1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.optimization;
|
---|
19 |
|
---|
20 | import agents.org.apache.commons.math.FunctionEvaluationException;
|
---|
21 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
22 | import agents.org.apache.commons.math.analysis.MultivariateRealFunction;
|
---|
23 | import agents.org.apache.commons.math.analysis.MultivariateVectorialFunction;
|
---|
24 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
25 | import agents.org.apache.commons.math.linear.RealMatrix;
|
---|
26 |
|
---|
27 | /** This class converts {@link MultivariateVectorialFunction vectorial
|
---|
28 | * objective functions} to {@link MultivariateRealFunction scalar objective functions}
|
---|
29 | * when the goal is to minimize them.
|
---|
30 | * <p>
|
---|
31 | * This class is mostly used when the vectorial objective function represents
|
---|
32 | * a theoretical result computed from a point set applied to a model and
|
---|
33 | * the models point must be adjusted to fit the theoretical result to some
|
---|
34 | * reference observations. The observations may be obtained for example from
|
---|
35 | * physical measurements whether the model is built from theoretical
|
---|
36 | * considerations.
|
---|
37 | * </p>
|
---|
38 | * <p>
|
---|
39 | * This class computes a possibly weighted squared sum of the residuals, which is
|
---|
40 | * a scalar value. The residuals are the difference between the theoretical model
|
---|
41 | * (i.e. the output of the vectorial objective function) and the observations. The
|
---|
42 | * class implements the {@link MultivariateRealFunction} interface and can therefore be
|
---|
43 | * minimized by any optimizer supporting scalar objectives functions.This is one way
|
---|
44 | * to perform a least square estimation. There are other ways to do this without using
|
---|
45 | * this converter, as some optimization algorithms directly support vectorial objective
|
---|
46 | * functions.
|
---|
47 | * </p>
|
---|
48 | * <p>
|
---|
49 | * This class support combination of residuals with or without weights and correlations.
|
---|
50 | * </p>
|
---|
51 | *
|
---|
52 | * @see MultivariateRealFunction
|
---|
53 | * @see MultivariateVectorialFunction
|
---|
54 | * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
|
---|
55 | * @since 2.0
|
---|
56 | */
|
---|
57 |
|
---|
58 | public class LeastSquaresConverter implements MultivariateRealFunction {
|
---|
59 |
|
---|
60 | /** Underlying vectorial function. */
|
---|
61 | private final MultivariateVectorialFunction function;
|
---|
62 |
|
---|
63 | /** Observations to be compared to objective function to compute residuals. */
|
---|
64 | private final double[] observations;
|
---|
65 |
|
---|
66 | /** Optional weights for the residuals. */
|
---|
67 | private final double[] weights;
|
---|
68 |
|
---|
69 | /** Optional scaling matrix (weight and correlations) for the residuals. */
|
---|
70 | private final RealMatrix scale;
|
---|
71 |
|
---|
72 | /** Build a simple converter for uncorrelated residuals with the same weight.
|
---|
73 | * @param function vectorial residuals function to wrap
|
---|
74 | * @param observations observations to be compared to objective function to compute residuals
|
---|
75 | */
|
---|
76 | public LeastSquaresConverter(final MultivariateVectorialFunction function,
|
---|
77 | final double[] observations) {
|
---|
78 | this.function = function;
|
---|
79 | this.observations = observations.clone();
|
---|
80 | this.weights = null;
|
---|
81 | this.scale = null;
|
---|
82 | }
|
---|
83 |
|
---|
84 | /** Build a simple converter for uncorrelated residuals with the specific weights.
|
---|
85 | * <p>
|
---|
86 | * The scalar objective function value is computed as:
|
---|
87 | * <pre>
|
---|
88 | * objective = ∑weight<sub>i</sub>(observation<sub>i</sub>-objective<sub>i</sub>)<sup>2</sup>
|
---|
89 | * </pre>
|
---|
90 | * </p>
|
---|
91 | * <p>
|
---|
92 | * Weights can be used for example to combine residuals with different standard
|
---|
93 | * deviations. As an example, consider a residuals array in which even elements
|
---|
94 | * are angular measurements in degrees with a 0.01° standard deviation and
|
---|
95 | * odd elements are distance measurements in meters with a 15m standard deviation.
|
---|
96 | * In this case, the weights array should be initialized with value
|
---|
97 | * 1.0/(0.01<sup>2</sup>) in the even elements and 1.0/(15.0<sup>2</sup>) in the
|
---|
98 | * odd elements (i.e. reciprocals of variances).
|
---|
99 | * </p>
|
---|
100 | * <p>
|
---|
101 | * The array computed by the objective function, the observations array and the
|
---|
102 | * weights array must have consistent sizes or a {@link FunctionEvaluationException} will be
|
---|
103 | * triggered while computing the scalar objective.
|
---|
104 | * </p>
|
---|
105 | * @param function vectorial residuals function to wrap
|
---|
106 | * @param observations observations to be compared to objective function to compute residuals
|
---|
107 | * @param weights weights to apply to the residuals
|
---|
108 | * @exception IllegalArgumentException if the observations vector and the weights
|
---|
109 | * vector dimensions don't match (objective function dimension is checked only when
|
---|
110 | * the {@link #value(double[])} method is called)
|
---|
111 | */
|
---|
112 | public LeastSquaresConverter(final MultivariateVectorialFunction function,
|
---|
113 | final double[] observations, final double[] weights)
|
---|
114 | throws IllegalArgumentException {
|
---|
115 | if (observations.length != weights.length) {
|
---|
116 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
117 | LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE,
|
---|
118 | observations.length, weights.length);
|
---|
119 | }
|
---|
120 | this.function = function;
|
---|
121 | this.observations = observations.clone();
|
---|
122 | this.weights = weights.clone();
|
---|
123 | this.scale = null;
|
---|
124 | }
|
---|
125 |
|
---|
126 | /** Build a simple converter for correlated residuals with the specific weights.
|
---|
127 | * <p>
|
---|
128 | * The scalar objective function value is computed as:
|
---|
129 | * <pre>
|
---|
130 | * objective = y<sup>T</sup>y with y = scale×(observation-objective)
|
---|
131 | * </pre>
|
---|
132 | * </p>
|
---|
133 | * <p>
|
---|
134 | * The array computed by the objective function, the observations array and the
|
---|
135 | * the scaling matrix must have consistent sizes or a {@link FunctionEvaluationException}
|
---|
136 | * will be triggered while computing the scalar objective.
|
---|
137 | * </p>
|
---|
138 | * @param function vectorial residuals function to wrap
|
---|
139 | * @param observations observations to be compared to objective function to compute residuals
|
---|
140 | * @param scale scaling matrix
|
---|
141 | * @exception IllegalArgumentException if the observations vector and the scale
|
---|
142 | * matrix dimensions don't match (objective function dimension is checked only when
|
---|
143 | * the {@link #value(double[])} method is called)
|
---|
144 | */
|
---|
145 | public LeastSquaresConverter(final MultivariateVectorialFunction function,
|
---|
146 | final double[] observations, final RealMatrix scale)
|
---|
147 | throws IllegalArgumentException {
|
---|
148 | if (observations.length != scale.getColumnDimension()) {
|
---|
149 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
150 | LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE,
|
---|
151 | observations.length, scale.getColumnDimension());
|
---|
152 | }
|
---|
153 | this.function = function;
|
---|
154 | this.observations = observations.clone();
|
---|
155 | this.weights = null;
|
---|
156 | this.scale = scale.copy();
|
---|
157 | }
|
---|
158 |
|
---|
159 | /** {@inheritDoc} */
|
---|
160 | public double value(final double[] point) throws FunctionEvaluationException {
|
---|
161 |
|
---|
162 | // compute residuals
|
---|
163 | final double[] residuals = function.value(point);
|
---|
164 | if (residuals.length != observations.length) {
|
---|
165 | throw new FunctionEvaluationException(point,LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE,
|
---|
166 | residuals.length, observations.length);
|
---|
167 | }
|
---|
168 | for (int i = 0; i < residuals.length; ++i) {
|
---|
169 | residuals[i] -= observations[i];
|
---|
170 | }
|
---|
171 |
|
---|
172 | // compute sum of squares
|
---|
173 | double sumSquares = 0;
|
---|
174 | if (weights != null) {
|
---|
175 | for (int i = 0; i < residuals.length; ++i) {
|
---|
176 | final double ri = residuals[i];
|
---|
177 | sumSquares += weights[i] * ri * ri;
|
---|
178 | }
|
---|
179 | } else if (scale != null) {
|
---|
180 | for (final double yi : scale.operate(residuals)) {
|
---|
181 | sumSquares += yi * yi;
|
---|
182 | }
|
---|
183 | } else {
|
---|
184 | for (final double ri : residuals) {
|
---|
185 | sumSquares += ri * ri;
|
---|
186 | }
|
---|
187 | }
|
---|
188 |
|
---|
189 | return sumSquares;
|
---|
190 |
|
---|
191 | }
|
---|
192 |
|
---|
193 | }
|
---|