1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.optimization;
|
---|
19 |
|
---|
20 | import java.util.Arrays;
|
---|
21 | import java.util.Comparator;
|
---|
22 |
|
---|
23 | import agents.org.apache.commons.math.FunctionEvaluationException;
|
---|
24 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
25 | import agents.org.apache.commons.math.analysis.DifferentiableMultivariateRealFunction;
|
---|
26 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
27 | import agents.org.apache.commons.math.random.RandomVectorGenerator;
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * Special implementation of the {@link DifferentiableMultivariateRealOptimizer} interface adding
|
---|
31 | * multi-start features to an existing optimizer.
|
---|
32 | * <p>
|
---|
33 | * This class wraps a classical optimizer to use it several times in
|
---|
34 | * turn with different starting points in order to avoid being trapped
|
---|
35 | * into a local extremum when looking for a global one.
|
---|
36 | * </p>
|
---|
37 | * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $
|
---|
38 | * @since 2.0
|
---|
39 | */
|
---|
40 | public class MultiStartDifferentiableMultivariateRealOptimizer
|
---|
41 | implements DifferentiableMultivariateRealOptimizer {
|
---|
42 |
|
---|
43 | /** Underlying classical optimizer. */
|
---|
44 | private final DifferentiableMultivariateRealOptimizer optimizer;
|
---|
45 |
|
---|
46 | /** Maximal number of iterations allowed. */
|
---|
47 | private int maxIterations;
|
---|
48 |
|
---|
49 | /** Number of iterations already performed for all starts. */
|
---|
50 | private int totalIterations;
|
---|
51 |
|
---|
52 | /** Maximal number of evaluations allowed. */
|
---|
53 | private int maxEvaluations;
|
---|
54 |
|
---|
55 | /** Number of evaluations already performed for all starts. */
|
---|
56 | private int totalEvaluations;
|
---|
57 |
|
---|
58 | /** Number of gradient evaluations already performed for all starts. */
|
---|
59 | private int totalGradientEvaluations;
|
---|
60 |
|
---|
61 | /** Number of starts to go. */
|
---|
62 | private int starts;
|
---|
63 |
|
---|
64 | /** Random generator for multi-start. */
|
---|
65 | private RandomVectorGenerator generator;
|
---|
66 |
|
---|
67 | /** Found optima. */
|
---|
68 | private RealPointValuePair[] optima;
|
---|
69 |
|
---|
70 | /**
|
---|
71 | * Create a multi-start optimizer from a single-start optimizer
|
---|
72 | * @param optimizer single-start optimizer to wrap
|
---|
73 | * @param starts number of starts to perform (including the
|
---|
74 | * first one), multi-start is disabled if value is less than or
|
---|
75 | * equal to 1
|
---|
76 | * @param generator random vector generator to use for restarts
|
---|
77 | */
|
---|
78 | public MultiStartDifferentiableMultivariateRealOptimizer(final DifferentiableMultivariateRealOptimizer optimizer,
|
---|
79 | final int starts,
|
---|
80 | final RandomVectorGenerator generator) {
|
---|
81 | this.optimizer = optimizer;
|
---|
82 | this.totalIterations = 0;
|
---|
83 | this.totalEvaluations = 0;
|
---|
84 | this.totalGradientEvaluations = 0;
|
---|
85 | this.starts = starts;
|
---|
86 | this.generator = generator;
|
---|
87 | this.optima = null;
|
---|
88 | setMaxIterations(Integer.MAX_VALUE);
|
---|
89 | setMaxEvaluations(Integer.MAX_VALUE);
|
---|
90 | }
|
---|
91 |
|
---|
92 | /** Get all the optima found during the last call to {@link
|
---|
93 | * #optimize(DifferentiableMultivariateRealFunction, GoalType, double[])
|
---|
94 | * optimize}.
|
---|
95 | * <p>The optimizer stores all the optima found during a set of
|
---|
96 | * restarts. The {@link #optimize(DifferentiableMultivariateRealFunction,
|
---|
97 | * GoalType, double[]) optimize} method returns the best point only. This
|
---|
98 | * method returns all the points found at the end of each starts,
|
---|
99 | * including the best one already returned by the {@link
|
---|
100 | * #optimize(DifferentiableMultivariateRealFunction, GoalType, double[])
|
---|
101 | * optimize} method.
|
---|
102 | * </p>
|
---|
103 | * <p>
|
---|
104 | * The returned array as one element for each start as specified
|
---|
105 | * in the constructor. It is ordered with the results from the
|
---|
106 | * runs that did converge first, sorted from best to worst
|
---|
107 | * objective value (i.e in ascending order if minimizing and in
|
---|
108 | * descending order if maximizing), followed by and null elements
|
---|
109 | * corresponding to the runs that did not converge. This means all
|
---|
110 | * elements will be null if the {@link #optimize(DifferentiableMultivariateRealFunction,
|
---|
111 | * GoalType, double[]) optimize} method did throw a {@link
|
---|
112 | * agents.org.apache.commons.math.ConvergenceException ConvergenceException}).
|
---|
113 | * This also means that if the first element is non null, it is the best
|
---|
114 | * point found across all starts.</p>
|
---|
115 | * @return array containing the optima
|
---|
116 | * @exception IllegalStateException if {@link #optimize(DifferentiableMultivariateRealFunction,
|
---|
117 | * GoalType, double[]) optimize} has not been called
|
---|
118 | */
|
---|
119 | public RealPointValuePair[] getOptima() throws IllegalStateException {
|
---|
120 | if (optima == null) {
|
---|
121 | throw MathRuntimeException.createIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
|
---|
122 | }
|
---|
123 | return optima.clone();
|
---|
124 | }
|
---|
125 |
|
---|
126 | /** {@inheritDoc} */
|
---|
127 | public void setMaxIterations(int maxIterations) {
|
---|
128 | this.maxIterations = maxIterations;
|
---|
129 | }
|
---|
130 |
|
---|
131 | /** {@inheritDoc} */
|
---|
132 | public int getMaxIterations() {
|
---|
133 | return maxIterations;
|
---|
134 | }
|
---|
135 |
|
---|
136 | /** {@inheritDoc} */
|
---|
137 | public int getIterations() {
|
---|
138 | return totalIterations;
|
---|
139 | }
|
---|
140 |
|
---|
141 | /** {@inheritDoc} */
|
---|
142 | public void setMaxEvaluations(int maxEvaluations) {
|
---|
143 | this.maxEvaluations = maxEvaluations;
|
---|
144 | }
|
---|
145 |
|
---|
146 | /** {@inheritDoc} */
|
---|
147 | public int getMaxEvaluations() {
|
---|
148 | return maxEvaluations;
|
---|
149 | }
|
---|
150 |
|
---|
151 | /** {@inheritDoc} */
|
---|
152 | public int getEvaluations() {
|
---|
153 | return totalEvaluations;
|
---|
154 | }
|
---|
155 |
|
---|
156 | /** {@inheritDoc} */
|
---|
157 | public int getGradientEvaluations() {
|
---|
158 | return totalGradientEvaluations;
|
---|
159 | }
|
---|
160 |
|
---|
161 | /** {@inheritDoc} */
|
---|
162 | public void setConvergenceChecker(RealConvergenceChecker checker) {
|
---|
163 | optimizer.setConvergenceChecker(checker);
|
---|
164 | }
|
---|
165 |
|
---|
166 | /** {@inheritDoc} */
|
---|
167 | public RealConvergenceChecker getConvergenceChecker() {
|
---|
168 | return optimizer.getConvergenceChecker();
|
---|
169 | }
|
---|
170 |
|
---|
171 | /** {@inheritDoc} */
|
---|
172 | public RealPointValuePair optimize(final DifferentiableMultivariateRealFunction f,
|
---|
173 | final GoalType goalType,
|
---|
174 | double[] startPoint)
|
---|
175 | throws FunctionEvaluationException, OptimizationException, FunctionEvaluationException {
|
---|
176 |
|
---|
177 | optima = new RealPointValuePair[starts];
|
---|
178 | totalIterations = 0;
|
---|
179 | totalEvaluations = 0;
|
---|
180 | totalGradientEvaluations = 0;
|
---|
181 |
|
---|
182 | // multi-start loop
|
---|
183 | for (int i = 0; i < starts; ++i) {
|
---|
184 |
|
---|
185 | try {
|
---|
186 | optimizer.setMaxIterations(maxIterations - totalIterations);
|
---|
187 | optimizer.setMaxEvaluations(maxEvaluations - totalEvaluations);
|
---|
188 | optima[i] = optimizer.optimize(f, goalType,
|
---|
189 | (i == 0) ? startPoint : generator.nextVector());
|
---|
190 | } catch (FunctionEvaluationException fee) {
|
---|
191 | optima[i] = null;
|
---|
192 | } catch (OptimizationException oe) {
|
---|
193 | optima[i] = null;
|
---|
194 | }
|
---|
195 |
|
---|
196 | totalIterations += optimizer.getIterations();
|
---|
197 | totalEvaluations += optimizer.getEvaluations();
|
---|
198 | totalGradientEvaluations += optimizer.getGradientEvaluations();
|
---|
199 |
|
---|
200 | }
|
---|
201 |
|
---|
202 | // sort the optima from best to worst, followed by null elements
|
---|
203 | Arrays.sort(optima, new Comparator<RealPointValuePair>() {
|
---|
204 | public int compare(final RealPointValuePair o1, final RealPointValuePair o2) {
|
---|
205 | if (o1 == null) {
|
---|
206 | return (o2 == null) ? 0 : +1;
|
---|
207 | } else if (o2 == null) {
|
---|
208 | return -1;
|
---|
209 | }
|
---|
210 | final double v1 = o1.getValue();
|
---|
211 | final double v2 = o2.getValue();
|
---|
212 | return (goalType == GoalType.MINIMIZE) ?
|
---|
213 | Double.compare(v1, v2) : Double.compare(v2, v1);
|
---|
214 | }
|
---|
215 | });
|
---|
216 |
|
---|
217 | if (optima[0] == null) {
|
---|
218 | throw new OptimizationException(
|
---|
219 | LocalizedFormats.NO_CONVERGENCE_WITH_ANY_START_POINT,
|
---|
220 | starts);
|
---|
221 | }
|
---|
222 |
|
---|
223 | // return the found point given the best objective function value
|
---|
224 | return optima[0];
|
---|
225 |
|
---|
226 | }
|
---|
227 |
|
---|
228 | }
|
---|