1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.optimization;
|
---|
19 |
|
---|
20 | import agents.org.apache.commons.math.ConvergenceException;
|
---|
21 | import agents.org.apache.commons.math.FunctionEvaluationException;
|
---|
22 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
23 | import agents.org.apache.commons.math.analysis.UnivariateRealFunction;
|
---|
24 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
25 | import agents.org.apache.commons.math.random.RandomGenerator;
|
---|
26 | import agents.org.apache.commons.math.util.FastMath;
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * Special implementation of the {@link UnivariateRealOptimizer} interface adding
|
---|
30 | * multi-start features to an existing optimizer.
|
---|
31 | * <p>
|
---|
32 | * This class wraps a classical optimizer to use it several times in
|
---|
33 | * turn with different starting points in order to avoid being trapped
|
---|
34 | * into a local extremum when looking for a global one.
|
---|
35 | * </p>
|
---|
36 | * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
|
---|
37 | * @since 2.0
|
---|
38 | */
|
---|
39 | public class MultiStartUnivariateRealOptimizer implements UnivariateRealOptimizer {
|
---|
40 |
|
---|
41 | /** Serializable version identifier. */
|
---|
42 | private static final long serialVersionUID = 5983375963110961019L;
|
---|
43 |
|
---|
44 | /** Underlying classical optimizer. */
|
---|
45 | private final UnivariateRealOptimizer optimizer;
|
---|
46 |
|
---|
47 | /** Maximal number of iterations allowed. */
|
---|
48 | private int maxIterations;
|
---|
49 |
|
---|
50 | /** Maximal number of evaluations allowed. */
|
---|
51 | private int maxEvaluations;
|
---|
52 |
|
---|
53 | /** Number of iterations already performed for all starts. */
|
---|
54 | private int totalIterations;
|
---|
55 |
|
---|
56 | /** Number of evaluations already performed for all starts. */
|
---|
57 | private int totalEvaluations;
|
---|
58 |
|
---|
59 | /** Number of starts to go. */
|
---|
60 | private int starts;
|
---|
61 |
|
---|
62 | /** Random generator for multi-start. */
|
---|
63 | private RandomGenerator generator;
|
---|
64 |
|
---|
65 | /** Found optima. */
|
---|
66 | private double[] optima;
|
---|
67 |
|
---|
68 | /** Found function values at optima. */
|
---|
69 | private double[] optimaValues;
|
---|
70 |
|
---|
71 | /**
|
---|
72 | * Create a multi-start optimizer from a single-start optimizer
|
---|
73 | * @param optimizer single-start optimizer to wrap
|
---|
74 | * @param starts number of starts to perform (including the
|
---|
75 | * first one), multi-start is disabled if value is less than or
|
---|
76 | * equal to 1
|
---|
77 | * @param generator random generator to use for restarts
|
---|
78 | */
|
---|
79 | public MultiStartUnivariateRealOptimizer(final UnivariateRealOptimizer optimizer,
|
---|
80 | final int starts,
|
---|
81 | final RandomGenerator generator) {
|
---|
82 | this.optimizer = optimizer;
|
---|
83 | this.totalIterations = 0;
|
---|
84 | this.starts = starts;
|
---|
85 | this.generator = generator;
|
---|
86 | this.optima = null;
|
---|
87 | setMaximalIterationCount(Integer.MAX_VALUE);
|
---|
88 | setMaxEvaluations(Integer.MAX_VALUE);
|
---|
89 | }
|
---|
90 |
|
---|
91 | /** {@inheritDoc} */
|
---|
92 | public double getFunctionValue() {
|
---|
93 | return optimaValues[0];
|
---|
94 | }
|
---|
95 |
|
---|
96 | /** {@inheritDoc} */
|
---|
97 | public double getResult() {
|
---|
98 | return optima[0];
|
---|
99 | }
|
---|
100 |
|
---|
101 | /** {@inheritDoc} */
|
---|
102 | public double getAbsoluteAccuracy() {
|
---|
103 | return optimizer.getAbsoluteAccuracy();
|
---|
104 | }
|
---|
105 |
|
---|
106 | /** {@inheritDoc} */
|
---|
107 | public int getIterationCount() {
|
---|
108 | return totalIterations;
|
---|
109 | }
|
---|
110 |
|
---|
111 | /** {@inheritDoc} */
|
---|
112 | public int getMaximalIterationCount() {
|
---|
113 | return maxIterations;
|
---|
114 | }
|
---|
115 |
|
---|
116 | /** {@inheritDoc} */
|
---|
117 | public int getMaxEvaluations() {
|
---|
118 | return maxEvaluations;
|
---|
119 | }
|
---|
120 |
|
---|
121 | /** {@inheritDoc} */
|
---|
122 | public int getEvaluations() {
|
---|
123 | return totalEvaluations;
|
---|
124 | }
|
---|
125 |
|
---|
126 | /** {@inheritDoc} */
|
---|
127 | public double getRelativeAccuracy() {
|
---|
128 | return optimizer.getRelativeAccuracy();
|
---|
129 | }
|
---|
130 |
|
---|
131 | /** {@inheritDoc} */
|
---|
132 | public void resetAbsoluteAccuracy() {
|
---|
133 | optimizer.resetAbsoluteAccuracy();
|
---|
134 | }
|
---|
135 |
|
---|
136 | /** {@inheritDoc} */
|
---|
137 | public void resetMaximalIterationCount() {
|
---|
138 | optimizer.resetMaximalIterationCount();
|
---|
139 | }
|
---|
140 |
|
---|
141 | /** {@inheritDoc} */
|
---|
142 | public void resetRelativeAccuracy() {
|
---|
143 | optimizer.resetRelativeAccuracy();
|
---|
144 | }
|
---|
145 |
|
---|
146 | /** {@inheritDoc} */
|
---|
147 | public void setAbsoluteAccuracy(double accuracy) {
|
---|
148 | optimizer.setAbsoluteAccuracy(accuracy);
|
---|
149 | }
|
---|
150 |
|
---|
151 | /** {@inheritDoc} */
|
---|
152 | public void setMaximalIterationCount(int count) {
|
---|
153 | this.maxIterations = count;
|
---|
154 | }
|
---|
155 |
|
---|
156 | /** {@inheritDoc} */
|
---|
157 | public void setMaxEvaluations(int maxEvaluations) {
|
---|
158 | this.maxEvaluations = maxEvaluations;
|
---|
159 | }
|
---|
160 |
|
---|
161 | /** {@inheritDoc} */
|
---|
162 | public void setRelativeAccuracy(double accuracy) {
|
---|
163 | optimizer.setRelativeAccuracy(accuracy);
|
---|
164 | }
|
---|
165 |
|
---|
166 | /** Get all the optima found during the last call to {@link
|
---|
167 | * #optimize(UnivariateRealFunction, GoalType, double, double) optimize}.
|
---|
168 | * <p>The optimizer stores all the optima found during a set of
|
---|
169 | * restarts. The {@link #optimize(UnivariateRealFunction, GoalType,
|
---|
170 | * double, double) optimize} method returns the best point only. This
|
---|
171 | * method returns all the points found at the end of each starts,
|
---|
172 | * including the best one already returned by the {@link
|
---|
173 | * #optimize(UnivariateRealFunction, GoalType, double, double) optimize}
|
---|
174 | * method.
|
---|
175 | * </p>
|
---|
176 | * <p>
|
---|
177 | * The returned array as one element for each start as specified
|
---|
178 | * in the constructor. It is ordered with the results from the
|
---|
179 | * runs that did converge first, sorted from best to worst
|
---|
180 | * objective value (i.e in ascending order if minimizing and in
|
---|
181 | * descending order if maximizing), followed by Double.NaN elements
|
---|
182 | * corresponding to the runs that did not converge. This means all
|
---|
183 | * elements will be NaN if the {@link #optimize(UnivariateRealFunction,
|
---|
184 | * GoalType, double, double) optimize} method did throw a {@link
|
---|
185 | * ConvergenceException ConvergenceException}). This also means that
|
---|
186 | * if the first element is not NaN, it is the best point found across
|
---|
187 | * all starts.</p>
|
---|
188 | * @return array containing the optima
|
---|
189 | * @exception IllegalStateException if {@link #optimize(UnivariateRealFunction,
|
---|
190 | * GoalType, double, double) optimize} has not been called
|
---|
191 | * @see #getOptimaValues()
|
---|
192 | */
|
---|
193 | public double[] getOptima() throws IllegalStateException {
|
---|
194 | if (optima == null) {
|
---|
195 | throw MathRuntimeException.createIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
|
---|
196 | }
|
---|
197 | return optima.clone();
|
---|
198 | }
|
---|
199 |
|
---|
200 | /** Get all the function values at optima found during the last call to {@link
|
---|
201 | * #optimize(UnivariateRealFunction, GoalType, double, double) optimize}.
|
---|
202 | * <p>
|
---|
203 | * The returned array as one element for each start as specified
|
---|
204 | * in the constructor. It is ordered with the results from the
|
---|
205 | * runs that did converge first, sorted from best to worst
|
---|
206 | * objective value (i.e in ascending order if minimizing and in
|
---|
207 | * descending order if maximizing), followed by Double.NaN elements
|
---|
208 | * corresponding to the runs that did not converge. This means all
|
---|
209 | * elements will be NaN if the {@link #optimize(UnivariateRealFunction,
|
---|
210 | * GoalType, double, double) optimize} method did throw a {@link
|
---|
211 | * ConvergenceException ConvergenceException}). This also means that
|
---|
212 | * if the first element is not NaN, it is the best point found across
|
---|
213 | * all starts.</p>
|
---|
214 | * @return array containing the optima
|
---|
215 | * @exception IllegalStateException if {@link #optimize(UnivariateRealFunction,
|
---|
216 | * GoalType, double, double) optimize} has not been called
|
---|
217 | * @see #getOptima()
|
---|
218 | */
|
---|
219 | public double[] getOptimaValues() throws IllegalStateException {
|
---|
220 | if (optimaValues == null) {
|
---|
221 | throw MathRuntimeException.createIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
|
---|
222 | }
|
---|
223 | return optimaValues.clone();
|
---|
224 | }
|
---|
225 |
|
---|
226 | /** {@inheritDoc} */
|
---|
227 | public double optimize(final UnivariateRealFunction f, final GoalType goalType,
|
---|
228 | final double min, final double max)
|
---|
229 | throws ConvergenceException, FunctionEvaluationException {
|
---|
230 |
|
---|
231 | optima = new double[starts];
|
---|
232 | optimaValues = new double[starts];
|
---|
233 | totalIterations = 0;
|
---|
234 | totalEvaluations = 0;
|
---|
235 |
|
---|
236 | // multi-start loop
|
---|
237 | for (int i = 0; i < starts; ++i) {
|
---|
238 |
|
---|
239 | try {
|
---|
240 | optimizer.setMaximalIterationCount(maxIterations - totalIterations);
|
---|
241 | optimizer.setMaxEvaluations(maxEvaluations - totalEvaluations);
|
---|
242 | final double bound1 = (i == 0) ? min : min + generator.nextDouble() * (max - min);
|
---|
243 | final double bound2 = (i == 0) ? max : min + generator.nextDouble() * (max - min);
|
---|
244 | optima[i] = optimizer.optimize(f, goalType,
|
---|
245 | FastMath.min(bound1, bound2),
|
---|
246 | FastMath.max(bound1, bound2));
|
---|
247 | optimaValues[i] = optimizer.getFunctionValue();
|
---|
248 | } catch (FunctionEvaluationException fee) {
|
---|
249 | optima[i] = Double.NaN;
|
---|
250 | optimaValues[i] = Double.NaN;
|
---|
251 | } catch (ConvergenceException ce) {
|
---|
252 | optima[i] = Double.NaN;
|
---|
253 | optimaValues[i] = Double.NaN;
|
---|
254 | }
|
---|
255 |
|
---|
256 | totalIterations += optimizer.getIterationCount();
|
---|
257 | totalEvaluations += optimizer.getEvaluations();
|
---|
258 |
|
---|
259 | }
|
---|
260 |
|
---|
261 | // sort the optima from best to worst, followed by NaN elements
|
---|
262 | int lastNaN = optima.length;
|
---|
263 | for (int i = 0; i < lastNaN; ++i) {
|
---|
264 | if (Double.isNaN(optima[i])) {
|
---|
265 | optima[i] = optima[--lastNaN];
|
---|
266 | optima[lastNaN + 1] = Double.NaN;
|
---|
267 | optimaValues[i] = optimaValues[--lastNaN];
|
---|
268 | optimaValues[lastNaN + 1] = Double.NaN;
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 | double currX = optima[0];
|
---|
273 | double currY = optimaValues[0];
|
---|
274 | for (int j = 1; j < lastNaN; ++j) {
|
---|
275 | final double prevY = currY;
|
---|
276 | currX = optima[j];
|
---|
277 | currY = optimaValues[j];
|
---|
278 | if ((goalType == GoalType.MAXIMIZE) ^ (currY < prevY)) {
|
---|
279 | // the current element should be inserted closer to the beginning
|
---|
280 | int i = j - 1;
|
---|
281 | double mIX = optima[i];
|
---|
282 | double mIY = optimaValues[i];
|
---|
283 | while ((i >= 0) && ((goalType == GoalType.MAXIMIZE) ^ (currY < mIY))) {
|
---|
284 | optima[i + 1] = mIX;
|
---|
285 | optimaValues[i + 1] = mIY;
|
---|
286 | if (i-- != 0) {
|
---|
287 | mIX = optima[i];
|
---|
288 | mIY = optimaValues[i];
|
---|
289 | } else {
|
---|
290 | mIX = Double.NaN;
|
---|
291 | mIY = Double.NaN;
|
---|
292 | }
|
---|
293 | }
|
---|
294 | optima[i + 1] = currX;
|
---|
295 | optimaValues[i + 1] = currY;
|
---|
296 | currX = optima[j];
|
---|
297 | currY = optimaValues[j];
|
---|
298 | }
|
---|
299 | }
|
---|
300 |
|
---|
301 | if (Double.isNaN(optima[0])) {
|
---|
302 | throw new OptimizationException(
|
---|
303 | LocalizedFormats.NO_CONVERGENCE_WITH_ANY_START_POINT,
|
---|
304 | starts);
|
---|
305 | }
|
---|
306 |
|
---|
307 | // return the found point given the best objective function value
|
---|
308 | return optima[0];
|
---|
309 |
|
---|
310 | }
|
---|
311 |
|
---|
312 | /** {@inheritDoc} */
|
---|
313 | public double optimize(final UnivariateRealFunction f, final GoalType goalType,
|
---|
314 | final double min, final double max, final double startValue)
|
---|
315 | throws ConvergenceException, FunctionEvaluationException {
|
---|
316 | return optimize(f, goalType, min, max);
|
---|
317 | }
|
---|
318 | }
|
---|