1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.random;
|
---|
19 |
|
---|
20 | import java.io.BufferedReader;
|
---|
21 | import java.io.File;
|
---|
22 | import java.io.FileReader;
|
---|
23 | import java.io.IOException;
|
---|
24 | import java.io.InputStreamReader;
|
---|
25 | import java.io.Serializable;
|
---|
26 | import java.net.URL;
|
---|
27 | import java.util.ArrayList;
|
---|
28 | import java.util.List;
|
---|
29 |
|
---|
30 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
31 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
32 | import agents.org.apache.commons.math.stat.descriptive.StatisticalSummary;
|
---|
33 | import agents.org.apache.commons.math.stat.descriptive.SummaryStatistics;
|
---|
34 | import agents.org.apache.commons.math.util.FastMath;
|
---|
35 |
|
---|
36 | /**
|
---|
37 | * Implements <code>EmpiricalDistribution</code> interface. This implementation
|
---|
38 | * uses what amounts to the
|
---|
39 | * <a href="http://nedwww.ipac.caltech.edu/level5/March02/Silverman/Silver2_6.html">
|
---|
40 | * Variable Kernel Method</a> with Gaussian smoothing:<p>
|
---|
41 | * <strong>Digesting the input file</strong>
|
---|
42 | * <ol><li>Pass the file once to compute min and max.</li>
|
---|
43 | * <li>Divide the range from min-max into <code>binCount</code> "bins."</li>
|
---|
44 | * <li>Pass the data file again, computing bin counts and univariate
|
---|
45 | * statistics (mean, std dev.) for each of the bins </li>
|
---|
46 | * <li>Divide the interval (0,1) into subintervals associated with the bins,
|
---|
47 | * with the length of a bin's subinterval proportional to its count.</li></ol>
|
---|
48 | * <strong>Generating random values from the distribution</strong><ol>
|
---|
49 | * <li>Generate a uniformly distributed value in (0,1) </li>
|
---|
50 | * <li>Select the subinterval to which the value belongs.
|
---|
51 | * <li>Generate a random Gaussian value with mean = mean of the associated
|
---|
52 | * bin and std dev = std dev of associated bin.</li></ol></p><p>
|
---|
53 | *<strong>USAGE NOTES:</strong><ul>
|
---|
54 | *<li>The <code>binCount</code> is set by default to 1000. A good rule of thumb
|
---|
55 | * is to set the bin count to approximately the length of the input file divided
|
---|
56 | * by 10. </li>
|
---|
57 | *<li>The input file <i>must</i> be a plain text file containing one valid numeric
|
---|
58 | * entry per line.</li>
|
---|
59 | * </ul></p>
|
---|
60 | *
|
---|
61 | * @version $Revision: 1003886 $ $Date: 2010-10-02 23:04:44 +0200 (sam. 02 oct. 2010) $
|
---|
62 | */
|
---|
63 | public class EmpiricalDistributionImpl implements Serializable, EmpiricalDistribution {
|
---|
64 |
|
---|
65 | /** Serializable version identifier */
|
---|
66 | private static final long serialVersionUID = 5729073523949762654L;
|
---|
67 |
|
---|
68 | /** List of SummaryStatistics objects characterizing the bins */
|
---|
69 | private final List<SummaryStatistics> binStats;
|
---|
70 |
|
---|
71 | /** Sample statistics */
|
---|
72 | private SummaryStatistics sampleStats = null;
|
---|
73 |
|
---|
74 | /** Max loaded value */
|
---|
75 | private double max = Double.NEGATIVE_INFINITY;
|
---|
76 |
|
---|
77 | /** Min loaded value */
|
---|
78 | private double min = Double.POSITIVE_INFINITY;
|
---|
79 |
|
---|
80 | /** Grid size */
|
---|
81 | private double delta = 0d;
|
---|
82 |
|
---|
83 | /** number of bins */
|
---|
84 | private final int binCount;
|
---|
85 |
|
---|
86 | /** is the distribution loaded? */
|
---|
87 | private boolean loaded = false;
|
---|
88 |
|
---|
89 | /** upper bounds of subintervals in (0,1) "belonging" to the bins */
|
---|
90 | private double[] upperBounds = null;
|
---|
91 |
|
---|
92 | /** RandomData instance to use in repeated calls to getNext() */
|
---|
93 | private final RandomData randomData = new RandomDataImpl();
|
---|
94 |
|
---|
95 | /**
|
---|
96 | * Creates a new EmpiricalDistribution with the default bin count.
|
---|
97 | */
|
---|
98 | public EmpiricalDistributionImpl() {
|
---|
99 | binCount = 1000;
|
---|
100 | binStats = new ArrayList<SummaryStatistics>();
|
---|
101 | }
|
---|
102 |
|
---|
103 | /**
|
---|
104 | * Creates a new EmpiricalDistribution with the specified bin count.
|
---|
105 | *
|
---|
106 | * @param binCount number of bins
|
---|
107 | */
|
---|
108 | public EmpiricalDistributionImpl(int binCount) {
|
---|
109 | this.binCount = binCount;
|
---|
110 | binStats = new ArrayList<SummaryStatistics>();
|
---|
111 | }
|
---|
112 |
|
---|
113 | /**
|
---|
114 | * Computes the empirical distribution from the provided
|
---|
115 | * array of numbers.
|
---|
116 | *
|
---|
117 | * @param in the input data array
|
---|
118 | */
|
---|
119 | public void load(double[] in) {
|
---|
120 | DataAdapter da = new ArrayDataAdapter(in);
|
---|
121 | try {
|
---|
122 | da.computeStats();
|
---|
123 | fillBinStats(in);
|
---|
124 | } catch (IOException e) {
|
---|
125 | throw new MathRuntimeException(e);
|
---|
126 | }
|
---|
127 | loaded = true;
|
---|
128 |
|
---|
129 | }
|
---|
130 |
|
---|
131 | /**
|
---|
132 | * Computes the empirical distribution using data read from a URL.
|
---|
133 | * @param url url of the input file
|
---|
134 | *
|
---|
135 | * @throws IOException if an IO error occurs
|
---|
136 | */
|
---|
137 | public void load(URL url) throws IOException {
|
---|
138 | BufferedReader in =
|
---|
139 | new BufferedReader(new InputStreamReader(url.openStream()));
|
---|
140 | try {
|
---|
141 | DataAdapter da = new StreamDataAdapter(in);
|
---|
142 | da.computeStats();
|
---|
143 | if (sampleStats.getN() == 0) {
|
---|
144 | throw MathRuntimeException.createEOFException(LocalizedFormats.URL_CONTAINS_NO_DATA,
|
---|
145 | url);
|
---|
146 | }
|
---|
147 | in = new BufferedReader(new InputStreamReader(url.openStream()));
|
---|
148 | fillBinStats(in);
|
---|
149 | loaded = true;
|
---|
150 | } finally {
|
---|
151 | try {
|
---|
152 | in.close();
|
---|
153 | } catch (IOException ex) {
|
---|
154 | // ignore
|
---|
155 | }
|
---|
156 | }
|
---|
157 | }
|
---|
158 |
|
---|
159 | /**
|
---|
160 | * Computes the empirical distribution from the input file.
|
---|
161 | *
|
---|
162 | * @param file the input file
|
---|
163 | * @throws IOException if an IO error occurs
|
---|
164 | */
|
---|
165 | public void load(File file) throws IOException {
|
---|
166 | BufferedReader in = new BufferedReader(new FileReader(file));
|
---|
167 | try {
|
---|
168 | DataAdapter da = new StreamDataAdapter(in);
|
---|
169 | da.computeStats();
|
---|
170 | in = new BufferedReader(new FileReader(file));
|
---|
171 | fillBinStats(in);
|
---|
172 | loaded = true;
|
---|
173 | } finally {
|
---|
174 | try {
|
---|
175 | in.close();
|
---|
176 | } catch (IOException ex) {
|
---|
177 | // ignore
|
---|
178 | }
|
---|
179 | }
|
---|
180 | }
|
---|
181 |
|
---|
182 | /**
|
---|
183 | * Provides methods for computing <code>sampleStats</code> and
|
---|
184 | * <code>beanStats</code> abstracting the source of data.
|
---|
185 | */
|
---|
186 | private abstract class DataAdapter{
|
---|
187 |
|
---|
188 | /**
|
---|
189 | * Compute bin stats.
|
---|
190 | *
|
---|
191 | * @throws IOException if an error occurs computing bin stats
|
---|
192 | */
|
---|
193 | public abstract void computeBinStats() throws IOException;
|
---|
194 |
|
---|
195 | /**
|
---|
196 | * Compute sample statistics.
|
---|
197 | *
|
---|
198 | * @throws IOException if an error occurs computing sample stats
|
---|
199 | */
|
---|
200 | public abstract void computeStats() throws IOException;
|
---|
201 |
|
---|
202 | }
|
---|
203 |
|
---|
204 | /**
|
---|
205 | * Factory of <code>DataAdapter</code> objects. For every supported source
|
---|
206 | * of data (array of doubles, file, etc.) an instance of the proper object
|
---|
207 | * is returned.
|
---|
208 | */
|
---|
209 | private class DataAdapterFactory{
|
---|
210 | /**
|
---|
211 | * Creates a DataAdapter from a data object
|
---|
212 | *
|
---|
213 | * @param in object providing access to the data
|
---|
214 | * @return DataAdapter instance
|
---|
215 | */
|
---|
216 | public DataAdapter getAdapter(Object in) {
|
---|
217 | if (in instanceof BufferedReader) {
|
---|
218 | BufferedReader inputStream = (BufferedReader) in;
|
---|
219 | return new StreamDataAdapter(inputStream);
|
---|
220 | } else if (in instanceof double[]) {
|
---|
221 | double[] inputArray = (double[]) in;
|
---|
222 | return new ArrayDataAdapter(inputArray);
|
---|
223 | } else {
|
---|
224 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
225 | LocalizedFormats.INPUT_DATA_FROM_UNSUPPORTED_DATASOURCE,
|
---|
226 | in.getClass().getName(),
|
---|
227 | BufferedReader.class.getName(), double[].class.getName());
|
---|
228 | }
|
---|
229 | }
|
---|
230 | }
|
---|
231 | /**
|
---|
232 | * <code>DataAdapter</code> for data provided through some input stream
|
---|
233 | */
|
---|
234 | private class StreamDataAdapter extends DataAdapter{
|
---|
235 |
|
---|
236 | /** Input stream providing access to the data */
|
---|
237 | private BufferedReader inputStream;
|
---|
238 |
|
---|
239 | /**
|
---|
240 | * Create a StreamDataAdapter from a BufferedReader
|
---|
241 | *
|
---|
242 | * @param in BufferedReader input stream
|
---|
243 | */
|
---|
244 | public StreamDataAdapter(BufferedReader in){
|
---|
245 | super();
|
---|
246 | inputStream = in;
|
---|
247 | }
|
---|
248 |
|
---|
249 | /** {@inheritDoc} */
|
---|
250 | @Override
|
---|
251 | public void computeBinStats() throws IOException {
|
---|
252 | String str = null;
|
---|
253 | double val = 0.0d;
|
---|
254 | while ((str = inputStream.readLine()) != null) {
|
---|
255 | val = Double.parseDouble(str);
|
---|
256 | SummaryStatistics stats = binStats.get(findBin(val));
|
---|
257 | stats.addValue(val);
|
---|
258 | }
|
---|
259 |
|
---|
260 | inputStream.close();
|
---|
261 | inputStream = null;
|
---|
262 | }
|
---|
263 |
|
---|
264 | /** {@inheritDoc} */
|
---|
265 | @Override
|
---|
266 | public void computeStats() throws IOException {
|
---|
267 | String str = null;
|
---|
268 | double val = 0.0;
|
---|
269 | sampleStats = new SummaryStatistics();
|
---|
270 | while ((str = inputStream.readLine()) != null) {
|
---|
271 | val = Double.valueOf(str).doubleValue();
|
---|
272 | sampleStats.addValue(val);
|
---|
273 | }
|
---|
274 | inputStream.close();
|
---|
275 | inputStream = null;
|
---|
276 | }
|
---|
277 | }
|
---|
278 |
|
---|
279 | /**
|
---|
280 | * <code>DataAdapter</code> for data provided as array of doubles.
|
---|
281 | */
|
---|
282 | private class ArrayDataAdapter extends DataAdapter {
|
---|
283 |
|
---|
284 | /** Array of input data values */
|
---|
285 | private double[] inputArray;
|
---|
286 |
|
---|
287 | /**
|
---|
288 | * Construct an ArrayDataAdapter from a double[] array
|
---|
289 | *
|
---|
290 | * @param in double[] array holding the data
|
---|
291 | */
|
---|
292 | public ArrayDataAdapter(double[] in){
|
---|
293 | super();
|
---|
294 | inputArray = in;
|
---|
295 | }
|
---|
296 |
|
---|
297 | /** {@inheritDoc} */
|
---|
298 | @Override
|
---|
299 | public void computeStats() throws IOException {
|
---|
300 | sampleStats = new SummaryStatistics();
|
---|
301 | for (int i = 0; i < inputArray.length; i++) {
|
---|
302 | sampleStats.addValue(inputArray[i]);
|
---|
303 | }
|
---|
304 | }
|
---|
305 |
|
---|
306 | /** {@inheritDoc} */
|
---|
307 | @Override
|
---|
308 | public void computeBinStats() throws IOException {
|
---|
309 | for (int i = 0; i < inputArray.length; i++) {
|
---|
310 | SummaryStatistics stats =
|
---|
311 | binStats.get(findBin(inputArray[i]));
|
---|
312 | stats.addValue(inputArray[i]);
|
---|
313 | }
|
---|
314 | }
|
---|
315 | }
|
---|
316 |
|
---|
317 | /**
|
---|
318 | * Fills binStats array (second pass through data file).
|
---|
319 | *
|
---|
320 | * @param in object providing access to the data
|
---|
321 | * @throws IOException if an IO error occurs
|
---|
322 | */
|
---|
323 | private void fillBinStats(Object in) throws IOException {
|
---|
324 | // Set up grid
|
---|
325 | min = sampleStats.getMin();
|
---|
326 | max = sampleStats.getMax();
|
---|
327 | delta = (max - min)/(Double.valueOf(binCount)).doubleValue();
|
---|
328 |
|
---|
329 | // Initialize binStats ArrayList
|
---|
330 | if (!binStats.isEmpty()) {
|
---|
331 | binStats.clear();
|
---|
332 | }
|
---|
333 | for (int i = 0; i < binCount; i++) {
|
---|
334 | SummaryStatistics stats = new SummaryStatistics();
|
---|
335 | binStats.add(i,stats);
|
---|
336 | }
|
---|
337 |
|
---|
338 | // Filling data in binStats Array
|
---|
339 | DataAdapterFactory aFactory = new DataAdapterFactory();
|
---|
340 | DataAdapter da = aFactory.getAdapter(in);
|
---|
341 | da.computeBinStats();
|
---|
342 |
|
---|
343 | // Assign upperBounds based on bin counts
|
---|
344 | upperBounds = new double[binCount];
|
---|
345 | upperBounds[0] =
|
---|
346 | ((double) binStats.get(0).getN()) / (double) sampleStats.getN();
|
---|
347 | for (int i = 1; i < binCount-1; i++) {
|
---|
348 | upperBounds[i] = upperBounds[i-1] +
|
---|
349 | ((double) binStats.get(i).getN()) / (double) sampleStats.getN();
|
---|
350 | }
|
---|
351 | upperBounds[binCount-1] = 1.0d;
|
---|
352 | }
|
---|
353 |
|
---|
354 | /**
|
---|
355 | * Returns the index of the bin to which the given value belongs
|
---|
356 | *
|
---|
357 | * @param value the value whose bin we are trying to find
|
---|
358 | * @return the index of the bin containing the value
|
---|
359 | */
|
---|
360 | private int findBin(double value) {
|
---|
361 | return FastMath.min(
|
---|
362 | FastMath.max((int) FastMath.ceil((value- min) / delta) - 1, 0),
|
---|
363 | binCount - 1);
|
---|
364 | }
|
---|
365 |
|
---|
366 | /**
|
---|
367 | * Generates a random value from this distribution.
|
---|
368 | *
|
---|
369 | * @return the random value.
|
---|
370 | * @throws IllegalStateException if the distribution has not been loaded
|
---|
371 | */
|
---|
372 | public double getNextValue() throws IllegalStateException {
|
---|
373 |
|
---|
374 | if (!loaded) {
|
---|
375 | throw MathRuntimeException.createIllegalStateException(LocalizedFormats.DISTRIBUTION_NOT_LOADED);
|
---|
376 | }
|
---|
377 |
|
---|
378 | // Start with a uniformly distributed random number in (0,1)
|
---|
379 | double x = FastMath.random();
|
---|
380 |
|
---|
381 | // Use this to select the bin and generate a Gaussian within the bin
|
---|
382 | for (int i = 0; i < binCount; i++) {
|
---|
383 | if (x <= upperBounds[i]) {
|
---|
384 | SummaryStatistics stats = binStats.get(i);
|
---|
385 | if (stats.getN() > 0) {
|
---|
386 | if (stats.getStandardDeviation() > 0) { // more than one obs
|
---|
387 | return randomData.nextGaussian
|
---|
388 | (stats.getMean(),stats.getStandardDeviation());
|
---|
389 | } else {
|
---|
390 | return stats.getMean(); // only one obs in bin
|
---|
391 | }
|
---|
392 | }
|
---|
393 | }
|
---|
394 | }
|
---|
395 | throw new MathRuntimeException(LocalizedFormats.NO_BIN_SELECTED);
|
---|
396 | }
|
---|
397 |
|
---|
398 | /**
|
---|
399 | * Returns a {@link StatisticalSummary} describing this distribution.
|
---|
400 | * <strong>Preconditions:</strong><ul>
|
---|
401 | * <li>the distribution must be loaded before invoking this method</li></ul>
|
---|
402 | *
|
---|
403 | * @return the sample statistics
|
---|
404 | * @throws IllegalStateException if the distribution has not been loaded
|
---|
405 | */
|
---|
406 | public StatisticalSummary getSampleStats() {
|
---|
407 | return sampleStats;
|
---|
408 | }
|
---|
409 |
|
---|
410 | /**
|
---|
411 | * Returns the number of bins.
|
---|
412 | *
|
---|
413 | * @return the number of bins.
|
---|
414 | */
|
---|
415 | public int getBinCount() {
|
---|
416 | return binCount;
|
---|
417 | }
|
---|
418 |
|
---|
419 | /**
|
---|
420 | * Returns a List of {@link SummaryStatistics} instances containing
|
---|
421 | * statistics describing the values in each of the bins. The list is
|
---|
422 | * indexed on the bin number.
|
---|
423 | *
|
---|
424 | * @return List of bin statistics.
|
---|
425 | */
|
---|
426 | public List<SummaryStatistics> getBinStats() {
|
---|
427 | return binStats;
|
---|
428 | }
|
---|
429 |
|
---|
430 | /**
|
---|
431 | * <p>Returns a fresh copy of the array of upper bounds for the bins.
|
---|
432 | * Bins are: <br/>
|
---|
433 | * [min,upperBounds[0]],(upperBounds[0],upperBounds[1]],...,
|
---|
434 | * (upperBounds[binCount-2], upperBounds[binCount-1] = max].</p>
|
---|
435 | *
|
---|
436 | * <p>Note: In versions 1.0-2.0 of commons-math, this method
|
---|
437 | * incorrectly returned the array of probability generator upper
|
---|
438 | * bounds now returned by {@link #getGeneratorUpperBounds()}.</p>
|
---|
439 | *
|
---|
440 | * @return array of bin upper bounds
|
---|
441 | * @since 2.1
|
---|
442 | */
|
---|
443 | public double[] getUpperBounds() {
|
---|
444 | double[] binUpperBounds = new double[binCount];
|
---|
445 | binUpperBounds[0] = min + delta;
|
---|
446 | for (int i = 1; i < binCount - 1; i++) {
|
---|
447 | binUpperBounds[i] = binUpperBounds[i-1] + delta;
|
---|
448 | }
|
---|
449 | binUpperBounds[binCount - 1] = max;
|
---|
450 | return binUpperBounds;
|
---|
451 | }
|
---|
452 |
|
---|
453 | /**
|
---|
454 | * <p>Returns a fresh copy of the array of upper bounds of the subintervals
|
---|
455 | * of [0,1] used in generating data from the empirical distribution.
|
---|
456 | * Subintervals correspond to bins with lengths proportional to bin counts.</p>
|
---|
457 | *
|
---|
458 | * <p>In versions 1.0-2.0 of commons-math, this array was (incorrectly) returned
|
---|
459 | * by {@link #getUpperBounds()}.</p>
|
---|
460 | *
|
---|
461 | * @since 2.1
|
---|
462 | * @return array of upper bounds of subintervals used in data generation
|
---|
463 | */
|
---|
464 | public double[] getGeneratorUpperBounds() {
|
---|
465 | int len = upperBounds.length;
|
---|
466 | double[] out = new double[len];
|
---|
467 | System.arraycopy(upperBounds, 0, out, 0, len);
|
---|
468 | return out;
|
---|
469 | }
|
---|
470 |
|
---|
471 | /**
|
---|
472 | * Property indicating whether or not the distribution has been loaded.
|
---|
473 | *
|
---|
474 | * @return true if the distribution has been loaded
|
---|
475 | */
|
---|
476 | public boolean isLoaded() {
|
---|
477 | return loaded;
|
---|
478 | }
|
---|
479 | }
|
---|