source: src/main/java/agents/org/apache/commons/math/random/RandomDataImpl.java

Last change on this file was 1, checked in by Wouter Pasman, 7 years ago

Initial import : Genius 9.0.0

File size: 36.9 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18package agents.org.apache.commons.math.random;
19
20import java.io.Serializable;
21import java.security.MessageDigest;
22import java.security.NoSuchAlgorithmException;
23import java.security.NoSuchProviderException;
24import java.security.SecureRandom;
25import java.util.Collection;
26
27import agents.org.apache.commons.math.MathException;
28import agents.org.apache.commons.math.distribution.BetaDistributionImpl;
29import agents.org.apache.commons.math.distribution.BinomialDistributionImpl;
30import agents.org.apache.commons.math.distribution.CauchyDistributionImpl;
31import agents.org.apache.commons.math.distribution.ChiSquaredDistributionImpl;
32import agents.org.apache.commons.math.distribution.ContinuousDistribution;
33import agents.org.apache.commons.math.distribution.FDistributionImpl;
34import agents.org.apache.commons.math.distribution.GammaDistributionImpl;
35import agents.org.apache.commons.math.distribution.HypergeometricDistributionImpl;
36import agents.org.apache.commons.math.distribution.IntegerDistribution;
37import agents.org.apache.commons.math.distribution.PascalDistributionImpl;
38import agents.org.apache.commons.math.distribution.TDistributionImpl;
39import agents.org.apache.commons.math.distribution.WeibullDistributionImpl;
40import agents.org.apache.commons.math.distribution.ZipfDistributionImpl;
41import agents.org.apache.commons.math.exception.MathInternalError;
42import agents.org.apache.commons.math.exception.NotStrictlyPositiveException;
43import agents.org.apache.commons.math.exception.NumberIsTooLargeException;
44import agents.org.apache.commons.math.exception.util.LocalizedFormats;
45import agents.org.apache.commons.math.util.FastMath;
46import agents.org.apache.commons.math.util.MathUtils;
47
48/**
49 * Implements the {@link RandomData} interface using a {@link RandomGenerator}
50 * instance to generate non-secure data and a {@link java.security.SecureRandom}
51 * instance to provide data for the <code>nextSecureXxx</code> methods. If no
52 * <code>RandomGenerator</code> is provided in the constructor, the default is
53 * to use a generator based on {@link java.util.Random}. To plug in a different
54 * implementation, either implement <code>RandomGenerator</code> directly or
55 * extend {@link AbstractRandomGenerator}.
56 * <p>
57 * Supports reseeding the underlying pseudo-random number generator (PRNG). The
58 * <code>SecurityProvider</code> and <code>Algorithm</code> used by the
59 * <code>SecureRandom</code> instance can also be reset.
60 * </p>
61 * <p>
62 * For details on the default PRNGs, see {@link java.util.Random} and
63 * {@link java.security.SecureRandom}.
64 * </p>
65 * <p>
66 * <strong>Usage Notes</strong>:
67 * <ul>
68 * <li>
69 * Instance variables are used to maintain <code>RandomGenerator</code> and
70 * <code>SecureRandom</code> instances used in data generation. Therefore, to
71 * generate a random sequence of values or strings, you should use just
72 * <strong>one</strong> <code>RandomDataImpl</code> instance repeatedly.</li>
73 * <li>
74 * The "secure" methods are *much* slower. These should be used only when a
75 * cryptographically secure random sequence is required. A secure random
76 * sequence is a sequence of pseudo-random values which, in addition to being
77 * well-dispersed (so no subsequence of values is an any more likely than other
78 * subsequence of the the same length), also has the additional property that
79 * knowledge of values generated up to any point in the sequence does not make
80 * it any easier to predict subsequent values.</li>
81 * <li>
82 * When a new <code>RandomDataImpl</code> is created, the underlying random
83 * number generators are <strong>not</strong> initialized. If you do not
84 * explicitly seed the default non-secure generator, it is seeded with the
85 * current time in milliseconds on first use. The same holds for the secure
86 * generator. If you provide a <code>RandomGenerator</code> to the constructor,
87 * however, this generator is not reseeded by the constructor nor is it reseeded
88 * on first use.</li>
89 * <li>
90 * The <code>reSeed</code> and <code>reSeedSecure</code> methods delegate to the
91 * corresponding methods on the underlying <code>RandomGenerator</code> and
92 * <code>SecureRandom</code> instances. Therefore, <code>reSeed(long)</code>
93 * fully resets the initial state of the non-secure random number generator (so
94 * that reseeding with a specific value always results in the same subsequent
95 * random sequence); whereas reSeedSecure(long) does <strong>not</strong>
96 * reinitialize the secure random number generator (so secure sequences started
97 * with calls to reseedSecure(long) won't be identical).</li>
98 * <li>
99 * This implementation is not synchronized.
100 * </ul>
101 * </p>
102 *
103 * @version $Revision: 1061496 $ $Date: 2011-01-20 21:32:16 +0100 (jeu. 20 janv. 2011) $
104 */
105public class RandomDataImpl implements RandomData, Serializable {
106
107 /** Serializable version identifier */
108 private static final long serialVersionUID = -626730818244969716L;
109
110 /** underlying random number generator */
111 private RandomGenerator rand = null;
112
113 /** underlying secure random number generator */
114 private SecureRandom secRand = null;
115
116 /**
117 * Construct a RandomDataImpl.
118 */
119 public RandomDataImpl() {
120 }
121
122 /**
123 * Construct a RandomDataImpl using the supplied {@link RandomGenerator} as
124 * the source of (non-secure) random data.
125 *
126 * @param rand
127 * the source of (non-secure) random data
128 * @since 1.1
129 */
130 public RandomDataImpl(RandomGenerator rand) {
131 super();
132 this.rand = rand;
133 }
134
135 /**
136 * {@inheritDoc}
137 * <p>
138 * <strong>Algorithm Description:</strong> hex strings are generated using a
139 * 2-step process.
140 * <ol>
141 * <li>
142 * len/2+1 binary bytes are generated using the underlying Random</li>
143 * <li>
144 * Each binary byte is translated into 2 hex digits</li>
145 * </ol>
146 * </p>
147 *
148 * @param len
149 * the desired string length.
150 * @return the random string.
151 * @throws NotStrictlyPositiveException if {@code len <= 0}.
152 */
153 public String nextHexString(int len) {
154 if (len <= 0) {
155 throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
156 }
157
158 // Get a random number generator
159 RandomGenerator ran = getRan();
160
161 // Initialize output buffer
162 StringBuilder outBuffer = new StringBuilder();
163
164 // Get int(len/2)+1 random bytes
165 byte[] randomBytes = new byte[(len / 2) + 1];
166 ran.nextBytes(randomBytes);
167
168 // Convert each byte to 2 hex digits
169 for (int i = 0; i < randomBytes.length; i++) {
170 Integer c = Integer.valueOf(randomBytes[i]);
171
172 /*
173 * Add 128 to byte value to make interval 0-255 before doing hex
174 * conversion. This guarantees <= 2 hex digits from toHexString()
175 * toHexString would otherwise add 2^32 to negative arguments.
176 */
177 String hex = Integer.toHexString(c.intValue() + 128);
178
179 // Make sure we add 2 hex digits for each byte
180 if (hex.length() == 1) {
181 hex = "0" + hex;
182 }
183 outBuffer.append(hex);
184 }
185 return outBuffer.toString().substring(0, len);
186 }
187
188 /**
189 * Generate a random int value uniformly distributed between
190 * <code>lower</code> and <code>upper</code>, inclusive.
191 *
192 * @param lower
193 * the lower bound.
194 * @param upper
195 * the upper bound.
196 * @return the random integer.
197 * @throws NumberIsTooLargeException if {@code lower >= upper}.
198 */
199 public int nextInt(int lower, int upper) {
200 if (lower >= upper) {
201 throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
202 lower, upper, false);
203 }
204 double r = getRan().nextDouble();
205 return (int) ((r * upper) + ((1.0 - r) * lower) + r);
206 }
207
208 /**
209 * Generate a random long value uniformly distributed between
210 * <code>lower</code> and <code>upper</code>, inclusive.
211 *
212 * @param lower
213 * the lower bound.
214 * @param upper
215 * the upper bound.
216 * @return the random integer.
217 * @throws NumberIsTooLargeException if {@code lower >= upper}.
218 */
219 public long nextLong(long lower, long upper) {
220 if (lower >= upper) {
221 throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
222 lower, upper, false);
223 }
224 double r = getRan().nextDouble();
225 return (long) ((r * upper) + ((1.0 - r) * lower) + r);
226 }
227
228 /**
229 * {@inheritDoc}
230 * <p>
231 * <strong>Algorithm Description:</strong> hex strings are generated in
232 * 40-byte segments using a 3-step process.
233 * <ol>
234 * <li>
235 * 20 random bytes are generated using the underlying
236 * <code>SecureRandom</code>.</li>
237 * <li>
238 * SHA-1 hash is applied to yield a 20-byte binary digest.</li>
239 * <li>
240 * Each byte of the binary digest is converted to 2 hex digits.</li>
241 * </ol>
242 * </p>
243 *
244 * @param len
245 * the length of the generated string
246 * @return the random string
247 * @throws NotStrictlyPositiveException if {@code len <= 0}.
248 */
249 public String nextSecureHexString(int len) {
250 if (len <= 0) {
251 throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
252 }
253
254 // Get SecureRandom and setup Digest provider
255 SecureRandom secRan = getSecRan();
256 MessageDigest alg = null;
257 try {
258 alg = MessageDigest.getInstance("SHA-1");
259 } catch (NoSuchAlgorithmException ex) {
260 // this should never happen
261 throw new MathInternalError(ex);
262 }
263 alg.reset();
264
265 // Compute number of iterations required (40 bytes each)
266 int numIter = (len / 40) + 1;
267
268 StringBuilder outBuffer = new StringBuilder();
269 for (int iter = 1; iter < numIter + 1; iter++) {
270 byte[] randomBytes = new byte[40];
271 secRan.nextBytes(randomBytes);
272 alg.update(randomBytes);
273
274 // Compute hash -- will create 20-byte binary hash
275 byte hash[] = alg.digest();
276
277 // Loop over the hash, converting each byte to 2 hex digits
278 for (int i = 0; i < hash.length; i++) {
279 Integer c = Integer.valueOf(hash[i]);
280
281 /*
282 * Add 128 to byte value to make interval 0-255 This guarantees
283 * <= 2 hex digits from toHexString() toHexString would
284 * otherwise add 2^32 to negative arguments
285 */
286 String hex = Integer.toHexString(c.intValue() + 128);
287
288 // Keep strings uniform length -- guarantees 40 bytes
289 if (hex.length() == 1) {
290 hex = "0" + hex;
291 }
292 outBuffer.append(hex);
293 }
294 }
295 return outBuffer.toString().substring(0, len);
296 }
297
298 /**
299 * Generate a random int value uniformly distributed between
300 * <code>lower</code> and <code>upper</code>, inclusive. This algorithm uses
301 * a secure random number generator.
302 *
303 * @param lower
304 * the lower bound.
305 * @param upper
306 * the upper bound.
307 * @return the random integer.
308 * @throws NumberIsTooLargeException if {@code lower >= upper}.
309 */
310 public int nextSecureInt(int lower, int upper) {
311 if (lower >= upper) {
312 throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
313 lower, upper, false);
314 }
315 SecureRandom sec = getSecRan();
316 return lower + (int) (sec.nextDouble() * (upper - lower + 1));
317 }
318
319 /**
320 * Generate a random long value uniformly distributed between
321 * <code>lower</code> and <code>upper</code>, inclusive. This algorithm uses
322 * a secure random number generator.
323 *
324 * @param lower
325 * the lower bound.
326 * @param upper
327 * the upper bound.
328 * @return the random integer.
329 * @throws NumberIsTooLargeException if {@code lower >= upper}.
330 */
331 public long nextSecureLong(long lower, long upper) {
332 if (lower >= upper) {
333 throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
334 lower, upper, false);
335 }
336 SecureRandom sec = getSecRan();
337 return lower + (long) (sec.nextDouble() * (upper - lower + 1));
338 }
339
340 /**
341 * {@inheritDoc}
342 * <p>
343 * <strong>Algorithm Description</strong>:
344 * <ul><li> For small means, uses simulation of a Poisson process
345 * using Uniform deviates, as described
346 * <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here.</a>
347 * The Poisson process (and hence value returned) is bounded by 1000 * mean.</li>
348 *
349 * <li> For large means, uses the rejection algorithm described in <br/>
350 * Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
351 * <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p>
352 *
353 * @param mean mean of the Poisson distribution.
354 * @return the random Poisson value.
355 * @throws NotStrictlyPositiveException if {@code mean <= 0}.
356 */
357 public long nextPoisson(double mean) {
358 if (mean <= 0) {
359 throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
360 }
361
362 final RandomGenerator generator = getRan();
363
364 final double pivot = 40.0d;
365 if (mean < pivot) {
366 double p = FastMath.exp(-mean);
367 long n = 0;
368 double r = 1.0d;
369 double rnd = 1.0d;
370
371 while (n < 1000 * mean) {
372 rnd = generator.nextDouble();
373 r = r * rnd;
374 if (r >= p) {
375 n++;
376 } else {
377 return n;
378 }
379 }
380 return n;
381 } else {
382 final double lambda = FastMath.floor(mean);
383 final double lambdaFractional = mean - lambda;
384 final double logLambda = FastMath.log(lambda);
385 final double logLambdaFactorial = MathUtils.factorialLog((int) lambda);
386 final long y2 = lambdaFractional < Double.MIN_VALUE ? 0 : nextPoisson(lambdaFractional);
387 final double delta = FastMath.sqrt(lambda * FastMath.log(32 * lambda / FastMath.PI + 1));
388 final double halfDelta = delta / 2;
389 final double twolpd = 2 * lambda + delta;
390 final double a1 = FastMath.sqrt(FastMath.PI * twolpd) * FastMath.exp(1 / 8 * lambda);
391 final double a2 = (twolpd / delta) * FastMath.exp(-delta * (1 + delta) / twolpd);
392 final double aSum = a1 + a2 + 1;
393 final double p1 = a1 / aSum;
394 final double p2 = a2 / aSum;
395 final double c1 = 1 / (8 * lambda);
396
397 double x = 0;
398 double y = 0;
399 double v = 0;
400 int a = 0;
401 double t = 0;
402 double qr = 0;
403 double qa = 0;
404 for (;;) {
405 final double u = nextUniform(0.0, 1);
406 if (u <= p1) {
407 final double n = nextGaussian(0d, 1d);
408 x = n * FastMath.sqrt(lambda + halfDelta) - 0.5d;
409 if (x > delta || x < -lambda) {
410 continue;
411 }
412 y = x < 0 ? FastMath.floor(x) : FastMath.ceil(x);
413 final double e = nextExponential(1d);
414 v = -e - (n * n / 2) + c1;
415 } else {
416 if (u > p1 + p2) {
417 y = lambda;
418 break;
419 } else {
420 x = delta + (twolpd / delta) * nextExponential(1d);
421 y = FastMath.ceil(x);
422 v = -nextExponential(1d) - delta * (x + 1) / twolpd;
423 }
424 }
425 a = x < 0 ? 1 : 0;
426 t = y * (y + 1) / (2 * lambda);
427 if (v < -t && a == 0) {
428 y = lambda + y;
429 break;
430 }
431 qr = t * ((2 * y + 1) / (6 * lambda) - 1);
432 qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
433 if (v < qa) {
434 y = lambda + y;
435 break;
436 }
437 if (v > qr) {
438 continue;
439 }
440 if (v < y * logLambda - MathUtils.factorialLog((int) (y + lambda)) + logLambdaFactorial) {
441 y = lambda + y;
442 break;
443 }
444 }
445 return y2 + (long) y;
446 }
447 }
448
449 /**
450 * Generate a random value from a Normal (a.k.a. Gaussian) distribution with
451 * the given mean, <code>mu</code> and the given standard deviation,
452 * <code>sigma</code>.
453 *
454 * @param mu
455 * the mean of the distribution
456 * @param sigma
457 * the standard deviation of the distribution
458 * @return the random Normal value
459 * @throws NotStrictlyPositiveException if {@code sigma <= 0}.
460 */
461 public double nextGaussian(double mu, double sigma) {
462 if (sigma <= 0) {
463 throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
464 }
465 return sigma * getRan().nextGaussian() + mu;
466 }
467
468 /**
469 * Returns a random value from an Exponential distribution with the given
470 * mean.
471 * <p>
472 * <strong>Algorithm Description</strong>: Uses the <a
473 * href="http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html"> Inversion
474 * Method</a> to generate exponentially distributed random values from
475 * uniform deviates.
476 * </p>
477 *
478 * @param mean the mean of the distribution
479 * @return the random Exponential value
480 * @throws NotStrictlyPositiveException if {@code mean <= 0}.
481 */
482 public double nextExponential(double mean) {
483 if (mean <= 0.0) {
484 throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
485 }
486 final RandomGenerator generator = getRan();
487 double unif = generator.nextDouble();
488 while (unif == 0.0d) {
489 unif = generator.nextDouble();
490 }
491 return -mean * FastMath.log(unif);
492 }
493
494 /**
495 * {@inheritDoc}
496 * <p>
497 * <strong>Algorithm Description</strong>: scales the output of
498 * Random.nextDouble(), but rejects 0 values (i.e., will generate another
499 * random double if Random.nextDouble() returns 0). This is necessary to
500 * provide a symmetric output interval (both endpoints excluded).
501 * </p>
502 *
503 * @param lower
504 * the lower bound.
505 * @param upper
506 * the upper bound.
507 * @return a uniformly distributed random value from the interval (lower,
508 * upper)
509 * @throws NumberIsTooLargeException if {@code lower >= upper}.
510 */
511 public double nextUniform(double lower, double upper) {
512 if (lower >= upper) {
513 throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
514 lower, upper, false);
515 }
516 final RandomGenerator generator = getRan();
517
518 // ensure nextDouble() isn't 0.0
519 double u = generator.nextDouble();
520 while (u <= 0.0) {
521 u = generator.nextDouble();
522 }
523
524 return lower + u * (upper - lower);
525 }
526
527 /**
528 * Generates a random value from the {@link BetaDistributionImpl Beta Distribution}.
529 * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
530 * to generate random values.
531 *
532 * @param alpha first distribution shape parameter
533 * @param beta second distribution shape parameter
534 * @return random value sampled from the beta(alpha, beta) distribution
535 * @throws MathException if an error occurs generating the random value
536 * @since 2.2
537 */
538 public double nextBeta(double alpha, double beta) throws MathException {
539 return nextInversionDeviate(new BetaDistributionImpl(alpha, beta));
540 }
541
542 /**
543 * Generates a random value from the {@link BinomialDistributionImpl Binomial Distribution}.
544 * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
545 * to generate random values.
546 *
547 * @param numberOfTrials number of trials of the Binomial distribution
548 * @param probabilityOfSuccess probability of success of the Binomial distribution
549 * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution
550 * @throws MathException if an error occurs generating the random value
551 * @since 2.2
552 */
553 public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) throws MathException {
554 return nextInversionDeviate(new BinomialDistributionImpl(numberOfTrials, probabilityOfSuccess));
555 }
556
557 /**
558 * Generates a random value from the {@link CauchyDistributionImpl Cauchy Distribution}.
559 * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
560 * to generate random values.
561 *
562 * @param median the median of the Cauchy distribution
563 * @param scale the scale parameter of the Cauchy distribution
564 * @return random value sampled from the Cauchy(median, scale) distribution
565 * @throws MathException if an error occurs generating the random value
566 * @since 2.2
567 */
568 public double nextCauchy(double median, double scale) throws MathException {
569 return nextInversionDeviate(new CauchyDistributionImpl(median, scale));
570 }
571
572 /**
573 * Generates a random value from the {@link ChiSquaredDistributionImpl ChiSquare Distribution}.
574 * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
575 * to generate random values.
576 *
577 * @param df the degrees of freedom of the ChiSquare distribution
578 * @return random value sampled from the ChiSquare(df) distribution
579 * @throws MathException if an error occurs generating the random value
580 * @since 2.2
581 */
582 public double nextChiSquare(double df) throws MathException {
583 return nextInversionDeviate(new ChiSquaredDistributionImpl(df));
584 }
585
586 /**
587 * Generates a random value from the {@link FDistributionImpl F Distribution}.
588 * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
589 * to generate random values.
590 *
591 * @param numeratorDf the numerator degrees of freedom of the F distribution
592 * @param denominatorDf the denominator degrees of freedom of the F distribution
593 * @return random value sampled from the F(numeratorDf, denominatorDf) distribution
594 * @throws MathException if an error occurs generating the random value
595 * @since 2.2
596 */
597 public double nextF(double numeratorDf, double denominatorDf) throws MathException {
598 return nextInversionDeviate(new FDistributionImpl(numeratorDf, denominatorDf));
599 }
600
601 /**
602 * Generates a random value from the {@link GammaDistributionImpl Gamma Distribution}.
603 * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
604 * to generate random values.
605 *
606 * @param shape the median of the Gamma distribution
607 * @param scale the scale parameter of the Gamma distribution
608 * @return random value sampled from the Gamma(shape, scale) distribution
609 * @throws MathException if an error occurs generating the random value
610 * @since 2.2
611 */
612 public double nextGamma(double shape, double scale) throws MathException {
613 return nextInversionDeviate(new GammaDistributionImpl(shape, scale));
614 }
615
616 /**
617 * Generates a random value from the {@link HypergeometricDistributionImpl Hypergeometric Distribution}.
618 * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
619 * to generate random values.
620 *
621 * @param populationSize the population size of the Hypergeometric distribution
622 * @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution
623 * @param sampleSize the sample size of the Hypergeometric distribution
624 * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
625 * @throws MathException if an error occurs generating the random value
626 * @since 2.2
627 */
628 public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws MathException {
629 return nextInversionDeviate(new HypergeometricDistributionImpl(populationSize, numberOfSuccesses, sampleSize));
630 }
631
632 /**
633 * Generates a random value from the {@link PascalDistributionImpl Pascal Distribution}.
634 * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
635 * to generate random values.
636 *
637 * @param r the number of successes of the Pascal distribution
638 * @param p the probability of success of the Pascal distribution
639 * @return random value sampled from the Pascal(r, p) distribution
640 * @throws MathException if an error occurs generating the random value
641 * @since 2.2
642 */
643 public int nextPascal(int r, double p) throws MathException {
644 return nextInversionDeviate(new PascalDistributionImpl(r, p));
645 }
646
647 /**
648 * Generates a random value from the {@link TDistributionImpl T Distribution}.
649 * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
650 * to generate random values.
651 *
652 * @param df the degrees of freedom of the T distribution
653 * @return random value from the T(df) distribution
654 * @throws MathException if an error occurs generating the random value
655 * @since 2.2
656 */
657 public double nextT(double df) throws MathException {
658 return nextInversionDeviate(new TDistributionImpl(df));
659 }
660
661 /**
662 * Generates a random value from the {@link WeibullDistributionImpl Weibull Distribution}.
663 * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
664 * to generate random values.
665 *
666 * @param shape the shape parameter of the Weibull distribution
667 * @param scale the scale parameter of the Weibull distribution
668 * @return random value sampled from the Weibull(shape, size) distribution
669 * @throws MathException if an error occurs generating the random value
670 * @since 2.2
671 */
672 public double nextWeibull(double shape, double scale) throws MathException {
673 return nextInversionDeviate(new WeibullDistributionImpl(shape, scale));
674 }
675
676 /**
677 * Generates a random value from the {@link ZipfDistributionImpl Zipf Distribution}.
678 * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
679 * to generate random values.
680 *
681 * @param numberOfElements the number of elements of the ZipfDistribution
682 * @param exponent the exponent of the ZipfDistribution
683 * @return random value sampled from the Zipf(numberOfElements, exponent) distribution
684 * @throws MathException if an error occurs generating the random value
685 * @since 2.2
686 */
687 public int nextZipf(int numberOfElements, double exponent) throws MathException {
688 return nextInversionDeviate(new ZipfDistributionImpl(numberOfElements, exponent));
689 }
690
691 /**
692 * Returns the RandomGenerator used to generate non-secure random data.
693 * <p>
694 * Creates and initializes a default generator if null.
695 * </p>
696 *
697 * @return the Random used to generate random data
698 * @since 1.1
699 */
700 private RandomGenerator getRan() {
701 if (rand == null) {
702 rand = new JDKRandomGenerator();
703 rand.setSeed(System.currentTimeMillis());
704 }
705 return rand;
706 }
707
708 /**
709 * Returns the SecureRandom used to generate secure random data.
710 * <p>
711 * Creates and initializes if null.
712 * </p>
713 *
714 * @return the SecureRandom used to generate secure random data
715 */
716 private SecureRandom getSecRan() {
717 if (secRand == null) {
718 secRand = new SecureRandom();
719 secRand.setSeed(System.currentTimeMillis());
720 }
721 return secRand;
722 }
723
724 /**
725 * Reseeds the random number generator with the supplied seed.
726 * <p>
727 * Will create and initialize if null.
728 * </p>
729 *
730 * @param seed
731 * the seed value to use
732 */
733 public void reSeed(long seed) {
734 if (rand == null) {
735 rand = new JDKRandomGenerator();
736 }
737 rand.setSeed(seed);
738 }
739
740 /**
741 * Reseeds the secure random number generator with the current time in
742 * milliseconds.
743 * <p>
744 * Will create and initialize if null.
745 * </p>
746 */
747 public void reSeedSecure() {
748 if (secRand == null) {
749 secRand = new SecureRandom();
750 }
751 secRand.setSeed(System.currentTimeMillis());
752 }
753
754 /**
755 * Reseeds the secure random number generator with the supplied seed.
756 * <p>
757 * Will create and initialize if null.
758 * </p>
759 *
760 * @param seed
761 * the seed value to use
762 */
763 public void reSeedSecure(long seed) {
764 if (secRand == null) {
765 secRand = new SecureRandom();
766 }
767 secRand.setSeed(seed);
768 }
769
770 /**
771 * Reseeds the random number generator with the current time in
772 * milliseconds.
773 */
774 public void reSeed() {
775 if (rand == null) {
776 rand = new JDKRandomGenerator();
777 }
778 rand.setSeed(System.currentTimeMillis());
779 }
780
781 /**
782 * Sets the PRNG algorithm for the underlying SecureRandom instance using
783 * the Security Provider API. The Security Provider API is defined in <a
784 * href =
785 * "http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA">
786 * Java Cryptography Architecture API Specification & Reference.</a>
787 * <p>
788 * <strong>USAGE NOTE:</strong> This method carries <i>significant</i>
789 * overhead and may take several seconds to execute.
790 * </p>
791 *
792 * @param algorithm
793 * the name of the PRNG algorithm
794 * @param provider
795 * the name of the provider
796 * @throws NoSuchAlgorithmException
797 * if the specified algorithm is not available
798 * @throws NoSuchProviderException
799 * if the specified provider is not installed
800 */
801 public void setSecureAlgorithm(String algorithm, String provider)
802 throws NoSuchAlgorithmException, NoSuchProviderException {
803 secRand = SecureRandom.getInstance(algorithm, provider);
804 }
805
806 /**
807 * Generates an integer array of length <code>k</code> whose entries are
808 * selected randomly, without repetition, from the integers
809 * <code>0 through n-1</code> (inclusive).
810 * <p>
811 * Generated arrays represent permutations of <code>n</code> taken
812 * <code>k</code> at a time.
813 * </p>
814 * <p>
815 * <strong>Preconditions:</strong>
816 * <ul>
817 * <li> <code>k <= n</code></li>
818 * <li> <code>n > 0</code></li>
819 * </ul>
820 * If the preconditions are not met, an IllegalArgumentException is thrown.
821 * </p>
822 * <p>
823 * Uses a 2-cycle permutation shuffle. The shuffling process is described <a
824 * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
825 * here</a>.
826 * </p>
827 *
828 * @param n
829 * domain of the permutation (must be positive)
830 * @param k
831 * size of the permutation (must satisfy 0 < k <= n).
832 * @return the random permutation as an int array
833 * @throws NumberIsTooLargeException if {@code k > n}.
834 * @throws NotStrictlyPositiveException if {@code k <= 0}.
835 */
836 public int[] nextPermutation(int n, int k) {
837 if (k > n) {
838 throw new NumberIsTooLargeException(LocalizedFormats.PERMUTATION_EXCEEDS_N,
839 k, n, true);
840 }
841 if (k == 0) {
842 throw new NotStrictlyPositiveException(LocalizedFormats.PERMUTATION_SIZE,
843 k);
844 }
845
846 int[] index = getNatural(n);
847 shuffle(index, n - k);
848 int[] result = new int[k];
849 for (int i = 0; i < k; i++) {
850 result[i] = index[n - i - 1];
851 }
852
853 return result;
854 }
855
856 /**
857 * Uses a 2-cycle permutation shuffle to generate a random permutation.
858 * <strong>Algorithm Description</strong>: Uses a 2-cycle permutation
859 * shuffle to generate a random permutation of <code>c.size()</code> and
860 * then returns the elements whose indexes correspond to the elements of the
861 * generated permutation. This technique is described, and proven to
862 * generate random samples, <a
863 * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
864 * here</a>
865 *
866 * @param c
867 * Collection to sample from.
868 * @param k
869 * sample size.
870 * @return the random sample.
871 * @throws NumberIsTooLargeException if {@code k > c.size()}.
872 * @throws NotStrictlyPositiveException if {@code k <= 0}.
873 */
874 public Object[] nextSample(Collection<?> c, int k) {
875 int len = c.size();
876 if (k > len) {
877 throw new NumberIsTooLargeException(LocalizedFormats.SAMPLE_SIZE_EXCEEDS_COLLECTION_SIZE,
878 k, len, true);
879 }
880 if (k <= 0) {
881 throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, k);
882 }
883
884 Object[] objects = c.toArray();
885 int[] index = nextPermutation(len, k);
886 Object[] result = new Object[k];
887 for (int i = 0; i < k; i++) {
888 result[i] = objects[index[i]];
889 }
890 return result;
891 }
892
893 /**
894 * Generate a random deviate from the given distribution using the
895 * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
896 *
897 * @param distribution Continuous distribution to generate a random value from
898 * @return a random value sampled from the given distribution
899 * @throws MathException if an error occurs computing the inverse cumulative distribution function
900 * @since 2.2
901 */
902 public double nextInversionDeviate(ContinuousDistribution distribution) throws MathException {
903 return distribution.inverseCumulativeProbability(nextUniform(0, 1));
904
905 }
906
907 /**
908 * Generate a random deviate from the given distribution using the
909 * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
910 *
911 * @param distribution Integer distribution to generate a random value from
912 * @return a random value sampled from the given distribution
913 * @throws MathException if an error occurs computing the inverse cumulative distribution function
914 * @since 2.2
915 */
916 public int nextInversionDeviate(IntegerDistribution distribution) throws MathException {
917 final double target = nextUniform(0, 1);
918 final int glb = distribution.inverseCumulativeProbability(target);
919 if (distribution.cumulativeProbability(glb) == 1.0d) { // No mass above
920 return glb;
921 } else {
922 return glb + 1;
923 }
924 }
925
926 // ------------------------Private methods----------------------------------
927
928 /**
929 * Uses a 2-cycle permutation shuffle to randomly re-order the last elements
930 * of list.
931 *
932 * @param list
933 * list to be shuffled
934 * @param end
935 * element past which shuffling begins
936 */
937 private void shuffle(int[] list, int end) {
938 int target = 0;
939 for (int i = list.length - 1; i >= end; i--) {
940 if (i == 0) {
941 target = 0;
942 } else {
943 target = nextInt(0, i);
944 }
945 int temp = list[target];
946 list[target] = list[i];
947 list[i] = temp;
948 }
949 }
950
951 /**
952 * Returns an array representing n.
953 *
954 * @param n
955 * the natural number to represent
956 * @return array with entries = elements of n
957 */
958 private int[] getNatural(int n) {
959 int[] natural = new int[n];
960 for (int i = 0; i < n; i++) {
961 natural[i] = i;
962 }
963 return natural;
964 }
965
966}
Note: See TracBrowser for help on using the repository browser.