param probabilityOfSuccess probability of success of the Binomial distribution
|
---|
549 | * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution
|
---|
550 | * @throws MathException if an error occurs generating the random value
|
---|
551 | * @since 2.2
|
---|
552 | */
|
---|
553 | public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) throws MathException {
|
---|
554 | return nextInversionDeviate(new BinomialDistributionImpl(numberOfTrials, probabilityOfSuccess));
|
---|
555 | }
|
---|
556 |
|
---|
557 | /**
|
---|
558 | * Generates a random value from the {@link CauchyDistributionImpl Cauchy Distribution}.
|
---|
559 | * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
|
---|
560 | * to generate random values.
|
---|
561 | *
|
---|
562 | * @param median the median of the Cauchy distribution
|
---|
563 | * @param scale the scale parameter of the Cauchy distribution
|
---|
564 | * @return random value sampled from the Cauchy(median, scale) distribution
|
---|
565 | * @throws MathException if an error occurs generating the random value
|
---|
566 | * @since 2.2
|
---|
567 | */
|
---|
568 | public double nextCauchy(double median, double scale) throws MathException {
|
---|
569 | return nextInversionDeviate(new CauchyDistributionImpl(median, scale));
|
---|
570 | }
|
---|
571 |
|
---|
572 | /**
|
---|
573 | * Generates a random value from the {@link ChiSquaredDistributionImpl ChiSquare Distribution}.
|
---|
574 | * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
|
---|
575 | * to generate random values.
|
---|
576 | *
|
---|
577 | * @param df the degrees of freedom of the ChiSquare distribution
|
---|
578 | * @return random value sampled from the ChiSquare(df) distribution
|
---|
579 | * @throws MathException if an error occurs generating the random value
|
---|
580 | * @since 2.2
|
---|
581 | */
|
---|
582 | public double nextChiSquare(double df) throws MathException {
|
---|
583 | return nextInversionDeviate(new ChiSquaredDistributionImpl(df));
|
---|
584 | }
|
---|
585 |
|
---|
586 | /**
|
---|
587 | * Generates a random value from the {@link FDistributionImpl F Distribution}.
|
---|
588 | * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
|
---|
589 | * to generate random values.
|
---|
590 | *
|
---|
591 | * @param numeratorDf the numerator degrees of freedom of the F distribution
|
---|
592 | * @param denominatorDf the denominator degrees of freedom of the F distribution
|
---|
593 | * @return random value sampled from the F(numeratorDf, denominatorDf) distribution
|
---|
594 | * @throws MathException if an error occurs generating the random value
|
---|
595 | * @since 2.2
|
---|
596 | */
|
---|
597 | public double nextF(double numeratorDf, double denominatorDf) throws MathException {
|
---|
598 | return nextInversionDeviate(new FDistributionImpl(numeratorDf, denominatorDf));
|
---|
599 | }
|
---|
600 |
|
---|
601 | /**
|
---|
602 | * Generates a random value from the {@link GammaDistributionImpl Gamma Distribution}.
|
---|
603 | * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
|
---|
604 | * to generate random values.
|
---|
605 | *
|
---|
606 | * @param shape the median of the Gamma distribution
|
---|
607 | * @param scale the scale parameter of the Gamma distribution
|
---|
608 | * @return random value sampled from the Gamma(shape, scale) distribution
|
---|
609 | * @throws MathException if an error occurs generating the random value
|
---|
610 | * @since 2.2
|
---|
611 | */
|
---|
612 | public double nextGamma(double shape, double scale) throws MathException {
|
---|
613 | return nextInversionDeviate(new GammaDistributionImpl(shape, scale));
|
---|
614 | }
|
---|
615 |
|
---|
616 | /**
|
---|
617 | * Generates a random value from the {@link HypergeometricDistributionImpl Hypergeometric Distribution}.
|
---|
618 | * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
|
---|
619 | * to generate random values.
|
---|
620 | *
|
---|
621 | * @param populationSize the population size of the Hypergeometric distribution
|
---|
622 | * @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution
|
---|
623 | * @param sampleSize the sample size of the Hypergeometric distribution
|
---|
624 | * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
|
---|
625 | * @throws MathException if an error occurs generating the random value
|
---|
626 | * @since 2.2
|
---|
627 | */
|
---|
628 | public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws MathException {
|
---|
629 | return nextInversionDeviate(new HypergeometricDistributionImpl(populationSize, numberOfSuccesses, sampleSize));
|
---|
630 | }
|
---|
631 |
|
---|
632 | /**
|
---|
633 | * Generates a random value from the {@link PascalDistributionImpl Pascal Distribution}.
|
---|
634 | * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
|
---|
635 | * to generate random values.
|
---|
636 | *
|
---|
637 | * @param r the number of successes of the Pascal distribution
|
---|
638 | * @param p the probability of success of the Pascal distribution
|
---|
639 | * @return random value sampled from the Pascal(r, p) distribution
|
---|
640 | * @throws MathException if an error occurs generating the random value
|
---|
641 | * @since 2.2
|
---|
642 | */
|
---|
643 | public int nextPascal(int r, double p) throws MathException {
|
---|
644 | return nextInversionDeviate(new PascalDistributionImpl(r, p));
|
---|
645 | }
|
---|
646 |
|
---|
647 | /**
|
---|
648 | * Generates a random value from the {@link TDistributionImpl T Distribution}.
|
---|
649 | * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
|
---|
650 | * to generate random values.
|
---|
651 | *
|
---|
652 | * @param df the degrees of freedom of the T distribution
|
---|
653 | * @return random value from the T(df) distribution
|
---|
654 | * @throws MathException if an error occurs generating the random value
|
---|
655 | * @since 2.2
|
---|
656 | */
|
---|
657 | public double nextT(double df) throws MathException {
|
---|
658 | return nextInversionDeviate(new TDistributionImpl(df));
|
---|
659 | }
|
---|
660 |
|
---|
661 | /**
|
---|
662 | * Generates a random value from the {@link WeibullDistributionImpl Weibull Distribution}.
|
---|
663 | * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
|
---|
664 | * to generate random values.
|
---|
665 | *
|
---|
666 | * @param shape the shape parameter of the Weibull distribution
|
---|
667 | * @param scale the scale parameter of the Weibull distribution
|
---|
668 | * @return random value sampled from the Weibull(shape, size) distribution
|
---|
669 | * @throws MathException if an error occurs generating the random value
|
---|
670 | * @since 2.2
|
---|
671 | */
|
---|
672 | public double nextWeibull(double shape, double scale) throws MathException {
|
---|
673 | return nextInversionDeviate(new WeibullDistributionImpl(shape, scale));
|
---|
674 | }
|
---|
675 |
|
---|
676 | /**
|
---|
677 | * Generates a random value from the {@link ZipfDistributionImpl Zipf Distribution}.
|
---|
678 | * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
|
---|
679 | * to generate random values.
|
---|
680 | *
|
---|
681 | * @param numberOfElements the number of elements of the ZipfDistribution
|
---|
682 | * @param exponent the exponent of the ZipfDistribution
|
---|
683 | * @return random value sampled from the Zipf(numberOfElements, exponent) distribution
|
---|
684 | * @throws MathException if an error occurs generating the random value
|
---|
685 | * @since 2.2
|
---|
686 | */
|
---|
687 | public int nextZipf(int numberOfElements, double exponent) throws MathException {
|
---|
688 | return nextInversionDeviate(new ZipfDistributionImpl(numberOfElements, exponent));
|
---|
689 | }
|
---|
690 |
|
---|
691 | /**
|
---|
692 | * Returns the RandomGenerator used to generate non-secure random data.
|
---|
693 | * <p>
|
---|
694 | * Creates and initializes a default generator if null.
|
---|
695 | * </p>
|
---|
696 | *
|
---|
697 | * @return the Random used to generate random data
|
---|
698 | * @since 1.1
|
---|
699 | */
|
---|
700 | private RandomGenerator getRan() {
|
---|
701 | if (rand == null) {
|
---|
702 | rand = new JDKRandomGenerator();
|
---|
703 | rand.setSeed(System.currentTimeMillis());
|
---|
704 | }
|
---|
705 | return rand;
|
---|
706 | }
|
---|
707 |
|
---|
708 | /**
|
---|
709 | * Returns the SecureRandom used to generate secure random data.
|
---|
710 | * <p>
|
---|
711 | * Creates and initializes if null.
|
---|
712 | * </p>
|
---|
713 | *
|
---|
714 | * @return the SecureRandom used to generate secure random data
|
---|
715 | */
|
---|
716 | private SecureRandom getSecRan() {
|
---|
717 | if (secRand == null) {
|
---|
718 | secRand = new SecureRandom();
|
---|
719 | secRand.setSeed(System.currentTimeMillis());
|
---|
720 | }
|
---|
721 | return secRand;
|
---|
722 | }
|
---|
723 |
|
---|
724 | /**
|
---|
725 | * Reseeds the random number generator with the supplied seed.
|
---|
726 | * <p>
|
---|
727 | * Will create and initialize if null.
|
---|
728 | * </p>
|
---|
729 | *
|
---|
730 | * @param seed
|
---|
731 | * the seed value to use
|
---|
732 | */
|
---|
733 | public void reSeed(long seed) {
|
---|
734 | if (rand == null) {
|
---|
735 | rand = new JDKRandomGenerator();
|
---|
736 | }
|
---|
737 | rand.setSeed(seed);
|
---|
738 | }
|
---|
739 |
|
---|
740 | /**
|
---|
741 | * Reseeds the secure random number generator with the current time in
|
---|
742 | * milliseconds.
|
---|
743 | * <p>
|
---|
744 | * Will create and initialize if null.
|
---|
745 | * </p>
|
---|
746 | */
|
---|
747 | public void reSeedSecure() {
|
---|
748 | if (secRand == null) {
|
---|
749 | secRand = new SecureRandom();
|
---|
750 | }
|
---|
751 | secRand.setSeed(System.currentTimeMillis());
|
---|
752 | }
|
---|
753 |
|
---|
754 | /**
|
---|
755 | * Reseeds the secure random number generator with the supplied seed.
|
---|
756 | * <p>
|
---|
757 | * Will create and initialize if null.
|
---|
758 | * </p>
|
---|
759 | *
|
---|
760 | * @param seed
|
---|
761 | * the seed value to use
|
---|
762 | */
|
---|
763 | public void reSeedSecure(long seed) {
|
---|
764 | if (secRand == null) {
|
---|
765 | secRand = new SecureRandom();
|
---|
766 | }
|
---|
767 | secRand.setSeed(seed);
|
---|
768 | }
|
---|
769 |
|
---|
770 | /**
|
---|
771 | * Reseeds the random number generator with the current time in
|
---|
772 | * milliseconds.
|
---|
773 | */
|
---|
774 | public void reSeed() {
|
---|
775 | if (rand == null) {
|
---|
776 | rand = new JDKRandomGenerator();
|
---|
777 | }
|
---|
778 | rand.setSeed(System.currentTimeMillis());
|
---|
779 | }
|
---|
780 |
|
---|
781 | /**
|
---|
782 | * Sets the PRNG algorithm for the underlying SecureRandom instance using
|
---|
783 | * the Security Provider API. The Security Provider API is defined in <a
|
---|
784 | * href =
|
---|
785 | * "http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA">
|
---|
786 | * Java Cryptography Architecture API Specification & Reference.</a>
|
---|
787 | * <p>
|
---|
788 | * <strong>USAGE NOTE:</strong> This method carries <i>significant</i>
|
---|
789 | * overhead and may take several seconds to execute.
|
---|
790 | * </p>
|
---|
791 | *
|
---|
792 | * @param algorithm
|
---|
793 | * the name of the PRNG algorithm
|
---|
794 | * @param provider
|
---|
795 | * the name of the provider
|
---|
796 | * @throws NoSuchAlgorithmException
|
---|
797 | * if the specified algorithm is not available
|
---|
798 | * @throws NoSuchProviderException
|
---|
799 | * if the specified provider is not installed
|
---|
800 | */
|
---|
801 | public void setSecureAlgorithm(String algorithm, String provider)
|
---|
802 | throws NoSuchAlgorithmException, NoSuchProviderException {
|
---|
803 | secRand = SecureRandom.getInstance(algorithm, provider);
|
---|
804 | }
|
---|
805 |
|
---|
806 | /**
|
---|
807 | * Generates an integer array of length <code>k</code> whose entries are
|
---|
808 | * selected randomly, without repetition, from the integers
|
---|
809 | * <code>0 through n-1</code> (inclusive).
|
---|
810 | * <p>
|
---|
811 | * Generated arrays represent permutations of <code>n</code> taken
|
---|
812 | * <code>k</code> at a time.
|
---|
813 | * </p>
|
---|
814 | * <p>
|
---|
815 | * <strong>Preconditions:</strong>
|
---|
816 | * <ul>
|
---|
817 | * <li> <code>k <= n</code></li>
|
---|
818 | * <li> <code>n > 0</code></li>
|
---|
819 | * </ul>
|
---|
820 | * If the preconditions are not met, an IllegalArgumentException is thrown.
|
---|
821 | * </p>
|
---|
822 | * <p>
|
---|
823 | * Uses a 2-cycle permutation shuffle. The shuffling process is described <a
|
---|
824 | * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
|
---|
825 | * here</a>.
|
---|
826 | * </p>
|
---|
827 | *
|
---|
828 | * @param n
|
---|
829 | * domain of the permutation (must be positive)
|
---|
830 | * @param k
|
---|
831 | * size of the permutation (must satisfy 0 < k <= n).
|
---|
832 | * @return the random permutation as an int array
|
---|
833 | * @throws NumberIsTooLargeException if {@code k > n}.
|
---|
834 | * @throws NotStrictlyPositiveException if {@code k <= 0}.
|
---|
835 | */
|
---|
836 | public int[] nextPermutation(int n, int k) {
|
---|
837 | if (k > n) {
|
---|
838 | throw new NumberIsTooLargeException(LocalizedFormats.PERMUTATION_EXCEEDS_N,
|
---|
839 | k, n, true);
|
---|
840 | }
|
---|
841 | if (k == 0) {
|
---|
842 | throw new NotStrictlyPositiveException(LocalizedFormats.PERMUTATION_SIZE,
|
---|
843 | k);
|
---|
844 | }
|
---|
845 |
|
---|
846 | int[] index = getNatural(n);
|
---|
847 | shuffle(index, n - k);
|
---|
848 | int[] result = new int[k];
|
---|
849 | for (int i = 0; i < k; i++) {
|
---|
850 | result[i] = index[n - i - 1];
|
---|
851 | }
|
---|
852 |
|
---|
853 | return result;
|
---|
854 | }
|
---|
855 |
|
---|
856 | /**
|
---|
857 | * Uses a 2-cycle permutation shuffle to generate a random permutation.
|
---|
858 | * <strong>Algorithm Description</strong>: Uses a 2-cycle permutation
|
---|
859 | * shuffle to generate a random permutation of <code>c.size()</code> and
|
---|
860 | * then returns the elements whose indexes correspond to the elements of the
|
---|
861 | * generated permutation. This technique is described, and proven to
|
---|
862 | * generate random samples, <a
|
---|
863 | * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
|
---|
864 | * here</a>
|
---|
865 | *
|
---|
866 | * @param c
|
---|
867 | * Collection to sample from.
|
---|
868 | * @param k
|
---|
869 | * sample size.
|
---|
870 | * @return the random sample.
|
---|
871 | * @throws NumberIsTooLargeException if {@code k > c.size()}.
|
---|
872 | * @throws NotStrictlyPositiveException if {@code k <= 0}.
|
---|
873 | */
|
---|
874 | public Object[] nextSample(Collection<?> c, int k) {
|
---|
875 | int len = c.size();
|
---|
876 | if (k > len) {
|
---|
877 | throw new NumberIsTooLargeException(LocalizedFormats.SAMPLE_SIZE_EXCEEDS_COLLECTION_SIZE,
|
---|
878 | k, len, true);
|
---|
879 | }
|
---|
880 | if (k <= 0) {
|
---|
881 | throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, k);
|
---|
882 | }
|
---|
883 |
|
---|
884 | Object[] objects = c.toArray();
|
---|
885 | int[] index = nextPermutation(len, k);
|
---|
886 | Object[] result = new Object[k];
|
---|
887 | for (int i = 0; i < k; i++) {
|
---|
888 | result[i] = objects[index[i]];
|
---|
889 | }
|
---|
890 | return result;
|
---|
891 | }
|
---|
892 |
|
---|
893 | /**
|
---|
894 | * Generate a random deviate from the given distribution using the
|
---|
895 | * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
|
---|
896 | *
|
---|
897 | * @param distribution Continuous distribution to generate a random value from
|
---|
898 | * @return a random value sampled from the given distribution
|
---|
899 | * @throws MathException if an error occurs computing the inverse cumulative distribution function
|
---|
900 | * @since 2.2
|
---|
901 | */
|
---|
902 | public double nextInversionDeviate(ContinuousDistribution distribution) throws MathException {
|
---|
903 | return distribution.inverseCumulativeProbability(nextUniform(0, 1));
|
---|
904 |
|
---|
905 | }
|
---|
906 |
|
---|
907 | /**
|
---|
908 | * Generate a random deviate from the given distribution using the
|
---|
909 | * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
|
---|
910 | *
|
---|
911 | * @param distribution Integer distribution to generate a random value from
|
---|
912 | * @return a random value sampled from the given distribution
|
---|
913 | * @throws MathException if an error occurs computing the inverse cumulative distribution function
|
---|
914 | * @since 2.2
|
---|
915 | */
|
---|
916 | public int nextInversionDeviate(IntegerDistribution distribution) throws MathException {
|
---|
917 | final double target = nextUniform(0, 1);
|
---|
918 | final int glb = distribution.inverseCumulativeProbability(target);
|
---|
919 | if (distribution.cumulativeProbability(glb) == 1.0d) { // No mass above
|
---|
920 | return glb;
|
---|
921 | } else {
|
---|
922 | return glb + 1;
|
---|
923 | }
|
---|
924 | }
|
---|
925 |
|
---|
926 | // ------------------------Private methods----------------------------------
|
---|
927 |
|
---|
928 | /**
|
---|
929 | * Uses a 2-cycle permutation shuffle to randomly re-order the last elements
|
---|
930 | * of list.
|
---|
931 | *
|
---|
932 | * @param list
|
---|
933 | * list to be shuffled
|
---|
934 | * @param end
|
---|
935 | * element past which shuffling begins
|
---|
936 | */
|
---|
937 | private void shuffle(int[] list, int end) {
|
---|
938 | int target = 0;
|
---|
939 | for (int i = list.length - 1; i >= end; i--) {
|
---|
940 | if (i == 0) {
|
---|
941 | target = 0;
|
---|
942 | } else {
|
---|
943 | target = nextInt(0, i);
|
---|
944 | }
|
---|
945 | int temp = list[target];
|
---|
946 | list[target] = list[i];
|
---|
947 | list[i] = temp;
|
---|
948 | }
|
---|
949 | }
|
---|
950 |
|
---|
951 | /**
|
---|
952 | * Returns an array representing n.
|
---|
953 | *
|
---|
954 | * @param n
|
---|
955 | * the natural number to represent
|
---|
956 | * @return array with entries = elements of n
|
---|
957 | */
|
---|
958 | private int[] getNatural(int n) {
|
---|
959 | int[] natural = new int[n];
|
---|
960 | for (int i = 0; i < n; i++) {
|
---|
961 | natural[i] = i;
|
---|
962 | }
|
---|
963 | return natural;
|
---|
964 | }
|
---|
965 |
|
---|
966 | }
|
---|